9.1 Простые и сложные гипотезы и их проверкаПусть -- независимая выборка, соответствующая неизвестной функции распределения . Простой гипотезой называют предположение, состоящее в том, что неизвестная функция отвечает некоторому совершенно конкретному вероятностному распределению. Пример простой гипотезы:
: данные являются выборкой из равномерного
распределения
Сложной гипотезой называют предположение о том, что неизвестная функция принадлежит некоторому множеству распределений, состоящему из более чем одного элемента. В качестве иллюстрации можно привести Пример 6.3. Проверить статистическую гипотезу -- это значит на основе имеющихся данных принять или отвергнуть сделанное предположение. Для этого используется подход, основанный на выборе так называемого критического множества . Мы поступаем следующим образом: если данные наблюдений попадают в критическое множество (то есть, ), то гипотеза отвергается; если же данные находятся вне критического множества (то есть, ), то гипотеза принимается. Такое решающее правило будем называть критерием, основанным на критическом множестве . Существует много методов построения критических множеств для проверки статистических гипотез, некоторые из этих методов обсуждаются в последующих параграфах. Сейчас мы кратко коснемся вопроса о возможных ошибках, которые мы допускаем, принимая или отвергая гипотезы. В силу случайной природы наблюдаемых данных возможна ситуация в то время, когда гипотеза справедлива. Однако, согласно решающему правилу, в этом случае мы отвергнем верную гипотезу и, тем самым, допустим ошибку. Очевидно, что в случае простой гипотезы вероятность такой ошибки равна . Эту вероятность называют также уровнем значимости статистического критерия. Такого рода ошибки неизбежны при анализе случайных данных, и их не следует драматизировать. На практике уровень значимости критерия задается изначально, исходя из реальных приложений и потенциальных последствий возможных ошибок.
| |||||||||
А.Д. Манита, 2001-2011 |