9.2 Критерий согласия ПирсонаНаше изложение близко к [7, § 30.1] и [13, § 10.4]. Мы рассматриваем независимую выборку , обозначая неизвестную функцию распределения . Нас интересует вопрос о том, согласуются ли данные наблюдений с простой гипотезой Вначале разобъем множество на конечное число непересекающихся подмножеств . Пусть -- вероятность, соответствующая функции распределения , обозначим Очевидно, что Теперь сделаем группировку данных аналогично процедуре, описанной в 6.3, а именно, определим Очевидно, что в силу случайных колебаний эмпирические частоты будут отличаться от теоретических вероятностей . Чтобы контролировать это различие, следует подобрать хорошую меру расхождения между экспериментальными данными и гипотетическим теоретическим распределением. По аналогии с идеей метода наименьших квадратов в качестве такой меры расхождения можно взять, например, , где положительные числа можно выбирать более или менее произвольно. Как показал К. Пирсон, если выбрать , то полученная величина будет обладать рядом замечательных свойств. Таким образом, положим Подчеркнем, что величина вычисляется по выборке. Функцию принято называть статистикой Пирсона. Обсудим ее свойства.
Поведение , когда гипотеза верна.Речь идет о поведении при увеличении объема выборки: . Теорема К. Пирсона. Предположим, что гипотеза верна. Тогда при распределение величины сходится к распределению хи-квадрат с степенью свободы, то есть, Практический смысл этой теоремы в том, что при большом объеме выборки распределение можно считать распределением хи-квадрат с степенью свободы.
Поведение , когда гипотеза неверна.Предположим теперь, что и разбиение таково, что
Критерий проверки.То обстоятельство, что поведение существенно различно в зависимости от того верна или нет гипотеза , дает возможность построить критерий для ее проверки. Зададимся некоторым уровнем значимости (допустимой вероятностью ошибки) и возьмем квантиль , определенную формулой (45):
При таком решающем правиле мы может допустить ошибку, отвергнув верную гипотезу . Из теоремы Пирсона вытекает, что при больших величина вероятности этой ошибки близка к .
Границы применимости критерия на практике.Утверждения теоремы Пирсона и (52) относятся к пределам при . На практике, конечно, мы имеем дело лишь с выборками ограниченного объема. Поэтому, применяя вышеописанный критерий, необходимо проявлять осторожность. Согласно рекомендациям, изложенным в [7], применение критерия дает хорошие результаты, когда все ожидаемые частоты . Если же какие-то из этих чисел малы, рекомендуется, укрупняя некоторые группы, перегруппировать данные таким образом, чтобы ожидаемые частоты всех групп были не меньше десяти. Если число достаточно велико, то, как указывается в книге [13], порог для ожидаемых частот может быть понижен до или даже до , если имеет порядок нескольких десятков.
| |||||||||
А.Д. Манита, 2001-2011 |