1.9 Независимость событий ... 1 События и их ... 2 Дискретные случайные величины ...

1.10 Статистическая независимость

Теперь мы распространим понятие независимости на случай произвольного конечного набора событий . Мы обсудим два способа распространения Определения 1.6, а именно, понятия взаимной независимости и попарной независимости. Начнем с первого из них.

В литературе употребляются следующие термины-синонимы:

События --

Определение 1.7   События называются независимыми, если для всех и для любых верно

Рассмотрим теперь второе, более слабое определение независимости.

Определение 1.8   События называются попарно независимыми, если

Замечание 1.2   Понятия независимости и попарной независимости набора событий не являются равносильными, а именно,



Независимость попарная независимость
       



Первая импликация вытекает из Определений 1.7 и 1.8. Следующий пример показывает, что события могут быть попарно независимыми, но зависимыми в совокупности.

Пример 1.6   Производится бросание двух костей. Рассмотрим следующие события:

на первой кости выпало нечетное число очков ,

на второй кости выпало нечетное число очков ,

сумма очков -- нечетна .

События -- попарно независимые. Действительно,

Но независимости в совокупности нет, так как

Пример 1.7   Важный пример независимых в совокупности событий возникает в схеме испытаний Бернулли. Как и в Примере 1.4, рассмотрим события

-е испытание закончилось ``успехом'' .

Из Упражнений 1.2 и 1.3 вытекает, что

для любого поднабора индексов . Следовательно, события независимы в совокупности. Поэтому, впредь мы будем говорить, что схема Бернулли является моделью последовательности независимых испытаний Бернулли.

 

А.Д. Манита, 2001-2011