6.4 Выборочное среднее и выборочная дисперсияИногда исследователь ставит перед собой более конкретную проблему: как, основываясь на выборке, оценить интересующие его числовые характеристики неизвестного распределения, не прибегая к приближению этого распределения как такового, то есть без построения выборочных функций распределения, гистограмм и т.п. В данном параграфе мы обсудим простые (но, как увидим в дальнейшем, весьма хорошие) выборочные аппроксимации для математического ожидания и дисперсии. Замечательно то, что они применимы в очень общей ситуации. Мы будем предполагать, что независимая выборка взята из неизвестного распределения, у которого существует математическое ожидание и дисперсия (обозначим эти неизвестные значения через и соответственно).
Определение 6.2
Величины, вычисляемые по выборке, и называются выборочным средним и выборочной дисперсией.
Следует особо подчеркнуть, что определенные выше величины зависят только от выборки. Следующее предложение объясняет, почему естественно считать выборочным аналогом математического ожидания, а -- выборочным аналогом дисперсии.
Предложение 6.1
Математические ожидания и совпадают с оцениваемыми неизвестными величинами: Дисперсия стремится к нулю при росте объема выборки.
Доказательство. Используя линейность математического ожидания, получим Так как выборка независимая, то . Следовательно, при . Покажем теперь, что . Первое замечание состоит в том, что не зависит от сдвига всех элементов выборки на одну и ту же константу, то есть, значения выражения (30) для выборок и одинаковы. Поэтому без ограничения общности мы будем считать, что . При этом предположении
Это утверждение свидетельствует о том, что и являются ``качественными приближениями'' для неизвестных величин и . Свойство (31) называется несмещенностью. Тот факт, что дисперсия исчезает с увеличением объема выборки дает основание для вывода о том, что, чем больше данных измерений мы возьмем для статистической обработки, тем точнее будут наши выводы.
Замечание 6.4
Для оценивания дисперсии по выборке может быть использована также функция
Доказательство. Как и при доказательстве Предложения 6.1 без ограничения общности будем считать, что . При этом предположении . Из (32) вытекает, что Применяя закон больших чисел в форме Хинчина к последовательности , имеем
Замечание 6.5
Здесь мы воспроизводим замечание о вычислениях, приведенное в [12, с. 116]. Из соотношения (33) вытекает следующее представление для : Математически формулы (30) и (34) дают одно и то же значение. Но, если нам необходимо вручную вычислить выборочную дисперсию, то следует это делать только по формуле (30), так как вычисления по формуле (34) потребовали бы учета намного большего числа значащих цифр, чем в случае применения формулы (30).
Имеется большое число практически важных приемов, призванных облегчить вычислительную работу с конкретными числовыми выборками. Для знакомства с ними рекомендуем читателю обратиться к книге [11]. В настоящее время существует много прикладных компьютерных программ, которые можно и нужно использовать для обработки числовых данных. С некоторыми наиболее популярными специализированными статистическими пакетами (Stadia, StatGraphics) можно познакомиться по книге [13], к которой также приводится их сравнение. Для статистической обработки небольших массивов данных вполне подойдет любой хороший универсальный математический пакет (Mathematica, Maple, Matlab).
Пример 6.5
Вычислим выборочное среднее и выборочную дисперсию для числовых данных Примера 6.4 на странице . Подставив данные в формулы (29) и (30), найдем для выборки
| |||||||||
А.Д. Манита, 2001-2011 |