6.3 ГистограммаПомимо эмпирических функций распределения, наглядное (но, вместе с тем, довольно приближенное) представление о неизвестном распределении можно получить при помощи гистограмм. Пусть -- независимая выборка из неизвестного распределения . Выберем два числа и , , такими, чтобы все числа попали внутрь интервала . Разобъем этот интервал на конечное число меньших интервалов: Таким образом, гистограмма представляет собой график кусочно-постоянной функции, такой, что площадь столбца с основанием, например, равна частоте попадания измерений в этот интервал группировки. Вспоминая материал 3.4, можно заключить, что гистограмма является выборочным аналогом плотности распределения. При построении гистограмм мы имеем свободу в выборе интервала , числа интервалов разбиения и самих точек . Для получения хороших приближений для плотности неизвестного распределения следует всякий раз учитывать специфику конкретных данных. Самые общие рекомендации по выбору этих параметров таковы.
| |||||||||
А.Д. Манита, 2001-2011 |