Московский государственный университет

имени М.В. Ломоносова

Механико-математический факультет

ИЗБРАННЫЕ ГЛАВЫ КОМПЛЕКСНОГО АНАЛИЗА

П.В. Парамонов

Москва 2000 год

Парамонов П.В.

Избранные главы комплексного анализа

Учебное пособие. — Издательство механико-математического факультета МГУ, Москва, $2000~\mathrm{r.}-95~\mathrm{ctp.}$

В настоящем пособии приведены подробные доказательства классических результатов комплексного анализа: теорем Коши, принципа аргумента, теорем Римана, Каратеодори (для жордановых областей) и Рунге в их современном "окончательном" виде. Центральным во всех отношениях является доказательство теоремы Мергеляна, основанное на локализационной технике Витушкина. Из топологии (кроме стандартных элементарных фактов) мы опираемся на известную теорему Жордана и существенно используем понятие индекса произвольного замкнутого пути относительно точки. Для студентов, аспирантов и сотрудников математических факультетов университетов.

© (2000) П.В. Парамонов.

Содержание

Лекция 1.

Поле \mathbb{C} . Топология в \mathbb{C} . Теорема Жордана (6/д). Приращение (полярного) аргумента вдоль пути. Индекс пути относительно точки и его свойства.

Лекция 2.

 \mathbb{R} - и \mathbb{C} - дифференцируемость. Условия Коши-Римана. Свойства комплексной производной. Голоморфные функции. Конформные отображения.

Лекция 3.

Основные элементарные функции и их области конформности (однолистности). Интеграл вдоль пути (кривой) по комплексному переменному. Теорема о существовании интеграла вдоль спрямляемого пути от непрерывной функции. Вычисление интеграла вдоль непрерывно дифференцируемого пути.

Лекция 4.

Основные свойства интеграла вдоль кривой. Индекс замкнутой жордановой кривой и ее локальное "закругление". Ориентированная граница жордановой области в \mathbb{C} . Лемма Гурсы. Теорема Коши для односвязной области.

Лекция 5.

Комплексная первообразная. Теорема о существовании первообразной в односвязной области. Ветви корня и логарифма в односвязной области из \mathbb{C}_* . Допустимые области в \mathbb{C} и их ориентированные границы. Интегральная теорема Коши для допустимых областей.

Лекция 6.

Интегральная формула Коши. Теорема о среднем. Принцип максимума модуля и его следствие. Формула Коши для производных. Теорема Мореры. Теорема Вейерштрасса.

Лекция 7.

Формула Помпейю. Стандартное разбиение единицы. Определение основных пространств функций и формулировка теорем Вейерштрасса, Рунге и Мергеляна.

Лекция 8.

Свойства потенциала Коши от финитной функции по мере Лебега. Доказательство теоремы Рунге.

Лекция 9.

Свойства локализационного оператора Витушкина. Теорема Брауэра о продолжении непрерывной функции.

Лекция 10.

Схема аппроксимации: разбиение единицы и оценочная лемма при касании третьего порядка. Завершение доказательства теоремы Мергеляна (построение g_i).

Лекция 11.

Принцип аргумента. Теорема Руше. Принцип сохранения области. Обратный принцип соответствия границ. Критерии однолистности и локальной обратимости. Теорема Гурвица и ее следствия.

Лекция 12.

<u>Принцип симметрии Римана-Шварца.</u> Пространства функций и функционалы. Доказательство теоремы Римана о конформном отображении.

Лекция 13.

Доказательство теоремы Каратеодори для жордановых областей.

Лекция 14.

Томотопные пути в области. Эквивалентные определения односвязности области в С. Допустимые области (доказательство связности). Другие примеры применения основных теорем теории конформных отображений.

Предисловие

В настоящем пособии предпринята попытка изложить подробные доказательства базовых теорем "обычного" университетского курса комплексного анализа в их наиболее общих естественных формулировках.

Из топологии мы "постулируем" только классическую теорему Жордана, все остальные необходимые в курсе топологические факты (например, эквивалентность различных определений односвязности) доказываются или (в отдельных несложных случаях) предлагаются в виде упражнений. Понятия односвязности по Жордану и индекса произвольного замкнутого пути относительно точки играют существенную роль.

Второй, центральной точкой опоры нашего курса является теорема Мергеляна о полиномиальных аппроксимациях (как правило, она не входит в программы обычных курсов ТФКП). Предлагаемое здесь доказательство этой теоремы основано на локализационной технике Витушкина, ставшей уже классической и знакомство с которой представляется весьма полезным. Интегральная теорема Коши и принцип аргумента в их "окончательном" виде совсем не так тривиальны, как зачастую излагаются. Теорема Мергеляна дает возможность провести безупречные доказательства этих теорем и их следствий.

Некоторые разделы курса, "стандартные" по модулю теорем Коши, опущены. Это ряды Тейлора и Лорана, нули голоморфных функций, особые точки однозначного характера и вычеты. К сожалению, вне рассмотрения также осталась теория аналитического продолжения по Вейерштрассу, поэтому при доказательстве теоремы Римана мы пользуемся подходом Гурсы, позволяющим обойтись без теоремы о монодромии. В завершение приводится доказательство теоремы Каратеодори для жордановых областей и рассматриваются примеры применения основных теорем теории конформных отображений к задачам топологии на плоскости, теории гармонических функций в \mathbb{R}^2 (задаче Дирихле), к доказательствам других теорем курса $\mathbb{T}\Phi$ КП.

Пособие возникло на основе общих и специальных курсов лекций по комплексному анализу, прочитанных автором за 1994-2000 годы на механико-математическом факультете МГУ. Данный материал представляет собой семестровый специальный курс лекций (для студентов пятого курса), читаемый от кафедры

Теории функций и функционального анализа в осеннем семестре 2000 года.

В качестве дополнительной литературы назван только легко доступный учебник Б.В. Шабата: "Комплексный анализ", ч. 1, "Наука", 1976. По ходу изложения дается большое количество упражнений.

Есть надежда, что этот курс принесет определенную пользу при подготовке студентов и аспирантов математиков к экзаменам по специальности. Работа также рассчитана на преподавателей и научных сотрудников, специализирующихся в области комплексного анализа.

Автор весьма признателен профессору Е.П. Долженко за обсуждение работы и ряд ценных советов. Искреннюю благодарность выражаю доценту А.В. Домрину, внимательно прочитавшему рукопись и сделавшему множество важных замечаний, способствовавших ее улучшению.

Лекция №1

Поле \mathbb{C} . Основные топологические понятия

Поле \mathbb{C} .

По определению, $\mathbb{C}=\{x+iy\,|\,x\in\mathbb{R},y\in\mathbb{R}\}$, где i – символ (z=x+iy – алгебраическая форма комплексного числа $z,\,x=\mathrm{Re}\,z$ – его действительная часть, $y=\mathrm{Im}\,z$ – мнимая часть) и введены следующие операции:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$

при условии, что $z_{1,2} = x_{1,2} + iy_{1,2}$.

1.1. Упражнение. Проверить, что \mathbb{C} – поле, его подполе $\{x+i0\,|\,x\in\mathbb{R}\}$ изоморфно \mathbb{R} (далее они отождествляются), $i^2=(0+i1)^2=-1+i0=-1$.

Hулем и еdиницей здесь являются 0=0+i0 и 1=1+i0 соответственно, а при $z\neq 0$ обратный элемент числа z находится по формуле:

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} + i\left(-\frac{y}{x^2 + y^2}\right),$$

где $\overline{z} = x - iy$ – число, сопряженное к z = x + iy.

1.2. Тригонометрическая форма z.

При z=x+iy положим $|z|=\sqrt{x^2+y^2}-$ модуль числа z (r=|z|- полярный радиус, $z\overline{z}=r^2)$. Если $z\neq 0$, то существует единственное φ_0 в промежутке $(-\pi,\pi]$ $(\varphi_0=\arg(z)-$ главное значение (полярного) аргумента z) с условиями $x=r\cos(\varphi_0)$, $y=r\sin(\varphi_0)$. Наконец, вводится $\operatorname{Arg}(z)=\{\varphi_0+2k\pi\mid k\in\mathbb{Z}\}-$ совокупный (полярный) аргумент числа z. При любом $\varphi\in\operatorname{Arg} z$, $z=r(\cos\varphi+i\sin\varphi)$ (тригонометрическая форма z).

Полезно заметить, что если z = x + iy и x > 0 (z лежит в npasoŭ полуплоскости), то arg(z) = arctg(y/x).

Элементарно проверяется, что если $\varphi_{1,2}\in \mathrm{Arg}(z_{1,2}),\ r_{1,2}=|z_{1,2}|,$ то

$$z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)).$$

1.3. Формула Муавра. Если $z = r(\cos \varphi + i \sin \varphi) \neq 0$, то

$$z^{n} = r^{n}(\cos(n\varphi) + i\sin(n\varphi)), \ n \in \mathbb{Z}.$$
 (1.1)

1.4. Корни степени n ($\sqrt[n]{z}$).

Пусть $n \in \mathbb{Z}$, $n \ge 2$. По определению, $w \in \sqrt[n]{z} \iff w^n = z$. Из (1.1) следует, что при $z \ne 0$ совокупность $\sqrt[n]{z}$ состоит из n элементов $\{w_0, w_1, \ldots, w_{n-1}\}$, находящихся по формуле

$$w_k = \sqrt[n]{z_{(k)}} = \sqrt[n]{r} \left(\cos \left(\frac{\varphi_0 + 2k\pi}{n} \right) + i \sin \left(\frac{\varphi_0 + 2k\pi}{n} \right) \right),$$

 $k = 0, \dots, n-1$. Ясно, что $\sqrt[n]{0} = \{0\}$.

Топология в С

- В \mathbb{C} вводится метрика $d(z_1,z_2)=|z_1-z_2|$ такая же, как в \mathbb{R}^2 (так что как метрические пространства они тождественны). Предполагаются известными определения открытых, замкнутых, ограниченных, компактных, связных множеств в метрическом пространстве, определения предела последовательности и функции (в точке по множеству), непрерывности функции (в точке множества и на множестве). Тем не менее, ряд важных понятий мы напомним.
- **1.5.** Определение. Окрестностью точки a в \mathbb{C} называется всякое *открытое* множество, содержащее a.
- **1.6.** Определение. Подмножество E в \mathbb{C} называется *связным*, если нельзя найти открытые множества U_1 и U_2 со следующими свойствами: $U_1 \cap E \neq \emptyset$, $U_2 \cap E \neq \emptyset$, $U_1 \cap U_2 = \emptyset$, $E \subset U_1 \cup U_2$.
- **1.7. Определение.** *Областью* (в \mathbb{C}) называется всякое (не пустое) открытое связное множество в \mathbb{C} .

Простейшим примером области является *открытый круг* $B(a,r)=\{z\in\mathbb{C}\,|\,|z-a|< r\}$ с центром $a\in\mathbb{C}$ и радиусом r>0.

- **1.8. Упражнение.** Пусть G область в \mathbb{C} . Если $E \subset G$ не пусто, *открыто и замкнуто в* G, то E = G.
- **1.9.** Определение. Произвольное непрерывное *отображение* γ какого-либо отрезка $[\alpha,\beta]\subset \mathbb{R}$ в \mathbb{C} называется *путем* (в \mathbb{C}), а множество $[\gamma]=\gamma([\alpha,\beta])$ его *носителем*.

1.10. Определение. Множество $E \subset \mathbb{C}$ называется линейносвязным, если для любых $z_1 \in E$ и $z_2 \in E$ существует путь $\gamma: [\alpha, \beta] \to E$ с условием $\gamma(\alpha) = z_1, \gamma(\beta) = z_2$.

Нетрудно доказать, что всякая область в С линейно-связна.

- **1.11.** Определение. Два пути $\gamma_{1,2}: [\alpha_{1,2},\beta_{1,2}] \to \mathbb{C}$ называются эквивалентными, если существует непрерывная строго возрастающая функция ψ из $[\alpha_1,\beta_1]$ на $[\alpha_2,\beta_2]$ с условием $\gamma_1(t)=\gamma_2(\psi(t))$ для любого $t\in [\alpha_1,\beta_1]$. (Для краткости пишем $\gamma_1\sim\gamma_2$).
- **1.12.** Определение. Класс эквивалентных путей называют (непрерывной) *кривой*.

При этом корректно определен *носитель кривой*. Обозначения: $\Gamma = \{\gamma\}$ – кривая с представителем γ , $[\Gamma] = [\gamma]$ – ее носитель.

- **1.13.** Определение. Путь $\gamma: [\alpha, \beta] \to \mathbb{C}$ называется *эксор-дановым*, если он взаимно однозначен на $[\alpha, \beta]$ (т.е. $\gamma(t_1) \neq \gamma(t_2)$ при $\alpha \leq t_1 < t_2 \leq \beta$).
- **1.14.** Определение. Путь $\gamma: [\alpha, \beta] \to \mathbb{C}$ называется *замкнутым эсордановым*, если $\gamma(t_1) \neq \gamma(t_2)$ при всех $t_1 < t_2$ из $[\alpha, \beta)$, но $\gamma(\alpha) = \gamma(\beta)$.

Носитель всякого жорданова пути гомеоморфен отрезку [0,1], а замкнутого жорданова пути – единичной окружности $\{|z|=1\}$.

1.15. Определение. Жорданова кривая – класс эквивалентности жордановых путей. Замкнутая жорданова кривая – класс эквивалентности замкнутых жордановых путей.

Следующая весьма сложная топологическая теорема имеет принципиальное значение в анализе.

1.16. Теорема (Жордана).

- 1. Пусть Γ жорданова кривая. Тогда $\Omega=\mathbb{C}\setminus [\Gamma]$ связно и $\partial\Omega=[\Gamma].$
- 2. Пусть Γ замкнутая жорданова кривая. Тогда множество $\mathbb{C}\setminus [\Gamma]$ не связно оно состоит из ∂ вух непересекающихся компонент (областей): ограниченной D и неограниченной Ω , причем $\partial D = \partial \Omega = [\Gamma]$.

Через ∂E обозначается граница, через \overline{E} – замыкание, а через E^o – внутренность множества E в $\mathbb C$. Компонентой связности

множества E в \mathbb{C} называется всякое связное подмножество из E, которое не содержится ни в каком большем связном подмножестве в E. Всякое *открытое* множество распадается на конечное или счетное число своих компонент связности, являющихся (попарно непересекающимися) областями.

Считаем также, что читатель знаком с конструкцией *сферы* Puмана $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ – стандартной одноточечной компактификацией \mathbb{C} (ее *метризуемая* топология *согласована* с топологией \mathbb{C}). В случае, если E неограниченно, или $\infty \in E \subset \overline{\mathbb{C}}$, мы каждый раз конкретизируем: какие из упомянутых выше топологических понятий определяются *относительно топологии* в $\overline{\mathbb{C}}$.

Ветви многозначных функций. Приращение аргумента вдоль пути. Индекс пути

Пусть $E \subset \mathbb{C}$ непусто. Будем говорить, что Φ – многозначная функция на E, если для любого $z \in E$ объект $\Phi(z)$ представляет собой некоторое nenycmoe подмножество в \mathbb{C} (для однозначной функции множество $\Phi(z)$ – одноточечно). Иногда вместо \mathbb{C} берется множество $\overline{\mathbb{C}}$.

1.17. Определение. Пусть $\emptyset \neq E_1 \subset E$. Функция $f: E_1 \to \mathbb{C}$ называется *однозначной ветвыю* многозначной функции Φ на E_1 , если для любого $z \in E_1$ имеем $f(z) \in \Phi(z)$.

Скажем, что Φ распадается на однозначные ветви $\{f_j\}_{j\in J}$ над E_1 , если $\Phi(z) = \bigcup_{j\in J} \{f_j(z)\}$ при каждом $z\in E_1$.

1.18. Теорема. Пусть $\gamma: [\alpha, \beta] \to \mathbb{C} \setminus \{0\}$ – путь. Тогда многозначная функция $\operatorname{Arg}(\gamma(t))$ распадается над всем $[\alpha, \beta]$ на счетное множество непрерывных ветвей $\{\varphi_j(t)\}_{j\in\mathbb{Z}}$. Любые две из этих ветвей отличаются друг от друга на аддитивную постоянную, кратную 2π .

Доказательство. Нетрудно вывести формулу $\operatorname{Arg}(z)$ через x и y и убедиться, что над каждым кругом $B(a,|a|), a \neq 0$, многозначная функция $\operatorname{Arg}(z)$ распадается на счетное число непрерывных ветвей, отличающихся друг от друга на аддитивные постоянные, кратные 2π . Пользуясь последним замечанием и равномерной непрерывностью γ на $[\alpha,\beta]$, мы можем разбить отрезок $[\alpha,\beta]$ на равные достаточно малые отрезки, на каждом из которых требуемая непрерывная ветвь заведомо имеется (надо взять композицию γ и подходящей непрерывной ветви $\operatorname{Arg}(z)$). Остается надлежащим образом "склеить" эти ветви. Аккуратное

доказательство предлагаем провести читателю. \square

- **1.19.** Определение. В условиях последней теоремы, величина $\varphi_j(\beta) \varphi_j(\alpha)$ (независящая от j) называется приращением (полярного) аргумента вдоль пути γ и обозначается $\Delta_{\gamma} \operatorname{Arg}(z)$.
- **1.20. Упражнение.** Функция $\Delta_{(\gamma-w)}\operatorname{Arg}(z)$ непрерывна по w вне $[\gamma].$

Здесь и далее $(\gamma - w)(t) = \gamma(t) - w$, $t \in [\alpha, \beta]$.

1.21. Определение. Пусть $\gamma:[\alpha,\beta]\to\mathbb{C}$ – замкнутый путь, т.е. $\gamma(\alpha)=\gamma(\beta)$. При $a\not\in[\gamma]$ величина

$$\operatorname{ind}_a(\gamma) = (2\pi)^{-1} \Delta_{(\gamma-a)} \operatorname{Arg}(z)$$

называется $\mathit{undercom}$ пути γ относительно точки a.

Пусть E_1 и E_2 – непустые множества, а γ_1 и γ_2 – пути в $\mathbb C$, определенные на $[\alpha,\beta]$. В дальнейшем мы будем пользоваться обозначениями:

$$\operatorname{dist}(E_1, E_2) = \inf\{|z_1 - z_2| \, | \, z_1 \in E_1, z_2 \in E_2\},$$
$$d(\gamma_1, \gamma_2) = \max\{|\gamma_1(t) - \gamma_2(t)| : t \in [\alpha, \beta]\}.$$

1.22. Лемма. Пусть γ_1 и γ_2 – замкнутые пути в \mathbb{C} , определенные на $[\alpha, \beta]$. Пусть $a \notin [\gamma_1]$, причем $d(\gamma_1, \gamma_2) < \operatorname{dist}(a, [\gamma_1])$. Тогда $\operatorname{ind}_a(\gamma_1) = \operatorname{ind}_a(\gamma_2)$.

Доказательство. Пусть $\varphi(t)$ и $\psi(t)$ – некоторые непрерывные на $[\alpha,\beta]$ ветви многозначных функций $\operatorname{Arg}(\gamma_1(t)-a)$ и $\operatorname{Arg}(\gamma_2(t)-a)$ соответственно. Из условия леммы вытекает, что функция $\varphi(t)-\psi(t)$ не принимает на $[\alpha,\beta]$ значений $\{\pi+2\pi k \mid k\in\mathbb{Z}\}$. Нужное утверждение вытекает из теоремы о промежуточных значениях непрерывной функции $(\varphi-\psi)$ на $[\alpha,\beta]$. \square

- **1.23.** Следствие. Функция $\operatorname{ind}_w(\gamma)$ постоянна (по w) в каждой компоненте связности множества $\mathbb{C}\setminus [\gamma]$ и принимает только целочисленные значения.
- **1.24. Упражнение.** Доказать, что $\Delta_{\gamma} \operatorname{Arg}(z)$ и $\operatorname{ind}_a(\gamma)$ не меняются при замене γ на любой эквивалентный путь, так что $\Delta_{\{\gamma\}} \operatorname{Arg}(z)$ и $\operatorname{ind}_a(\{\gamma\})$ определены корректно для кривой $\{\gamma\}$.

Действия с кривыми.

1.25. Определение.

(1) Пусть Γ – кривая, $\gamma \in \Gamma$, γ определен на $[\alpha, \beta]$. Положим $\gamma^-(t) = \gamma(\alpha + \beta - t)$, $t \in [\alpha, \beta]$. Кривая $\Gamma^- = \{\gamma^-\}$ называется противоположной κ Γ (имеющей противоположную ориентацию). (2) Пусть Γ_1 и Γ_2 – кривые, причем конец Γ_1 совпадает с началом Γ_2 . Возьмем какие-либо $\gamma_1 \in \Gamma_1$ и $\gamma_2 \in \Gamma_2$, определенные на [0,1]. Кривая $\Gamma = \Gamma_1 \cup \Gamma_2$ (объединение Γ_1 и Γ_2 , порядок важен!) определяется представителем

$$\gamma(t) = \left\{ \begin{array}{ll} \gamma_1(2t), & t \in [0,1/2] \\ \gamma_2(2t-1), & t \in [1/2,1] \end{array} \right.$$

- **1.26.** Замечание. По индукции определяется объединение нескольких кривых, $\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_n$. Нетрудно доказывается корректность введенных определений.
- **1.27.** Пусть Γ_1 замкнутая жорданова кривая, а Γ_2 жорданова кривая с условием $[\Gamma_2] \subset [\Gamma_1]$ и "сонаправленная" с Γ_1 . Дать корректное определение *кривой* $\Gamma_1 \setminus \Gamma_2$ (это будет одна из двух возможных *жордановых* кривых с носителем, равным *замыканию* множества $[\Gamma_1] \setminus [\Gamma_2]$).
- **1.28.** Если кривые Γ , Γ_1 и Γ_2 не проходят через 0 и кривая $\Gamma_1 \cup \Gamma_2$ определена, то
- $(1)\Delta_{\Gamma^{-}}\operatorname{Arg}(z) = -\Delta_{\Gamma}\operatorname{Arg}(z);$
- $(2)\Delta_{\Gamma_1\cup\Gamma_2}\operatorname{Arg}(z) = \Delta_{\Gamma_1}\operatorname{Arg}(z) + \Delta_{\Gamma_2}\operatorname{Arg}(z).$
- **1.29.** Доказать эквивалентность понятий связности и линейной связности для открытых множеств в \mathbb{C} .
- **1.30.** Привести пример линейно связного компакта в \mathbb{C} , не являющегося носителем никакого пути.
- **1.31.** Пусть K компакт в \mathbb{C} и $f:K\to\mathbb{C}$ непрерывна и взаимнооднозначна на K. Тогда f(K) компакт, а f гомеоморфизм K и f(K). Важное следствие: носитель всякого жорданова пути в \mathbb{C} гомеоморфен отрезку, а носитель всякого замкнутого жорданова пути в \mathbb{C} гомеоморфен окружности.
- **1.32.** Построить жорданов путь в \mathbb{C} , носитель которого имеет положительную плоскую меру Лебега.

Лекция №2

\mathbb{R} и \mathbb{C} -дифференцируемость и конформность функций комплексного переменного.

Пусть $E \subset \mathbb{C}_z$ не пусто, $f: E \to \mathbb{C}_w$, w = u + iv.

2.1. Определение. Пусть z_0 – предельная точка E. По определению, $\lim_{E,z\to z_0}f(z)=w_0$, если для всякого $\varepsilon>0$ найдется $\delta>0$ такое, что из условий $0<|z-z_0|<\delta,z\in E$, следует $|f(z)-w_0|<\varepsilon$.

Если $z_0 \in (E \cup \{z_0\})^o$, то пишем $\lim_{z \to z_0} f(z) = w_0$, опуская E.

2.2. Определение. Функция f(z) непрерывна в точке z_0 (по множеству E), если $z_0 \in E$ и выполняется одно из двух: либо z_0 – изолированная (т.е. не предельная) точка E, либо z_0 – предельная точка E и $\lim_{E,z\to z_0} f(z) = f(z_0)$.

Положим f(z)=u(x,y)+iv(x,y), где z=x+iy, $u=\operatorname{Re} f,v=\operatorname{Im} f.$

- **2.3.** Упражнение. Доказать, что $\lim_{E,z\to z_0} f(z)=w_0=u_0+iv_0$ если и только если $\lim_{E,z\to z_0} u(x,y)=u_0$ и $\lim_{E,z\to z_0} v(x,y)=v_0$.
- **2.4.** Определение. Пусть функция f определена в некоторой окрестности точки $z_0 = x_0 + iy_0$. Говорят, что f является \mathbb{R} -дифференцируемой в точке z_0 , если $\mathrm{Re}(f(z)) = u(x,y)$ и $\mathrm{Im}(f(z)) = v(x,y)$ дифференцируемы в точке (x_0,y_0) как функции двух переменных.

Положим $\Delta z = \Delta x + i \Delta y$. Условие \mathbb{R} -дифференцируемости f в точке z_0 означает, что

$$\begin{split} \Delta f|_{z_0}(\Delta z) &:= f(z_0 + \Delta z) - f(z_0) = \Delta u|_{z_0}(\Delta x, \Delta y) + i\Delta v|_{z_0}(\Delta x, \Delta y) \\ &= u'_x|_{z_0}\Delta x + u'_y|_{z_0}\Delta y + o(\Delta z) + i(v'_x|_{z_0}\Delta x + v'_y|_{z_0}\Delta y + o(\Delta z)) \\ &= (u'_x + iv'_x)|_{z_0}\Delta x + (u'_y + iv'_y)|_{z_0}\Delta y + o(\Delta z) \\ &= : \frac{\partial f}{\partial x}|_{z_0}\Delta x + \frac{\partial f}{\partial y}|_{z_0}\Delta y + o(\Delta z) \end{split}$$

при $\Delta z \to 0$. Напомним, что g(z) = o(h(z)) при $z \to z_0$, если $h(z) \neq 0$ в некоторой проколотой окрестности точки z_0 , причем $\lim_{z \to z} g(z)/h(z) = 0$.

2.5. Определение. Выражение

$$df|_{z_0}(\Delta z) = \frac{\partial f}{\partial x}\Big|_{z_0} \Delta x + \frac{\partial f}{\partial y}\Big|_{z_0} \Delta y,$$

представляющее собой главную линейную часть приращения f в точке z_0 , называется дифференциалом функции f в точке z_0 .

Отметим, что df есть функция ∂byx комплексных переменных z_0 и Δz , а при $\phi u\kappa cuposanhom\ z_0$ она представляет собой \mathbb{R} -линейную функцию (т.е. функцию вида $a\Delta x + b\Delta y$, где $a,b\in\mathbb{C}$ – постоянны).

Согласно этой (стандартной) терминологии, имеем: $\Delta x = dx$, $\Delta y = dy$, $\Delta z = dz = dx + idy$, $d\overline{z} = dx - idy = \overline{dz}$, откуда $dx = (dz + d\overline{z})/2$, $dy = (dz - d\overline{z})/(2i)$.

Окончательно получаем:

$$df|_{z_0}(dz) = \frac{\partial f}{\partial z}\Big|_{z_0} dz + \frac{\partial f}{\partial \overline{z}}\Big|_{z_0} d\overline{z},$$

где, по определению,

$$\left.\frac{\partial f}{\partial z}\right|_{z_0} = \frac{1}{2} \bigg(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}\bigg)\bigg|_{z_0} \ , \quad \left.\frac{\partial f}{\partial \overline{z}}\right|_{z_0} = \frac{1}{2} \bigg(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\bigg)\bigg|_{z_0}.$$

- **2.6.** Упражнение. Пусть $df|_{z_0}(dz)=adz+bd\overline{z}$, где $a,b\in\mathbb{C}$. Тогда $a=(\partial f/\partial z)|_{z_0}$ и $b=(\partial f/\partial \overline{z})|_{z_0}$ находятся однозначно.
- **2.7.** Замечание. Из анализа хорошо известно, что если u_x' , u_y' , v_x' , v_y' существуют в окрестности точки (x_0,y_0) и непрерывны в самой этой точке, то u и v дифференцируемы в точке (x_0,y_0) и, следовательно, f \mathbb{R} -дифференцируема в точке z_0 .
- **2.8.** Определение. \mathbb{R} -дифференцируемая в точке z_0 функция f называется \mathbb{C} -дифференцируемой в точке z_0 , если $df|_{z_0}(dz)$ имеет вид adz (где $a\in\mathbb{C}$ константа, т.е $df|_{z_0}$ есть \mathbb{C} -линейная функция переменной dz).

Ясно, что последнее условие выполняется тогда и только тогда, когда $a=\partial f/\partial z|_{z_0}$ и, одновременно, $\partial f/\partial \overline{z}|_{z_0}=0.$

- **2.9.** Пример. Функции $f(z)=z^n\ (n\in\mathbb{N})$ являются \mathbb{C} -дифференцируемыми всюду. При этом $dz^n|_{z_0}(dz)=nz_0^{n-1}dz$.
- **2.10. Теорема.** Функция f является \mathbb{C} -дифференцируемой в точке z_0 , если и только если f имеет в точке z_0 комплексную производную $f'(z_0)$, т.е. существует

$$\lim_{\Delta z \to 0} \frac{\Delta f|_{z_0}(\Delta z)}{\Delta z} =: \frac{df}{dz}\Big|_{z_0} =: f'(z_0).$$

Доказательство. Очевидно. \square

2.11. Следствие. \mathbb{R} -дифференцируемая в точке z_0 функция f имеет комплексную производную $f'(z_0)$, если и только если $\partial f/\partial \overline{z}|_{z_0}=0$. При этом условии $f'(z_0)=\partial f/\partial z|_{z_0}$.

Доказательство следующей важной теоремы также не составляет труда.

2.12. Теорема (Коши-Римана). \mathbb{R} -дифференцируемая в точке z_0 функция f(z)=u(x,y)+iv(x,y) является \mathbb{C} -дифференцируемой в этой точке тогда и только тогда, когда выполняются условия Коши-Римана:

$$\begin{aligned} u_x'(x_0, y_0) &= v_y'(x_0, y_0) \,, \\ u_y'(x_0, y_0) &= -v_x'(x_0, y_0) \,. \end{aligned}$$

Свойства комплексной производной

Пусть f(z) = u(x,y) + iv(x,y) – \mathbb{R} -дифференцируема в точке $z_0 = x_0 + iy_0$. Тогда f индуцируем отображение $F: (x,y)^t \to (u(x,y),v(x,y))^t$ из окрестности точки $(x_0,y_0)^t$ в пространство \mathbb{R}^2 , дифференцируемое в точке $(x_0,y_0)^t$ (здесь \mathbb{R}^2 рассматривается как пространство *столбцов* $\{(x,y)^t\}$, t – знак транспонирования).

Пусть $[F']|_{z_0}$ – линейное отображение $\mathbb{R}^2 o \mathbb{R}^2$ с матрицей

$$\left. \left(\begin{array}{cc} u_x' & u_y' \\ v_x' & v_y' \end{array} \right) \right|_{(x_0, y_0)^t}$$

2.13. Теорема. Функция f является \mathbb{C} -дифференцируемой в точке z_0 , если и только если отображение F дифференцируемо в

точке $(x_0, y_0)^t$ и

$$[F']|_{z_0} = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right).$$

При этом $a + ib = f'(z_0)$.

2.14. Следствие. Если f — \mathbb{C} -дифференцируема в точке z_0 , то $\det([F']|_{z_0})=|f'(z_0)|^2$. В частности, F вырождено в точке $(x_0,y_0)^t$ (т.е. $\det([F']|_{z_0})=0$), если и только если $f'(z_0)=0$. Если же $f'(z_0)\neq 0$, то $[F']|_{z_0}$ сохраняет ориентацию, поскольку $\det([F']|_{z_0})=|f'(z_0)|^2>0$.

Доказательства приведенных выше утверждений непосредственно следуют из определений дифференцируемости и условий Коши-Римана. Детали опускаем.

- **2.15.** Упражнение. Если f и g \mathbb{C} -дифференцируемы в точке z_0 , то $f\pm g$, fg, f/g (при $g(z_0)\neq 0$) \mathbb{C} -дифференцируемы в точке z_0 и выполняются стандартные правила вычисления производных.
- **2.16. Упражнение.** Вывести формулы для $(\partial \varphi/\partial z)|_{z_0}$ и $(\partial \varphi/\partial \overline{z})|_{z_0}$ при $\varphi=f\pm g,\ \varphi=fg,\ \varphi=f/g,$ где f и g \mathbb{R} -дифференцируемы в точке z_0 .
- **2.17. Теорема (производная сложной функции).** Пусть g \mathbb{C} -дифференцируема в точке z_0 , а f в точке $w_0=g(z_0)$. Тогда $f\circ g(z)=f(g(z))$ является \mathbb{C} -дифференцируемой в точке z_0 , причем $(f\circ g)'(z_0)=f'(w_0)g'(z_0)$.

Доказательство. Стандартное, прямое доказательство этой теоремы точно такое же, как в одномерном вещественном анализе. Приведем еще одно.

Пусть g индуцирует G (для краткости пишем $g \sim G$), $f \sim F$. По Теореме 2.13 имеем:

$$[G']|_{z_0} = \begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix}$$
 $a_1 + ib_1 = g'(z_0)$

$$[F']|_{w_0} = \begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix}$$
 $a_2 + ib_2 = f'(w_0).$

Ясно, что $f \circ g \sim F \circ G$ и

$$[(F \circ G)']|_{z_0} = \begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix} \begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} ,$$

причем
$$a + ib = (a_2 + ib_2)(a_1 + ib_1)$$
. \square

Нам будет пока хватать следующего упрощенного варианта теоремы об обратной функции.

2.18. Теорема (об обратной функции). Пусть f – гомеоморфное отображение окрестности точки z_0 на некоторую окрестность точки $w_0 = f(z_0), g$ — обратное к f в последней окрестности. Если f — \mathbb{C} -дифференцируемо в точке z_0 и $f'(z_0) \neq 0$, то g — \mathbb{C} -дифференцируемо в точке w_0 , причем $g'(w_0) = 1/f'(z_0)$.

Доказательство. Пусть $\Delta w = \Delta f|_{z_0}(\Delta z)$. Из гомеоморфности имеем: $\{\Delta z \to 0, \ \Delta z \neq 0\} \iff \{\Delta w \to 0, \ \Delta w \neq 0\}$. Остается перейти к пределу в равенстве $\Delta z/\Delta w = (\Delta w/\Delta z)^{-1}$.

- **2.19.** Замечание. Из анализа известно, что условия последней теоремы будут выполнены, если потребовать, чтобы индуцированное отображение F было непрерывно дифференцируемым в окрестности $(x_0,y_0)^t$ и , дополнительно, $\det([F']|_{z_0}) \neq 0$.
- **2.20.** Определение. Пусть f определена и конечна в окрестности ∞ . Функция f называется \mathbb{C} -дифференцируемой в точке ∞ , если функция g(w)=f(1/w), доопределенная $g(0)=f(\infty)$, является \mathbb{C} -дифференцируемой в точке 0. По определению полагается

$$f'(\infty) = g'(0) = \lim_{z \to \infty} z(f(z) - f(\infty)).$$

- **2.21.** Пример. f(z) = 1/z, $f(\infty) = 0$, $f'(\infty) = 1$.
- **2.22.** Определение. Функция f называется голоморфной в точке z_0 , если f \mathbb{C} -дифференцируема в некоторой окрестности точки z_0 .
- **2.23.** Пример. $f(z)=|z|^2=x^2+y^2$. Условия Коши-Римана показывают, что z=0 единственная точка, где f является $\mathbb C$ -дифференцируемой. Следовательно, функция f нигде не голоморфна.
- **2.24.** Определение. Функция f называется голоморфной в области $D \subset \mathbb{C}$, если f является \mathbb{C} -дифференцируемой (а, следовательно, голоморфной) в каждой точке области D.

Класс всех голоморфных функций в области D обозначается A(D). Функции класса $A(\mathbb{C})$ называются y

Конформные отображения и геометрический смысл комплексной производной

- **2.25.** Определение. Пусть функция $f \mathbb{R}$ -дифференцируема в точке $z_0 \in \mathbb{C}$. Говорят, что f конформна в точке z_0 (по другой терминологии : f -конформное отображение в точке z_0), если ее дифференциал $df|_{z_0}(\Delta z)$ в точке z_0 (как функция от Δz) есть композиция гомотетии и поворота (оба с центром в 0, т.е. порядок не важен).
- **2.26.** Теорема. f конформна в точке z_0 , если и только если f является \mathbb{C} -дифференцируемой в точке z_0 и $f'(z_0) \neq 0$. При этом $k = |f'(z_0)|$ коэффициент растяжения, a th $= \arg(f'(z_0))$ угол поворота при (\mathbb{C} -линейном) отображении $df|_{z_0}$.

Доказательство. Оставляем читателю.

- **2.27.** Упражнение. Пусть f = u + iv конформна в точке z_0 , причем u и v имеют непрерывные частные производные в окрестности z_0 . Тогда f сохраняет углы между гладкими кривыми в точке z_0 .
- **2.28.** Определение. Пусть f отображает окрестность точки $\infty \in \overline{\mathbb{C}}$ в $\overline{\mathbb{C}}$. Говорят, что f конформна g мочке g, если отображение g(w) = f(1/w) (при $g(0) = f(\infty) \neq \infty$) или g(w) = 1/f(1/w), g(0) = 0 (при $f(\infty) = \infty$) конформно в точке g(w) = 1/f(1/w), g(
- **2.29.** Определение. Функция f локально-конформна e области $D \subset \overline{\mathbb{C}}$, если f конформна в каждой точке области D.
- **2.30.** Определение. Функция f конформна в области D, если она локально конформна и взаимно-однозначна (однолистна) в D.
 - **2.31.** Следствие. Пусть $f: D \to \mathbb{C}$ (D область в \mathbb{C}).
 - 1. f локально конформна в D тогда и только тогда, когда $f \in A(D)$ и $f'(z) \neq 0$ всюду в D.
 - 2. f конформна в D тогда и только тогда, когда $f \in A(D)$, $f'(z) \neq 0$ всюду в D и f взаимно-однозначна в D.

- **2.32.** Пример. $f(z)=z^2$ локально конформна, но не кон-
- формна в $\mathbb{C}\setminus\{0\}$; та же f конформна в любой полуплоскости с границей, содержащей точку 0, но ни в какой большей области.
- **2.33.** Привести пример функции f, всюду в плоскости $\mathbb C$ имеющей частные производные, удовлетворяющие условиям Коши-Римана, но не имеющей комплексной производной в точке $z_0 = 0$.
- 2.34. Как записываются условия Коши-Римана в полярных координатах?

Лекция №3

Основные элементарные функции. Интегрирование вдоль пути.

Основные элементарные функции и их области конформности.

3.1. Дробно-линейное отображение (ДЛО). ДЛО – это функция (отображение) вида $w=\frac{az+b}{cz+d}$, где a,b,c,d – nocmo-янные из $\mathbb C$, такие, что указанная функция отлична от тожде-

янные из \mathbb{C} , такие, что указанная функция отлична от тождественной константы (в том числе и ∞). При c=0, d=1 ДЛО становится линейной функцией. Всякое ДЛО является конформным изоморфизмом $\overline{\mathbb{C}}$ на $\overline{\mathbb{C}}$. Основные свойства ДЛО и их применение хорошо изложены, например, в упомянутой выше книге Б.В. Шабата (см. аннотацию).

3.2. Целые степенные функции. Вместе с $f_0(z)=1$ и $f_1(z)=z$ к ним относятся функции вида $f(z)=z^n$, где $n\geq 2$ натуральное. Поскольку $f'(z)=nz^{n-1}$, то f локально конформна всюду, кроме точки z=0. Следовательно, область G является областью конформности (однолистности) функции $f(z)=z^n$, $n\geq 2$, если и только если $0\notin G$ и f взаимно-однозначна в G.

Пусть $G(\alpha,\beta)=\{z\neq 0: \arg(z)\in (\alpha,\beta)(\mod 2\pi)\}$, где $\alpha<\beta\leq \alpha+2\pi$. Из формулы Муавра следует, что при любом $\alpha\in (-\pi,\pi]$ функция z^n конформно отображает $G(\alpha,\alpha+2\pi/n)$ на $G(n\alpha,n\alpha+2\pi)$, так что $G(\alpha,\alpha+2\pi/n)$ — одна из максимальных областей конформности указанной функции.

3.3. Экспонента По определению, при любом $z \in \mathbb{C}$,

$$e^z = \exp(z) = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$$
.

Пусть z=x+iy. Докажем, что $e^z=e^x(\cos y+i\sin y)$, т.е. $|e^z|=e^x$, ${\rm Arg}(e^z)=\{y+2\pi k\,|\,k\in\mathbb{Z}\}.$

Действительно, пусть n – достаточно велико, тогда 1+z/n=1+x/n+iy/n лежит в правой полуплоскости. По формуле Муавра находим:

$$|1 + z/n|^n = ((1 + x/n)^2 + (y/n)^2)^{n/2} =$$

$$= \exp\left(\frac{n}{2}\ln(1 + \frac{2x}{n} + o(n^{-1}))\right) \to e^x,$$

$$\arg((1+z/n)^n) = (mod \, 2\pi) = n \arctan(y/(x+n)) \to y$$

при $n \to +\infty$. Что и требовалось.

Из полученной формулы и условий Коши-Римана вытекают все основные свойства экспоненты. Мы отметим только некоторые из них.

- (1) $f(z) = e^z$ является целой функцией с (основным) периодом $2\pi i$; ее основными (максимальными) областями конформности являются полосы $\{z = x + iy \mid \alpha < y < \alpha + 2\pi\}$ ($\alpha \in \mathbb{R}$), переходящие под действием f в области $G(\alpha, \alpha + 2\pi)$;
- (2) $(e^z)' = e^z$, $e^{z_1 + z_2} = e^{z_1}e^{z_2}$;
- (3) Пусть $z \neq 0$, r = |z|, $\varphi = \arg(z)$, тогда $z = re^{i\varphi}$ (показательная форма z); в частности, $\cos(\varphi) = (e^{i\varphi} + e^{-i\varphi})/2$, $\sin(\varphi) = (e^{i\varphi} e^{-i\varphi})/(2i)$.
- **3.4. Тригонометрические функции**. Здесь мы ограничимся только их определением: $\cos(z)=(e^{iz}+e^{-iz})/2, \sin(z)=(e^{iz}-e^{-iz})/(2i), tg(z)=\sin(z)/\cos(z), ctg(z)=\cos(z)/\sin(z).$

Корни степени *n* **и** Ln

Как мы уже знаем из Лекции 1, обратное отображение к степенному $(f(z)=z^n)$ есть *многозначная* функция $\sqrt[n]{z}$ $(n\geq 2-$ натурально).

- **3.5.** Определение. Пусть Φ многозначная функция на области G, f голоморфна в области $G_1 \subset G$ и при всех $z \in G_1$ выполняется $f(z) \in \Phi(z)$. Тогда f называется голоморфной ветвю многозначной функции Φ в G_1 .
- **3.6. Предложение.** На каждой из областей $G(\alpha, \alpha+2\pi)$ ($\alpha \in (-\pi, \pi]$) существует ровно n голоморфных ветвей многозначной функции $\sqrt[n]{z}$. Одна из них:

$$\sqrt[n]{z}_{(\alpha,\alpha+2\pi)} = \sqrt[n]{r} \exp(i\varphi/n) \,,\, z = r e^{i\varphi} \,,\, \varphi \in (\alpha,\alpha+2\pi) \,,$$

конформно отображает $G(\alpha, \alpha + 2\pi)$ на $G(\alpha/n, (\alpha + 2\pi)/n)$.

Остальные ветви отличаются от указанной на множители $\exp{(2\pi i k/n)},$ $k=1,\dots,n-1.$

- **3.7.** Упражнение. Пользуясь теоремой об обратной функции, доказать, что если V(z) какая-либо непрерывная (и, следовательно, гомеоморфная) ветвь многозначной функции $\sqrt[n]{z}$ в области G, то V ее голоморфная ветвь в G со свойством V'(z) = V(z)/nz.
- 3.8. Логарифм. Логарифм это (бесконечнозначная) функция $\operatorname{Ln}(z)$, обратная к экспоненте: $w\in\operatorname{Ln}(z)$, если и только если $e^w=z$. Пользуясь алгебраической формой для e^w , легко установить, что (при $z\neq 0$) $\operatorname{Ln} z=\{\ln|z|+i\operatorname{Arg}(z)\}=\{\ln(z)+2\pi ik\mid k\in\mathbb{Z}\}$, где $\ln(z)=\ln|z|+i\operatorname{arg} z-\mathit{главное}$ значение логарифма. По теореме об обратной функции, над каждой областью $G(\alpha,\alpha+2\pi)$ ($\alpha\in(-\pi,\pi]$) многозначная функция $\operatorname{Ln}(z)$ распадается на счетное множество голоморфных ветвей $\{L_k\mid k\in\mathbb{Z}\}$ со следующими свойствами:
 - 1. $(L_k(z))' = 1/z$, $L_k(z) = L_0(z) + 2\pi i k$;
 - 2. L_0 конформно отображает $G(\alpha, \alpha+2\pi)$ на горизонтальную полосу $\{w=u+iv\,|\,\alpha< v<\alpha+2\pi\}$.

Позднее мы докажем, что $\sqrt[n]{z}$ и $\mathrm{Ln}(z)$ распадаются на (однозначные) голоморфные ветви над всякой односвязной областью в $\mathbb{C}\setminus\{0\}$.

Спрямляемые и гладкие пути и кривые.

Пусть $\gamma: [\alpha,\beta] \to \mathbb{C}$ — путь, $T=\{t_0,t_1,\dots,t_N\}$ $(\alpha=t_0 < t_1 < \dots < t_N = \beta)$ — какое-либо разбиение (порядка N) отрезка $[\alpha,\beta]$. Величина $\ell(\gamma,T):=\sum_{n=1}^N |\gamma(t_n)-\gamma(t_{n-1})|$ представляет собой длину соответствующей $\mathit{enucanhoй}$ ломаной.

3.9. Определение. Путь γ — *спрямляем*, если $\ell(\gamma) := \sup\{\ell(\gamma,T)\} < +\infty$, где указанный sup берется по всем T (любого порядка). Значение $\ell(\gamma)$, конечное или бесконечное, называется ∂ линой пути γ .

Пусть $\lambda(T):=\max_{1\leq n\leq N}\{\Delta t_n\}$ — диаметр разбиения T, где $\Delta t_n=t_n-t_{n-1}.$

3.10. Упражнение. Доказать, что
$$\ell(\gamma) = \lim_{\lambda(T) \to 0} \ell(\gamma, T)$$
.

Из определения следует, что если $\gamma_1 \sim \gamma_2$ (т.е. пути γ_1 и γ_2 эквивалентны), то они спрямляемы (или нет) одновременно, причем $\ell(\gamma_1) = \ell(\gamma_2)$. Таким образом, корректно ("однозначно !") определяется понятие спрямляемой кривой и ее длины. Длина кривой Γ обозначается через $\ell(\Gamma)$.

Пусть γ — спрямляем и не постоянен ни на каком (невырожденном) интервале в $[\alpha, \beta]$. Тогда функция $s(t) = \ell(\gamma|_{[\alpha,t]})$ строго возрастает и непрерывна на $[\alpha, \beta]$. Следовательно, ее обратная функция $t = \psi(s)$ — строго возрастает и непрерывна на $[0, \ell(\gamma)]$.

- **3.11. Определение.** Путь $\gamma \circ \psi : [0, l(\gamma)] \to \mathbb{C}$, эквивалентный пути γ , называется натуральной параметризацией кривой $\{\gamma\}$.
- **3.12. Определение.** Путь $\gamma(t) = x(t) + iy(t)$ (определенный на $[\alpha, \beta]$) называют *непрерывно дифференцируемым*, если его *производная* $\gamma'(t) := x'(t) + iy'(t)$) непрерывна на $[\alpha, \beta]$.
- **3.13. Упражнение.** Если γ непрерывно дифференцируем, то он спрямляем и

$$\ell(\gamma) = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

- **3.14. Определение.** Непрерывно дифференцируемый путь γ называют *гладким* если при всех $t \in [\alpha, \beta]$ имеет место $\gamma'(t) \neq 0$.
- **3.15.** Определение. Два гладких пути $\gamma_1: [\alpha_1,\beta_1] \to \mathbb{C}$ и $\gamma_2: [\alpha_2,\beta_2] \to \mathbb{C}$ эквивалентны как гладкие, если существует диффеоморфизм $h: [\alpha_1,\beta_1] \to [\alpha_2,\beta_2]$ (непрерывно дифференцируемое отображение с непрерывно дифференцируемым обратным) такой, что $\gamma_1 = \gamma_2 \circ h$.

 Γ ладкая кривая — это класс гладких путей, эквивалентных как гладкие (что не есть обычная кривая, где берется класс всех эквивалентных путей).

3.16. Упражнение. Если $\gamma_1 \sim \gamma_2$, причем они оба гладкие и жордановы, то они эквивалентны как гладкие пути.

Определение *кусочно* непрерывно дифференцируемых и *кусочно* гладких путей и кривых оставляем читателю.

Интеграл вдоль кривой.

Пусть $\gamma: [\alpha, \beta] \to \mathbb{C}$ – путь, $f: [\gamma] \to \mathbb{C}$, $T = \{t_0, t_1, \dots, t_N\}$ – разбиение $[\alpha, \beta]$, $\tau = (\tau_1, \dots, \tau_N)$ – выборка, подчиненная разбиению T (т.е. $\tau_n \in [t_{n-1}, t_n], 1 \le n \le N$).

Вводится интегральная сумма

$$\Sigma_{\gamma}(T, \tau, f) = \sum_{n=1}^{N} f(\gamma(\tau_n))(\gamma(t_n) - \gamma(t_{n-1})).$$

3.17. Определение. Функция f интегрируема вдоль пути γ , если существует и конечен предел

$$\lim_{\lambda(T)\to 0} \Sigma_{\gamma}(T,\tau,f) =: \int_{\gamma} f(z) dz$$

– интеграл от f вдоль γ .

3.18. Замечание. Напомним, что существование последнего предела в точности означает, что $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{такое}, \; \text{что} \; \forall T \; \text{с}$ условием $\lambda(T) < \delta$ и $\forall \tau$, подчиненного T, имеет место

$$\left| \Sigma_{\gamma}(T,\tau,f) - \int_{\gamma} f(z)dz \right| < \varepsilon.$$

- **3.19. Упражнение.** Доказать, что $\int_{\gamma}1dz$ существует для любого γ . Привести пример, когда не существует $\int_{\gamma}zdz$.
- **3.20. Упражнение.** Если $\gamma_1 \sim \gamma_2$, то для любой f на $[\gamma_1] = [\gamma_2]$ интегралы $\int_{\gamma_1} f dz$ и $\int_{\gamma_2} f dz$ существуют или нет одновременно (а когда существуют равны). Таким образом, корректно определяется интеграл от f вдоль кривой $\{\gamma\}$, $\int_{\{\gamma\}} f dz$.
- **3.21.** Замечание. Разбивая интегральную сумму $\Sigma_{\gamma}(T,\tau,f)$ на действительную и мнимую части, мы сводим $\int_{\gamma} f(z)dz$ к четырем интегралам Римана-Стильтьеса по отрезку $[\alpha,\beta]$, так что можно использовать все известные свойства таких интегралов. Тем не менее, для полноты изложения, мы приведем доказательства следующих двух теорем, ввиду их важности.

3.22. Теорема. Если γ спрямляем, а $f \in C([\gamma]),$ то $\int_{\gamma} f(z) dz$ существует.

Следовательно, здесь путь γ может быть заменен на *кривую* $\{\gamma\}$.

Напомним, что C(E) – пространство всех непрерывных ограниченных (комплекснозначных) функций на множестве $E \subset \overline{\mathbb{C}}$ с равномерной нормой $||f||_E := \sup\{|f(z)| | z \in E\}$.

3.23. Определение. Пусть g определена и ограничена на $E \subset \mathbb{C}$. Ее модулем непрерывности (на E) называется функция

$$\omega_E(g,\delta) = \sup \{ |g(z_1) - g(z_2)| \, | \, z_1 \in E, z_2 \in E, |z_1 - z_2| \le \delta \} \, .$$

По определению, g равномерно непрерывна на E, если $\omega_E(g,\delta)\to 0$ при $\delta\to 0$.

Хорошо известно, что если E – компакт и $g \in C(E)$, то g равномерно непрерывна на E.

Доказательство Теоремы 3.22.

3.24. Лемма. Пусть $T=\{t_0,\ldots,t_N\},\,T'=\{t'_0,\ldots,t'_J\}$ – разбиения отрезка $[\alpha,\beta]$, причем $T\subset T'$ (при этом говорят, что T' – размельчение T) и пусть $\tau=\{\tau_1,\ldots,\tau_N\}$ и $\tau'=\{\tau'_1,\ldots,\tau'_J\}$ – соответствующие подчиненные им выборки. Тогда

$$|\Sigma_{\gamma}(T, \tau, f) - \Sigma_{\gamma}(T', \tau', f)| \le \omega(\lambda(T))\ell(\gamma),$$

где
$$\omega(\delta) = \omega_{[\alpha,\beta]}(f \circ \gamma, \delta) \to 0$$
 при $\delta \to 0$.

Доказательство Леммы 3.24. Для каждого $n \in \{1,\dots,N\}$ введем $J_n = \{j: t_j' \in (t_{n-1},t_n]\}.$ Тогда

$$\begin{split} |\Sigma_{\gamma}(T,\tau,f) - \Sigma_{\gamma}(T',\tau',f)| &= \\ \left| \sum_{n=1}^{N} \left(\sum_{j \in J_n} f(\gamma(\tau_n)) [\gamma(t'_j) - \gamma(t'_{j-1})] - \right. \\ \left. \sum_{j \in J_n} f(\gamma(\tau'_j)) [\gamma(t'_j) - \gamma(t'_{j-1})] \right) \right| \\ &\leq \omega(\lambda(T)) \ell(\gamma,T') \leq \omega(\lambda(T)) \ell(\gamma), \end{split}$$

так как $|\tau_n - \tau'_i| \leq \lambda(T)$ при $j \in J_n$. \square

3.25. Следствие. Пусть T_1 и T_2 – произвольные разбиения отрезка $[\alpha, \beta]$, а $\tau_{(1)}$ и $\tau_{(2)}$ – соответственно подчиненные им выборки. Справедлива оценка:

$$\left| \Sigma_{\gamma}(T_1, \tau_{(1)}, f) - \Sigma_{\gamma}(T_2, \tau_{(2)}, f) \right| \leq (\omega(\lambda(T_1)) + \omega(\lambda(T_2)))\ell(\gamma).$$

Доказательство. Достаточно рассмотреть размельчение $T' = T_1 \cup T_2$ разбиений T_1 и T_2 , какую-либо выборку τ' , подчиненную T', и применить предыдущую лемму к парам (T_1, T') , (T_2, T') и соответствующим им выборкам. \square .

Завершим доказательство Теоремы 3.22. Рассмотрим $T(N) = \{t_0,\ldots,t_N\}$ — равномерное разбиение $[\alpha,\beta]$ на N равных частей и выборку $\tau(N) = T(N) \setminus \{t_0\}$. Поскольку последовательность $\{\Sigma_{\gamma}(T(N),\tau(N),f)\}$ — ограничена величиной $\|f\|_{[\gamma]}\ell(\gamma)$), найдется последовательность $\{N_k\},\ N_k\to\infty$ при $k\to\infty$ с условием, что $\Sigma_{\gamma}(T(N_k),\tau(N_k),f)$ сходится к некоторому числу I при $k\to\infty$. Пользуясь предыдущим следствием, нетрудно установить, что $\int_{\gamma}f(z)dz$ существует и равен I. \square

3.26. Теорема. Пусть γ – непрерывно дифференцируемый путь на $[\alpha, \beta], f \in C([\gamma])$. Тогда f интегрируема вдоль γ , причем

$$\int_{\gamma} f(z)dz = \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt.$$

Доказательство. Пусть $\gamma(t)=x(t)+iy(t)$, где $\gamma'(t)=x'(t)+iy'(t)\in C[\alpha,\beta]$. Введем функцию $\omega(\delta)=\omega_{[\alpha,\beta]}(x'(t),\delta)+\omega_{[\alpha,\beta]}(y'(t),\delta)$, так что $\omega(\delta)\to 0$ при $\delta\to +0$.

- **3.27.** Лемма. Пусть $t \in [\alpha, \beta]$, $\Delta t > 0$, $[t, t + \Delta t] \subset [\alpha, \beta]$. Тогда для всякого th $\in [t, t + \Delta t]$ имеет место оценка: $|\gamma(t + \Delta t) \gamma(t) \gamma'(\text{th})\Delta t| \leq \omega(\Delta t)\Delta t$.
- **3.28.** Замечание. Пример $\gamma(t)=e^{it}$ на $[0,2\pi]$ показывает, что $\gamma'(t)=-\sin t+i\cos t=ie^{it}\neq 0$ для всех t, однако $\gamma(0)-\gamma(2\pi)=0$, т.е. непосредственного аналога теоремы Лагранжа для $nyme\check{u}$ в $\mathbb C$ нет.

Доказательство Леммы 3.27. Имеем: $\gamma(t+\Delta t)-\gamma(t)=x(t+\Delta t)-x(t)+i(y(t+\Delta t)-y(t))=x'(\th_1)\Delta t+iy'(\th_2)\Delta t$ при некоторых \th_1 , \th_2 на $[t,t+\Delta t]$ по теореме Лагранжа. Отсюда, для любого $\th\in[t,t+\Delta t]$, получаем:

$$|\gamma(t+\Delta t)-\gamma(t)-\gamma'(\th)\Delta t| \le |x'(\th_1)-x'(\th)|\Delta t+|y'(\th_2)-y'(\th)|\Delta t$$

 $\le \omega(\Delta t)\Delta t$. \square

Доказательство Теоремы 3.26. Фиксируем произвольное разбиение $T = \{t_0, t_1, \dots, t_N\}$ отрезка $[\alpha, \beta]$ и подчиненную ему выборку $\tau = (\tau_1, \dots, \tau_N)$. Тогда, по предыдущей лемме,

$$\left| \Sigma_{\gamma}(T, \tau, f) - \sum_{n=1}^{n=N} f(\gamma(\tau_n)) \gamma'(\tau_n) \Delta t_n \right| \le$$

$$\sum_{n=1}^{n=N} |f(\gamma(\tau_n)) (\gamma(t_n) - \gamma(t_{n-1})) - f(\gamma(\tau_n)) \gamma'(\tau_n) \Delta t_n| \le$$

$$\sum_{n=1}^{n=N} |f(\gamma(\tau_n))| \omega(\Delta t_n) \Delta t_n \le ||f||_{[\gamma]} \omega(\lambda(T)) (\beta - \alpha) \to 0$$

при $\lambda(T) \to 0$. Так как существование $\int_{\gamma} f(z)dz$ доказано выше, то мы автоматически доказали существование $\int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt$ и равенство этих двух интегралов. \square

3.29. Пример. Найдем $\int_{\gamma} z^n dz$, где $n \in \mathbb{Z},$ $\gamma(t) = e^{it}$ на $[0,2\pi]$. Имеем:

$$\int_{\gamma} z^n dz = \int_0^{2\pi} (e^{int}) i e^{it} dt =$$

$$i \int_0^{2\pi} e^{i(n+1)t} dt = i \int_0^{2\pi} (\cos(n+1)t) dt - \int_0^{2\pi} (\sin(n+1)t) dt =$$

$$\begin{cases} 0, & \text{если } n \neq -1; \\ 2\pi i, & \text{если } n = -1. \end{cases}$$

- **3.30. Н**айти модуль непрерывности $\omega_{\mathbb{R}}(\sin(\cdot), \delta)$ функции $f(z) = \sin z, \ z \in \mathbb{R}.$
- **3.31.** Дать определение интеграла $\int_{\gamma} f(z)|dz|$ по длине кривой и доказать его существование в случае, когда γ спрямляем и $f \in C([\gamma])$.

Лекция №4

Свойства интеграла. Теорема Коши для односвязной области.

4.1. Основные свойства интеграла вдоль кривой.

1. Линейность. Пусть f_1 и f_2 интегрируемы вдоль $\Gamma,\,\lambda_1,\lambda_2\in\mathbb{C}.$ Тогда

$$\int_{\Gamma} (\lambda_1 f_1(z) + \lambda_2 f_2(z)) dz = \lambda_1 \int_{\Gamma} f_1(z) dz + \lambda_2 \int_{\Gamma} f_2(z) dz.$$

2. $A\partial\partial umu$ вность. Если f интегрируема вдоль Γ_1 и вдоль Γ_2 , причем конец Γ_1 есть начало Γ_2 ,то

$$\int_{\Gamma_1 \cup \Gamma_2} f dz = \int_{\Gamma_1} f dz + \int_{\Gamma_2} f dz.$$

3. Изменение ориентации. Функция f интегрируема (или нет) вдоль Γ и Γ^- одновременно. В случае интегрируемости имеем:

$$\int_{\Gamma^{-}} f dz = -\int_{\Gamma} f dz.$$

4. Оценка интеграла. Если Γ спрямляема, а f интегрируема вдоль Γ (и, следовательно, ограничена на $[\Gamma]$), то

$$\left| \int_{\Gamma} f dz \right| \le \|f\|_{[\Gamma]} \ell(\Gamma).$$

5. Предел под знаком интеграла. Пусть M_{ρ} – произвольное метрическое пространство (ρ – метрика на множестве M), $m_0 \in M$ – предельная точка в M. Пусть для каждого $m \in M$ определена $f_m: E \to \mathbb{C}$ ($E \subset \overline{\mathbb{C}}$ – фиксировано). Напомним, что семейство $\{f_m \mid m \in M\}$ равномерно на E сходиться κ f_{m_0} при $m \to m_0$ (обозначается $f_m \stackrel{E}{\Longrightarrow} f_{m_0}, m \to m_0$), если $\forall \varepsilon > 0 \; \exists \delta > 0: \{\rho(m,m_0) < \delta\} \Longrightarrow \{\|f_m - f_{m_0}\|_{E} < \varepsilon\}.$

Например, если $M=\{1,2,\dots,\infty\}$, а $\rho(m_1,m_2)=|1/m_1-1/m_2|$ (полагаем $1/\infty=0$), то условие $f_m\stackrel{E}{\Rightarrow} f_\infty$ при $m\to$

 ∞ — есть обычная равномерная сходимость последовательности функций.

Свойство (5) означает следующее.

4.2. Предложение. Пусть Γ – спрямляема и $f_m \in C([\Gamma])$ при всех $m \in M$. Если $f_m \stackrel{[\Gamma]}{\Rightarrow} f_{m_0}$ при $m \to m_0$ (в M_{ρ}), то

$$\int_{\Gamma} f_m(z) dz \to \int_{\Gamma} f_{m_0}(z) dz \qquad \text{при } m \to m_0.$$

Доказательство всех указанных свойств стандартно.

Индекс замкнутой жордановой кривой. Локальное закругление жорданова пути в \mathbb{C} .

Пусть Γ — замкнутая жорданова кривая в \mathbb{C} . Через $D(\Gamma)$ и $\Omega(\Gamma)$ далее обозначаются соответственно ограниченная и неограниченная компоненты дополнения к $[\Gamma]$ (см. Теорему 1.16). Будем говорить, что $D(\Gamma)$ — жорданова область, ограниченная кривой Γ (отождествляя, где это не приводит к недоразумениям, Γ и $[\Gamma]$).

- **4.3. Теорема.** Пусть Γ замкнутая жорданова кривая в \mathbb{C} . Тогда:
 - (1) найдется $p\in\{1,2\}$ такое, что $\mathrm{ind}_w(\Gamma)=(-1)^p$ при всех $w\in D(\Gamma);$
 - (2) $\operatorname{ind}_{w}(\Gamma) = 0$ для любого $w \in \Omega(\Gamma)$.
- **4.4. Начало доказательства Теоремы 4.3.** Фиксируем про- извольный путь γ из Γ . Достаточно установить требуемое в теореме для γ вместо Γ .

Утверждение (2) вытекает из Следствия 1.23 и того простого факта, что $\mathrm{ind}_w(\gamma)=0$ для достаточно "больших" w.

Для доказательства (1) предположим сначала, что γ "содержит" нетривиальную (направленную) дугу σ некоторой окружности. Пусть b — некоторая фиксированная (не концевая) точка этой дуги, а ν ($\nu \in \mathbb{C}$, $|\nu|=1$) — как вектор в \mathbb{R}^2 — является вектором единичной нормали к σ в точке b, направленным "влево" относительно движения по σ . Из Упражнений 1.20, 1.24, 1.27

и 1.28 (для кривой $\{\gamma\} \setminus \{\sigma\}$ и $w = b \pm t\nu$) и элементарных геометрических соображений (для $\{\sigma\}$ и $w = b \pm t\nu$), где t>0 достаточно мало, получаем:

$$\lim_{t\to 0+} (\operatorname{ind}_{b+t\nu}(\gamma) - \operatorname{ind}_{b-t\nu}(\gamma)) = 1.$$

Таким образом, из Следствия 1.23 и Теоремы 1.16 (вблизи b с одной стороны от γ находятся точки из $D(\gamma)$, а с другой – из $\Omega(\gamma)$), получаем, что $|\operatorname{ind}_w(\gamma)|=1$ в $D(\gamma)$. Более того, нетрудно видеть, что $\operatorname{ind}_w(\gamma)=1$ в $D(\gamma)$, если и только если при движении по σ (вдоль γ) область $D(\gamma)$ остается "слева".

Для окончания доказательства теоремы нам потребуется следующая конструкция, которую мы будем использовать и в дальнейшем.

4.5. Локальное "закругление" жорданова пути. Пусть γ — замкнутый жорданов путь, определенный на $[\alpha, \beta], a \in \mathbb{C} \setminus [\gamma]$ и $t_0 \in (\alpha, \beta)$ таковы, что $d = \operatorname{dist}(a, [\gamma]) = |a - \gamma(t_0)| < |\gamma(\alpha) - \gamma(t_0)|$, причем $|a - \gamma(t_0)| < |a - \gamma(t)|$ при всех $t \neq t_0$. Для всякого $\delta \in (0, d)$ пусть $t_{\delta}^- \in [\alpha, t_0]$ — минимальное и $t_{\delta}^+ \in [t_0, \beta]$ — максимальное значения $t \in [\alpha, \beta]$, при которых $|\gamma(t) - \gamma(t_0)| = \delta$ и пусть $b \in [\gamma(t_0), a]$ такова, что $|b - \gamma(t_0)| = \delta$.

Будем обозначать через $\gamma(a,\delta)$ – путь, совпадающий с γ на $[\alpha,t_{\delta}^-] \cup [t_{\delta}^+,\beta]$, равномерно на $[t_{\delta}^-,t_0]$ проходящий дугу окружности $\{z \mid |z-\gamma(t_0)|=\delta\}$, соединяющую $\gamma(t_{\delta}^-)$ и b (не содержащую $\gamma(t_{\delta}^+)$), и равномерно на $[t_0,t_{\delta}^+]$ проходящий дугу той же окружности , соединяющую b и $\gamma(t_{\delta}^+)$ (не содержащую $\gamma(t_{\delta}^-)$).

Заметим, что $кривая \{\gamma(a,\delta)\}$ определяется кривой $\{\gamma\}$, а не какой-либо конкретной ее параметризацией.

Наконец отметим, что t_{δ}^- и t_{δ}^+ стремятся к t_0 при $\delta \to 0$, так что $d(\gamma, \gamma(a, \delta)) \to 0$ при $\delta \to 0$ и, следовательно, $\operatorname{ind}_w(\gamma) = \operatorname{ind}_w(\gamma(a, \delta))$ при любом фиксированном w вне $[\gamma]$ и всех достаточно малых δ .

4.6. Окончание доказательства Теоремы **4.3.** Пусть теперь γ – произвольный жорданов путь на $[\alpha,\beta]$, ограничивающий жорданову область $D=D(\{\gamma\})$. Фиксируем $a_1\in D$ и $t_0\in (\alpha,\beta)$ такие, что $d_1=\mathrm{dist}(a_1,[\gamma])=|a_1-\gamma(t_0)|<|\gamma(\alpha)-\gamma(t_0)|$. Пусть a – середина отрезка $[\gamma(t_0),a_1]$ и $d=d_1/2$. Пользуясь равномерной непрерывностью γ , выберем $\delta\in (0,d)$ так, что (в обозначениях пункта 4.5) выполняется $|\gamma(t)-\gamma(t_0)|< d/2$ при всех $t\in [t_{\delta}^-,t_{\delta}^+]$,

так что $d(\gamma,\gamma(a,\delta)) < d/2$. По Лемме 1.22 , $\operatorname{ind}_a(\gamma) = \operatorname{ind}_a(\gamma(a,\delta))$, так что либо $|\operatorname{ind}_a(\gamma)| = 1$ и все доказано (см. пункты **4.4**, **4.5** и Следствие 1.23), либо $\operatorname{ind}_a(\gamma) = 0$. Докажем от противного, что последний случай исключен. Действительно, иначе имеем $\operatorname{ind}_w(\gamma) = 0$ для $\operatorname{scex} w \in \mathbb{C} \setminus [\gamma]$. Поскольку γ и $\gamma(a,\delta)$ отличаются только на $[t_\delta^-, t_\delta^+]$, причем траектории этих путей на указанном отрезке лежат в $B(\gamma(t_0), d/2)$, легко показать, что $\operatorname{ind}_w(\gamma) = \operatorname{ind}_w(\gamma(a,\delta)) = 0$ при $w \in \mathbb{C} \setminus (B(\gamma(t_0),d) \cup [\gamma])$. Последнее противоречит доказанному в пункте **4.4** свойству $|\operatorname{ind}_w(\gamma(a,\delta))| = 1$ в $D(\gamma(a,\delta))$, поскольку из Теоремы 1.16 следует, что $\gamma(\alpha) \in \partial D(\gamma(a,\delta))$, а значит в любой окрестности точки $\gamma(\alpha)$ есть точки из $D(\gamma(a,\delta))$. \square

Свойства индекса кривой, полученные в Теореме 4.3, позволяют ввести строгое понятие ориентации границы для широкого класса областей и в дальнейшем доказать основные теоремы стандартных курсов комплексного анализа в максимальной общности.

Жордановы области и их ориентированные границы.

Пусть $E \subset \mathbb{C}$ – гомеоморфный образ отрезка. Существуют ровно две жордановы *кривые* Γ_1 и Γ_2 с условиями $[\Gamma_1] = [\Gamma_2] = E$, причем $\Gamma_1 = \Gamma_2^-$.

Это утверждение доказать не сложно. Следующее, более содержательное утверждение, выводится из Теоремы 4.3.

4.7. Следствие. Пусть $E \subset \mathbb{C}$ – гомеоморфный образ окружности, a – произвольная точка из E. Существует единственная замкнутая жорданова кривая $\Gamma(a)$ с концами в точке a и условиями: $[\Gamma(a)] = E$, причем

$$\operatorname{ind}_{w}(\Gamma(a)) = \begin{cases} 1, & w \in D(\Gamma(a)), \\ 0, & w \in \Omega(\Gamma(a)). \end{cases}$$

4.8. Определение. Будем при этом говорить, что $\Gamma(a)$ ори-ентирована положительно относительно ограниченной ею области D (или что D остается слева при "движении" вдоль $\Gamma(a)$).

Opuehmupoванной границей указанной области <math display="inline">D называется $\kappa nacc$ кривых

$$\partial^+ D = \{ \Gamma(a) \, | \, a \in \partial D \}.$$

4.9. Замечание. Отметим, что, в отличие от топологической границы ∂D , ориентированная (точнее положительно ориентированная) граница $\partial^+ D$ будет использоваться в основном при интегрировании. Ясно, что для любой функции $f:\partial D\to \mathbb{C}$ интегралы $\int_{\Gamma(a)} f(z)dz$ существуют (или нет) одновременно для всех $a\in \partial D$. В случае существования, значения этих интегралов совпадают и определяют $\int_{\partial^+ D} f(z)dz$.

совпадают и определяют $\int_{\partial^+ D} f(z)dz$. Нам потребуется также *отрицательно ориентированная* граница жордановой области, $\partial^- D = \{\Gamma(a)^- | a \in \partial D\}$, и интеграл вдоль нее: $\int_{\partial^- D} f(z)dz = -\int_{\partial^+ D} f(z)dz$.

Лемма Гурсы. Условие треугольника.

Положим $\mathbb{Z}_+ := \{0, 1, 2, \dots\}.$

4.10. Упражнение. При $n\in\mathbb{Z}_+$ и $a,b\in\mathbb{C}$ имеем:

$$\int_{[a,b]} z^n dz = \frac{b^{n+1} - a^{n+1}}{n+1} \,.$$

Указание: использовать стандартную параметризацию: $\gamma(t) = a + t(b-a), t \in [0,1].$

Через Δ в пределах этой лекции мы обозначаем *внутренность* какого-либо треугольника, представляющую собой жорданову область.

- **4.11. Следствие.** Для всякого треугольника Δ и многочлена P(z) (переменного z) справедливо равенство $\int_{\partial^+\Delta} P(z) dz = 0$.
- **4.12.** Лемма (Гурсы). Пусть G произвольная область и $f \in A(G)$. Тогда для всякого Δ с условием $\overline{\Delta} \subset G$ имеет место

$$\int_{\partial^+ \Delta} f(z) dz = 0 .$$

Доказательство. Фиксируем произвольный треугольник $\Delta,$ $\Delta\subset G.$ Пусть $\Delta_0=\Delta.$

Положим $I_0=|\int_{\partial^+\Delta_0}f(z)dz|$. "Разделим" Δ_0 средними линиями на 4 равных треугольника $\Delta(k),\ k=1,2,3,4.$ Как легко видеть,

$$\int_{\partial^{+}\Delta_{0}} f(z)dz = \sum_{k=1}^{4} \int_{\partial^{+}\Delta(k)} f(z)dz ,$$

поэтому среди $\{\Delta(k)\}$ найдется такой треугольник (обозначим его Δ_1), что

$$I_1 := \left| \int_{\partial^+ \Delta_1} f(z) dz \right| \ge \frac{I_0}{4} \,.$$

Пусть треугольник Δ_j с условием

$$I_j := \left| \int_{\partial^+ \Delta_j} f(z) dz \right| \ge \frac{I_{j-1}}{4}$$

найден. Опять делим его средними линиями на 4 равных треугольника и выбираем один из них (Δ_{j+1}) так, что выполняется предыдущее неравенство с заменой j на j+1. Итак,

$$\ell(\partial \Delta_j) = \frac{\ell(\partial \Delta_0)}{2^j} , \quad I_j \ge \frac{I_0}{4^j} .$$

Последовательность вложенных компактов $\{\overline{\Delta_j}\}_{j\in\mathbb{Z}_+}$ имеет единственную общую точку, скажем $z_0,\ z_0\in G$.

По определению \mathbb{C} -дифференцируемости функции f в точке z_0 имеем: $f(z)=p_1(z)+\omega(z,z_0)(z-z_0)$, где $p_1(z)=f(z_0)+f'(z_0)(z-z_0)$ – полином, а $\omega(z,z_0)\to 0$ при $z\to z_0$. Фиксируем произвольное $\varepsilon>0$. Найдется окрестность U точ-

Фиксируем произвольное $\varepsilon > 0$. Найдется окрестность U точки z_0 ($U \subset G$) с условием $\{z \in U\} \Longrightarrow \{|\omega(z,z_0)| < \varepsilon\}$. Начиная с некоторого j, все Δ_j лежат в U, так что для этих j, пользуясь Следствием 4.11 и Свойством 4.1(4), имеем:

$$\frac{I_0}{4^j} \le \left| \int_{\partial^+ \Delta_j} f(z) dz \right| \le
\left| \int_{\partial^+ \Delta_j} p_1(z) dz \right| + \left| \int_{\partial^+ \Delta_j} \omega(z, z_0) (z - z_0) dz \right|
\le 0 + \varepsilon \ell (\partial \Delta_j)^2 = \varepsilon \frac{\ell (\partial \Delta_0)^2}{4^j}.$$

Окончательно получаем: $I_0 \leq \varepsilon \ell (\partial \Delta_0)^2$, так что $I_0 = 0$. \square

4.13. Определение. Функция f удовлетворяет условию треугольника в области G, если f непрерывна в G и для всякого треугольника Δ с условием $\overline{\Delta} \subset G$ выполняется $\int_{\partial^+ \Delta} f dz = 0$.

По лемме Гурсы, всякая $f \in A(G)$ удовлетворяет условию треугольника в G.

Теорема Коши для односвязной области.

- **4.14.** Определение. Область G в $\mathbb C$ называется односвязной (в смысле Жордана), если для любой замкнутой жордановой кривой Γ с носителем в G область $D(\Gamma)$ (ограниченная кривой Γ по теореме Жордана) целиком лежит в G.
- **4.15.** Упражнение. Если область G в $\mathbb C$ такова, что ее граница $\partial G_{\overline{\mathbb C}}$ (взятая в $\overline{\mathbb C}$) связна в $\overline{\mathbb C}$, то G односвязна.
- **4.16.** Замечание. Имеется несколько эквивалентных определений односвязности. Пока мы будем пользоваться только приведенным выше определением и следующим за ним достаточным условием односвязности области в С. После доказательства теоремы Римана о конформных отображениях и определения гомотопии кривых в областях мы приведем другие определения односвязности и докажем их эквивалентность.
- **4.17.** Теорема Коши для односвязной области. Если f удовлетворяет условию треугольника в односвязной области G, то для любой замкнутой спрямляемой кривой Γ с носителем в G имеет место равенство $\int_{\Gamma} f(z) dz = 0$.
- **4.18.** Следствие. В условиях предыдущей теоремы, если Γ_1 и Γ_2 две спрямляемые кривые в G с одинаковыми началами и концами соответственно, то $\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$.
- Доказательство. (1). Утверждение теоремы справедливо, если Γ замкнутая эсорданова ломаная. Доказываем по индукции с применением леммы Гурсы и следующего элементарногеометрического факта: найдутся две несоседние вершины a и b ломаной Γ с условием, что "открытый" интервал (a,b) (диагональ) принадлежит $D(\Gamma)$.
- (2). Утверждение теоремы справедливо, если Γ произвольная замкнутая ломаная в G. Для доказательства достаточно воспользоваться предыдущим случаем и следующим фактом. Для произвольной замкнутой ломаной Γ найдется конечное число замкнутых жордановых ломаных Γ_1,\dots,Γ_N таких, что $[\Gamma_n]\subset [\Gamma]$ для всех возможных n и для любой $f\in C([\Gamma])$ имеет место $\int_{\Gamma} f(z)dz = \sum_{n=1}^N \int_{\Gamma_n} f(z)dz$.

(3). Общий случай. Сначала введем некоторые обозначения. Пусть $\gamma: [\alpha,\beta] \to \mathbb{C}$ – произвольный путь, $T=\{t_0,t_1,\ldots,t_N\}$ – какое-либо разбиение (порядка N) отрезка $[\alpha,\beta],\ z_n=\gamma(t_n)$. Обозначим через $\Lambda=\Lambda_\gamma(T)$ – соответствующую вписанную ломаную, т.е. путь на $[\alpha,\beta]$, который на $[t_{n-1},t_n]$ равномерно проходит отрезок $[z_{n-1},z_n]\ (n=0,\ldots,N)$ в соответствующем направлении. Положим еще $\gamma_n=\gamma|_{[t_{n-1},t_n]}$ и $\Lambda_n=\Lambda|_{[t_{n-1},t_n]}$ и напомним, что $\lambda(T)$ – диаметр разбиения T, а $d(\gamma,\Lambda)=\sup|\gamma(t)-\Lambda(t)|$ на $[\alpha,\beta]$.

Случай (3) непосредственно вытекает из следующей леммы.

- **4.19.** Лемма (об аппроксимации). Пусть $\gamma: [\alpha, \beta] \to G$ произвольный спрямляемый путь (в G), f непрерывна в G. Тогда $\forall \varepsilon > 0 \quad \exists \delta > 0$ такое, что для любого разбиения T отрезка $[\alpha, \beta]$ с условием $\lambda(T) < \delta$ выполнено (в приведенных выше обозначениях):
 - (1) $d(\gamma,\Lambda)<\varepsilon$, в частности, $\Lambda=\Lambda_{\gamma}(T)$ замкнутая ломаная в G при всех достаточно малых ε ;
 - (2) $\left| \int_{\Lambda} f(z)dz \int_{\gamma} f(z)dz \right| < \varepsilon$.

Доказательство леммы. Пусть $d=\min\{1,\,\mathrm{dist}([\gamma],\partial G)\}$. Введем $K=\{z\in\mathbb{C}\,|\,\mathrm{dist}(z,[\gamma])\leq d/2\}$ — компакт в G $(d/2-pаздутие\ [\gamma])$, причем $\mathrm{dist}(K,\partial G)\geq d/2$. Поскольку $f\in C(K)$ и $\gamma\in C([\alpha,\beta])$, то $\mu(\delta):=\omega_K(f,\delta)\to 0$ и $\omega(\delta)=\omega_{[\alpha,\beta]}(\gamma,\delta)\to 0$ при $\delta\to +0$.

Фиксируем произвольное ε , $\varepsilon < d/2$, и выберем $\delta > 0$ так, что $\omega(\delta) < \varepsilon$, $\mu(\omega(\delta))\ell(\gamma) < \varepsilon/2$ и для всякого T с условием $\lambda(T) < \delta$ выполнено:

$$\left| \int_{\gamma} f(z)dz - \Sigma_{\gamma}(T, \tau, f) \right| < \frac{\varepsilon}{2} , \qquad (4.1)$$

где $\tau = T \setminus \{\alpha\}$ – выборка, подчиненная T.

Покажем (в приведенных выше обозначениях), что δ – искомое. Возъмем произвольное $T,\,\lambda(T)<\delta,$ и указанную чуть выше выборку $\tau.$

Свойство (1) выполнено, поскольку всякое $t\in [\alpha,\beta]$ лежит в некотором $[t_{n-1},t_n]$ (при этом $\Lambda(t)\in [z_{n-1},z_n]$) , так что

$$|\gamma(t) - \Lambda(t)| \le \max\{|\gamma(t) - \gamma(t_{n-1})|, |\gamma(t) - \gamma(t_n)|\} \le \omega(\lambda(T)) \le \omega(\delta) < \varepsilon < d/2.$$

Проверим (2). Согласно условиям на выбор δ ,

$$\left| \int_{\Lambda} f(z)dz - \Sigma_{\gamma}(T, \tau, f) \right| \leq$$

$$\sum_{n=1}^{N} \left| \int_{\Lambda_{n}} f(z)dz - f(z_{n})(z_{n} - z_{n-1}) \right| =$$

$$\sum_{n=1}^{N} \left| \int_{\Lambda_{n}} (f(z) - f(z_{n}))dz \right| \leq$$

$$\mu(\omega(\lambda(T)))\ell(\Lambda) < \mu(\omega(\delta))\ell(\gamma) < \frac{\varepsilon}{2}.$$

Учитывая (4.1), получаем требуемое. □ Доказательство следствия тривиально.

- **4.20.** Доказать, что для всякого многоугольника (ограниченного замкнутой жордановой ломаной, не обязательно выпуклого) найдутся 3 последовательные вершины такие, что определяемый ими треугольник целиком лежит в исходном многоугольнике.
- **4.21.** Доказать, что если Γ некоторая замкнутая ориентированная ломаная в \mathbb{C} , а f непрерывна на ее носителе $[\Gamma]$, то существуют замкнутые жордановы ломаные Γ_1,\ldots,Γ_n с носителями в $[\Gamma]$ такие, что

$$\int_{\Gamma} f(z)dz = \sum_{k=1}^{n} \int_{\Gamma_k} f(z)dz.$$

Лекция №5

Первообразная. Интегральная теорема Коши.

Первообразная и ее свойства

- **5.1.** Определение. Пусть G область в \mathbb{C} , $f:G\to\mathbb{C}$. Функция $F:G\to\mathbb{C}$ называется nepsoofpashoй (комплексной перsoofpashoй) для f в G, если $F\in A(G)$ и F'(z)=f(z) всюду в G.
- **5.2. Предложение.** Если F первообразная для f в G, то $\{F+c\,|\,c\in\mathbb{C}\}$ совокупность $\mathit{всеx}$ первообразных для f в G.

Доказательство. Свести к случаю f=0 и воспользоваться условиями Коши-Римана.

5.3. Теорема (о существовании первообразной в односвязной области). Пусть $G \subset \mathbb{C}$ – односвязна, а f удовлетворяет условию треугольника в G (всякая $f \in A(G)$ подходит). Тогда f имеет первообразную в D.

Доказательство. Фиксируем произвольное $a \in D$. При $z \in G$ положим $F(z) = \int_a^z f(\zeta) d\zeta$, где интеграл берется по любому спрямляемому пути в G, соединяющему a и z. По следствию из теоремы Коши все эти интегралы совпадают, так что F определена корректно и для всех $z \in G$ (G – линейно связна).

Фиксируем $z_0 \in G$ и пусть $|z - z_0| < \operatorname{dist}(z_0, \partial G)$, тогда

$$\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| =$$

$$\left| \frac{1}{z - z_0} \left(\int_a^z f(\zeta) d\zeta - \int_a^{z_0} f(\zeta) d\zeta - f(z_0)(z - z_0) \right) \right| =$$

$$\frac{1}{|z - z_0|} \left| \int_{[z_0, z]} (f(\zeta) - f(z_0)) d\zeta \right| \le \frac{1}{|z - z_0|} ||f - f(z_0)||_{[z_0, z]} |z - z_0| =$$

$$||f - f(z_0)||_{[z_0, z]} \to 0$$

при $z \to z_0$ ввиду непрерывности f в точке z_0 . \square

5.4. Следствие. Пусть G — односвязная область в $\mathbb{C}\setminus\{0\}$. Тогда существует голоморфная ветвь L(z) многозначной функции $\operatorname{Ln}(z)$ ("Логарифм") и голоморфная ветвь V(z) многозначной функции $\sqrt[n]{z}$ ("корень степени n") в G. При этом L'(z) = 1/z и $V'(z) = V^{1-n}(z)/n$ в G. В частности, при n=2 имеем V'(z) = 1/(2V(z)).

Доказательство. Фиксируем $a \in G$. По предыдущей теореме, функция $1/z \in A(G)$ имеет первообразную L в G с условием $L(a) \in \operatorname{Ln}(a)$. Утверждается, что L – искомая ветвь Логарифма. Действительно, пусть $E = \{z \in G \mid L(z) \in \operatorname{Ln}(z)\}$. По доказанному ранее у каждой точки $z_0 \in G$ есть окрестность $B = B(z_0, r)$ в G (можно взять $r = \operatorname{dist}(z_0, \partial G)$) и голоморфная в B ветвь ψ Логарифма, удовлетворяющая $\psi'(z) = 1/z$. Следовательно, $L - \psi = \operatorname{const}$ в B. Отсюда легко следует, что E не пусто, открыто и замкнуто в G, т.е. E = G.

Искомая ветвь корня степени n в G имеет вид $V(z) = \exp(L(z)/n)$. По Теореме 2.17 (производная сложной функции):

$$V'(z) = \exp(L(z)/n)L'(z)/n = V(z)/(nz) = (V(z))^{1-n}/n$$
. \Box

Интегральная теорема Коши.

Теперь определим *ориентированную границу* произвольной *допустимой* области и интеграл *вдоль нее*.

Пусть D_1, \ldots, D_S — жордановы области в \mathbb{C} (S>1 — натурально) с ориентированными границами $\partial^+ D_1, \ldots, \partial^+ D_S$ соответственно. Предположим, что замыкания областей D_2, \ldots, D_S попарно не пересекаются и целиком содержатся внутри D_1 . Можно доказать, что множество $D=D_1\setminus (\bigcup_{s=2}^{s=S}\overline{D_s})$ связно, т.е. всегда является областью (мы докажем это позже, как элементарное следствие из теоремы Римана о конформном отображении, а пока нам это нигде не потребуется).

5.5. Определение. Указанные множества D будем называть допустимыми областями ранга S (пользуясь, что они действительно являются областями, только в конкретных случаях, где это очевидно). Ранг жордановой области считается равным 1.

Из теоремы Жордана следует, что $\partial D = \bigcup_{s=1}^S \partial D_s$, поэтому указанное представление множества D (раз уж существует) единственно с точностью до порядка нумерации областей D_s , $s \geq 2$. Следовательно, определение ранга корректно.

В приведенных обозначениях дадим следующее

5.6. Определение. (Положительно) *ориентированной* границей допустимой области D ранга $S \geq 2$ называется совокупность (uenb) границ:

$$\partial^+ D = \{ \partial^+ D_1, \partial^- D_2, \dots, \partial^- D_S \}.$$

Для $f:\partial D\to \mathbb{C}$ интеграл от f вдоль (или no) $\partial^+ D$ определяется по формуле:

$$\int\limits_{\partial^{+}D}fdz=\int\limits_{\partial^{+}D_{1}}fdz\,-\,\sum_{s=2}^{S}\int\limits_{\partial^{+}D_{s}}fdz\,,$$

при условии, что все интегралы справа существуют.

- **5.7. Упражнение.** Дать определение *спрямляемости* и длины границы, $\ell(\partial D)$, допустимой области D.
- **5.8.** Определение. Пусть $E\subset \mathbb{C}$. Будем говорить, что f голоморфна на E, если существует открытое множество U, содержащее E, такое, что f определена и \mathbb{C} -дифференцируема всюду в U.
- **5.9.** Упражнение. Если D область в $\mathbb C$ и $f \in A(\overline D)$, то найдется *область* G, содержащая $\overline D$, с условием $f \in A(G)$.
- 5.10. Теорема (интегральная теорема Коши). Пусть D допустимая область в $\mathbb C$ со спрямляемой границей, $f\in A(\overline D)$. Тогда

$$\int_{\partial^+ D} f(z)dz = 0. (5.1)$$

Доказательство. Проведем индукцию по рангу S допустимой области D. Пусть сначала S=1, т.е. D – жорданова. Этот случай по теореме 4.17 сводится к следующей лемме.

5.11. Лемма. Пусть D – жорданова область, U – открытое множество, содержащее \overline{D} . Тогда найдется односвязная область G с условиями $\overline{D} \subset G \subset U$.

Доказательство леммы. Воспользуемся следующим утверждением, непосредственно вытекающим из определения односвязности (по Жордану): если G_1,\ldots,G_N – конечное семейство

односвязных областей в \mathbb{C} и G – какая-либо непустая компонента связности их пересечения, то G – односвязная область.

Пусть B — некоторый (открытый) круг, содержащий \overline{D} . Будем считать, что B не содержится в U, иначе G=B дает нужный ответ. Для каждой точки $a\in \overline{B}\setminus U$ пусть $d_a=\mathrm{dist}(a,\overline{D}),$ $B_a=B(a,d_a/2).$ При $\overline{B_a}\subset B$ пусть L_a — носитель какой-либо жордановой ломаной, соединяющей ∂B_a и ∂B в $\overline{B}\setminus \overline{D}$ (причем кроме концов вся L_a лежит в $B\setminus \overline{D}$), в противном случае полагаем $L_a=\emptyset$. Определим $G_a=B\setminus (\overline{B_a}\cup L_a)$, так что всякая G_a — односвязна, ибо связна ee граница.

Выберем конечное покрытие $\{B_{a_n}\}_{n=1}^N$ мн-ва $\overline{B}\setminus U$ кругами $\{B_a\,|\,a\in\overline{B}\setminus U\}$. Искомая область G есть компонента связности пересечения $\cap_{n=1}^N G_{a_n}$, содержащая \overline{D} . \square

5.12. Продолжение индукции. Предположим, что теорема доказана для scex допустимых (со спрямляемой границей) областей D ранга S-1 ($S\geq 2$) и scex $f\in A(\overline{D})$.

Пусть теперь $D = D_1 \setminus (\bigcup_{s=2}^S \overline{D_s})$ – допустимая область ранга S со спрямляемой границей $\partial^+ D = \{\partial^+ D_1, \partial^- D_2, \dots, \partial^- D_S\}$, а f – голоморфна на некотором открытом множестве U, содержащем \overline{D} . Мы должны установить равенство (5.1).

Положим $K_1=\partial D_1,\ K_2=\partial D\setminus\partial D_1.$ Из непрерывности функции d(z,w)=|z-w| на компакте $K_1\times K_2$ следует, что существуют $z_1\in K_1$ и $z_2\in K_2$, ближайшие друг к другу, т.е. $|z_1-z_2|=\mathrm{dist}(K_1,K_2).$ Без ограничения общности будем считать, что $z_2\in\partial D_2.$

5.13. Построение "коридора". Всюду в этом пункте параметр s принимает значения 1 и 2 (т.е. все условия и построения одновременно выполняются для обоих значений s).

Фиксируем какие-либо (замкнутые, жордановы спрямляемые) пути $\gamma_s: [\alpha_s, \beta_s] \to \mathbb{C}$ из $\partial^+ D_s$ с условиями $\gamma_s(\alpha_s) \neq z_s$. Выберем $d \in (0, |z_1 - z_2|/4)$, удовлетворяющее условиям:

- (1) $B(z_s,d) \subset U$;
- (2) $d < |\gamma_s(\alpha_s) z_s|$.

Пусть a_s – точка на отрезке $[z_1,z_2]$ такая, что $|a_s-z_s|=d$. Мы находимся в условиях пункта **4.5**(Лекция 4), т.е. при $\gamma=\gamma_s$, $a=a_s,\,\delta< d$ определен путь $\gamma_s(a_s,\delta)$ (а также соответствующие

параметры t_{0s} , $t_{\delta s}^-$, $t_{\delta s}^+$, $t_{\delta s}^+$, $t_{\delta s}^-$, $t_{\delta s}^+$). Пусть γ_s^δ — сужение пути γ_s на $[t_{\delta s}^-$, $t_{\delta s}^+]$. Теперь фиксируем δ так, что $[\gamma_s^\delta] \subset B(z_s,d/2)$.

Пусть σ_s — сужение пути $\gamma_s(a_s,\delta)$ на $[t_{\delta s}^-,t_{\delta s}^+]$. Напомним, что параметризация на *окружености* σ_s выбрана так, что $b_s:=\sigma_s(t_{0s})\in [z_1,z_2]$.

Наконец, выберем $\varepsilon \in (0, t_{\delta s}^+ - t_{0s})$ так, что $c_s = \sigma_s(t_{0s} + \varepsilon) \in B(z_{3-s}, |z_1 - z_2|)$, и пусть σ_s^ε – сужение σ_s на $[t_{0s}, t_{0s} + \varepsilon]$. Рассмотрим замкнутую кривую

$$\Gamma_1^* = (\{\gamma_1(a_1, \delta)\} \setminus \{\sigma_1^{\varepsilon}\}) \cup [b_1, b_2] \cup (\{\gamma_2(a_2, \delta)\} \setminus \{\sigma_2^{\varepsilon}\})^- \cup [c_2, c_1]$$
 (5.2)

Она спрямляема и *эсорданова*, поскольку σ_1 проходится *по часовой стрелке* $(a_1 \in D_1)$, а σ_2 – *против часовой стрелки* $(a_2 \notin \overline{D_2})$, так что отрезки $[b_1,b_2]$ и $[c_2,c_1]$ не пересекаются. Построение "коридора" закончено.

5.14. Окончание доказательства интегральной теоремы Коши.

Пусть D_1^* – область, ограниченная Γ_1^* . Докажем, что $\overline{D_s} \subset D_1^*$ при $s \geq 3$ (если таковые есть). По Теореме 4.3 достаточно установить, что $\operatorname{ind}_w(\Gamma_1^*) = 1$ для любого $w \in \overline{D_s}, s \geq 3$. Обозначим через Π открытый криволинейный четырехугольник, ограниченный $[b_1,b_2], \{\sigma_2^\varepsilon\}, [c_2,c_1]$ и $\{\sigma_1^\varepsilon\}^-$. Согласно Упражнению 1.28, имеем:

$$\operatorname{ind}_w(\Gamma_1^*) = \operatorname{ind}_w(\gamma_1(a_1, \delta)) - \operatorname{ind}_w(\gamma_2(a_2, \delta)) - \operatorname{ind}_w(\partial^+\Pi).$$

Остается учесть, что $\operatorname{ind}_w(\gamma_1(a_1,\delta)) = \operatorname{ind}_w(\gamma_1) = 1$ (ибо $w \in D_1$), $\operatorname{ind}_w(\gamma_2(a_2,\delta)) = \operatorname{ind}_w(\gamma_2) = 0$ ($w \notin \overline{D_2}$), $\operatorname{ind}_w(\partial^+\Pi) = 0$ ($w \notin \overline{\Pi}$). Аналогично доказывается, что $\overline{D_1^*} \subset U$.

Аналогично доказывается, что $\overline{D_1^*} \subset U$.

Таким образом, $D^* = D_1^* \setminus (\cup_{s=3}^S \overline{D_s})$ (последнее объединение отсутствует при S=2) — допустимая область ранга S-1 со спрямляемой границей. По предположению индукции, $\int_{\partial^+ D^*} f(z) dz = 0$. Остается установить, что последний интеграл равен $\int_{\partial^+ D} f(z) dz$. Действительно, слагаемые $\int_{\partial^+ D_s} f(z) dz$, $s \geq 3$, у этих интегралов общие, $\int_{\partial^+ \Pi} f(z) dz = 0$ по первому шагу индукции, $\int_{\sigma_s} f(z) dz = \int_{\gamma_s^\delta} f(z) dz$ по теореме Коши в односвязной области $B(z_s,d)$ (s=1 и 2), так что из (5.2) окончательно получаем:

$$\int_{\Gamma_1^*} f(z)dz = \int_{\gamma_1(a_1,\delta)} f(z)dz - \int_{\gamma_2(a_2,\delta)} f(z)dz - \int_{\partial^+\Pi} f(z)dz =$$

$$\int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz .$$

Теорема доказана. □

Через несколько лекций мы докажем более общий и трудный вариант предыдущей теоремы:

- 5.15. Теорема (усиленная интегральная теорема Коши). Пусть D допустимая область со спрямляемой границей, $f\in A(D)\cap C(\overline{D}).$ Тогда $\int_{\partial^+ D} f dz = 0.$
- **5.16.** Доказать справедливость последней теоремы, когда D круг или кольцо.
- **5.17.** Если Γ замкнутая спрямляемая кривая, не проходящая через точку $a\in\mathbb{C},$ то

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{dz}{z - a} = \operatorname{ind}_a(\Gamma).$$

5.18. Интегралом типа Коши называется интеграл вида

$$F(z) = \int_{\Gamma} \frac{f(\zeta)d\zeta}{\zeta - z},$$

где Γ — спрямляемая кривая, f — непрерывна на ее носителе $[\Gamma]$. Доказать, что F — голоморфна вне $[\Gamma]$ и $F(\infty)=0$. Найти $f'(\infty)$.

Лекция №6

Интегральная формула Коши и ее основные следствия

Интегральная формула Коши

6.1. Теорема (интегральная формула Коши). Пусть D – допустимая область со спрямляемой границей, $f \in A(\overline{D})$. Тогда для любого $z_0 \in D$ справедлива формула:

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial^+ D} \frac{f(z)dz}{z - z_0} .$$

Доказательство. Фиксируем $z_0 \in D$ и пусть $d={\rm dist}(z_0,\partial D)$. При $\delta\in(0,d/2)$ положим $D_\delta=D\setminus\overline{B(z_0,\delta)},$ $\Gamma_\delta^+=\partial^+B(z_0,\delta).$ Тогда D_δ – допустимая область со спрямляемой границей и $f_1(z):=f(z)/(z-z_0)\in A(\overline{D_\delta}).$ По интегральной теореме Коши

$$\int_{\partial^+ D_\delta} \frac{f(z)dz}{z - z_0} = 0 \; ,$$

так что

$$\int_{\partial^+ D} \frac{f(z)dz}{z - z_0} = \int_{\Gamma_{\varepsilon}^+} \frac{f(z)dz}{z - z_0}$$

и остается доказать, что

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma_\delta^+} \frac{f(z)dz}{z - z_0} .$$

Поскольку последний интеграл не зависит от δ (это непосредственно вытекает из предпоследнего равенства) и, по доказанному ранее,

$$\frac{1}{2\pi i} \int_{\Gamma_{\bar{s}}^+} \frac{dz}{z - z_0} = 1 \; , \label{eq:continuous}$$

то нужное утверждение получается из следующей оценки:

$$\left| \frac{1}{2\pi i} \int_{\Gamma_{\delta}^+} \frac{f(z)dz}{z - z_0} - f(z_0) \right| = \frac{1}{2\pi} \left| \int_{\Gamma_{\delta}^+} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le$$

$$\leq \frac{1}{2\pi} \|f - f(z_0)\|_{[\Gamma_\delta]} \frac{1}{\delta} 2\pi \delta = \|f - f(z_0)\|_{[\Gamma_\delta]} \to 0 \ \text{при } \delta \to 0 \ ,$$

которая, в свою очередь, следует из непрерывности f в точке z_0 . \sqcap

6.2. Теорема (о среднем). Пусть $f\in A(\overline{B(z_0,R)}),\ R\in (0,+\infty).$ Тогда

$$f(z_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z_0 + Re^{i\varphi}) d\varphi .$$

Доказательство. По интегральной формуле Коши:

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma_P^+} \frac{f(z)dz}{z - z_0} ,$$

где $\Gamma_R^+ = \partial^+ B(z_0, R)$. Остается вычислить последний интеграл с помощью стандартной параметризации кривой Γ_R^+ : $\{z = z_0 + Re^{i\varphi} \mid \varphi \in [-\pi, \pi]\}$. \square

6.3. Теорема (принцип максимума модуля). Пусть D – произвольная область в $\overline{\mathbb{C}}$, $D \neq \overline{\mathbb{C}}$. Если $f \in A(D) \cap C(\overline{D})$, то для любого $z_0 \in D$ имеем

$$|f(z_0)| \le \max_{z \in \partial D} |f(z)|.$$
 (6.1)

При этом, если для некоторого $z_0 \in D$ неравенство (6.1) обращается в равенство, то f постоянна в D.

 Π ри $\infty\in\overline{D}$ непрерывность f на \overline{D} понимается в смысле топологии $\mathbb{C}.$

 \mathcal{L} оказательство. Напомним, что максимум всякой непрерывной на компакте функции достигается.

Достаточно доказать, что если найдется $z_0 \in D$ с условием $|f(z_0)| \geq \max_{\partial D} |f(z)|$, то f – постоянна. Пусть такое z_0 существует. Без ограничения общности мы можем предположить, что $M = \max_{\overline{D}} |f(z)| = |f(z_0)|$ (проверить!). Положим $E = \{z \in D \mid |f(z)| = M\}$. Ясно, что $E \neq \emptyset$ и E замкнуто в D (последнее вытекает из непрерывности f). Открытость E следует из теоремы о среднем (провести доказательство!). Из связности D получаем, что E = D. Итак, $|f(z)| \equiv M$ на \overline{D} . Остается доказать,

что f'(z)=0 всюду в D. Случай M=0 тривиален, пусть далее $M\neq 0$. Если, отпротивного, существует $z_1\in D$ с условием $f'(z_1)\neq 0$, то из определения $\mathbb C$ -дифференцируемости получаем, что $f(z)=f(z_1)+f'(z_1)(z-z_1)+o(z-z_1)$, так что |f(z)| не может быть постоянным ни в какой окрестности точки z_1 . Противоречие. Случай $\infty\in D$ оставляем читателю. \square

- **6.4.** Упражнение. Пусть D произвольная ограниченная область в $\mathbb C$ и $f \in A(D)$, причем все предельные значения функции |f(z)| на ∂D изнутри D не превышают константы $M \in [0, +\infty)$. Тогда для любого $z \in D$ имеем $|f(z)| \leq M$.
- **6.5. Теорема (основная теорема алгебры).** Пусть $p(z) = a_n z^n + \dots + a_1 z + a_0$ произвольный многочлен комплексного переменного $z, a_n \neq 0$. Тогда p имеет в $\mathbb C$ ровно n корней с учетом кратности.

Доказательство. Пусть $n \geq 1$. По индукции и теореме Безу все сводится к доказательству существования хотя бы одного корня. Пусть, от противного, $p(z) \neq 0$ при всех z. Тогда f(z) = 1/p(z) — целая функция. Поскольку $|p(z)| \to +\infty$ при $z \to \infty$, мы получаем, что $|f(z)| \to 0$ при $z \to \infty$. Применяя принцип максимума модуля для f в кругах достаточно большого радиуса (с центром в 0), получаем, что f(0) = 0. Противоречие. \square

6.6. Теорема (формула Коши для производных и бесконечная дифференцируемость голоморфных функций). Пусть D – допустимая область со спрямляемой границей, $f \in A(\overline{D})$. Тогда для любых $k \in \mathbb{Z}_+$ и $z_0 \in D$ справедлива формула:

$$f^{(k)}(z_0) = \frac{k!}{2\pi i} \int_{\partial^+ D} \frac{f(z)dz}{(z-z_0)^{k+1}} \;,$$

в частности, $f^{(k)}$ голоморфна в D.

Доказательство. По индукции. Пусть формула справедлива для данного k и $scex\ z_0\in D$. Докажем ее справедливость для k+1 и всех $z_0\in D$. Фиксируем $z_0\in D$ и положим $d={\rm dist}(z_0,\partial D)$. Пусть всюду далее $\Delta z\in B(0,d),\ \Delta z\neq 0$. Имеем:

$$(f^{(k)}(z_0 + \Delta z) - f^{(k)}(z_0))/\Delta z = \frac{k!}{2\pi i} \int_{\partial^+ D} f(z) g_{\Delta z}(z) dz$$

где

$$g_{\Delta z}(z) = \frac{1}{\Delta z} \left(\frac{1}{(z - z_0 - \Delta z)^{k+1}} - \frac{1}{(z - z_0)^{k+1}} \right) .$$

Остается доказать, что $g_{\Delta z}{\Rightarrow}g_0$ на ∂D при $\Delta z\to 0$ (где $g_0(z)=(k+1)(z-z_0)^{-k-2})$ и воспользоваться Предложением 4.2. Для доказательства указанной равномерной сходимости следует учесть,

$$g_{\Delta z}(z) = \sum_{j=1}^{k+1} \frac{1}{(z-z_0)^j (z-z_0-\Delta z)^{k+2-j}}$$

причем $\|(z-z_0-\Delta z)^{-1}-(z-z_0)^{-1}\|_{\partial D}=O(\Delta z)\to 0$ при $\Delta z\to 0$ п

- **6.7. Следствие.** Если f имеет в D комплексную первообразную, то $f \in A(D)$.
- **6.8. Теорема (Мореры).** Пусть D произвольная область в $\mathbb{C},\ f\in C(D)$ и для всякого треугольника Δ с условием $\overline{\Delta}\subset D$ имеет место $\int_{\partial^+\Delta} f(z)dz=0$. Тогда $f\in A(D)$.

 \mathcal{A} оказательство. Воспользоваться Теоремой 5.3 (в кругах из D) и последним Следствием. \square

- **6.9.** Определение. Пусть D область в \mathbb{C} . Последовательность $\{f_n\}$ функций $f_n:D\to\mathbb{C}$ сходится равномерно внутри D к функции f при $n\to\infty$, если эта последовательность сходится к f равномерно на всяком компакте K из D (т.е. $||f-f_n||_K\to 0$ при $n\to\infty$).
- **6.10.** Замечание. Равномерная сходимость внутри D слабее равномерной сходимости в (на) области D. В качестве примера можно взять $D = B(0,1), f_n(z) = z^n \ (n=1,2,\cdots), f=0.$
- **6.11.** Определение. Пусть D область в \mathbb{C} . Ряд $\sum_{n=1}^{\infty} f_n$ функций $f_n:D\to\mathbb{C}$ сходится равномерно внутри D к своей сумме S, если последовательность $\{S_n\}$ частичных сумм этого ряда сходится к S равномерно внутри D при $n\to\infty$.
- **6.12. Теорема (Вейерштрасса).** Пусть $\{f_n\} \subset A(D)$ равномерно внутри D сходится к функции f при $n \to \infty$. Тогда $f \in A(D)$ и для всякого $k \in \{1, 2, \cdots\}$ последовательность $\{f_n^{(k)}\}$ сходится к $f^{(k)}$ равномерно внутри D при $n \to \infty$.

Доказательство. Свойство $f \in A(D)$ следует из Леммы 4.12 (Гурсы), Предложения 4.2 и Теоремы 6.8 (Морера).

Из соображений индукции и компактности нам достаточно установить, что $\|f_n'-f'\|_K\to 0$ при $n\to +\infty$, где K – произвольный замкнутый круг в D. Пусть $K=\overline{B(a,r)}$ и d>0 таково, что $\overline{B(a,r+d)}\subset D$. Положим $\Gamma^+=\partial^+B(a,r+d)$ ($\Gamma=\partial B(a,r+d)$ – компакт в D) и воспользуемся Теоремой 6.6 для f_n и f в области B(a,r+d) при k=1. Если $z_0\in K$, то

$$|f'_n(z_0) - f'(z_0)| = \frac{1}{2\pi} \left| \int_{\Gamma^+} \frac{f_n(z) - f(z)}{(z - z_0)^2} dz \right| \le \frac{1}{2\pi} ||f_n - f||_{\Gamma} d^{-2} 2\pi (r + d) \to 0$$

при $n \to \infty$, поскольку $f_n \to f$ равномерно на Γ . \square

Мы оставляем для самостоятельного изучения (или повторения) следующие темы, *аккуратное* изложение которых можно найти, например, в цитируемом ранее (см. аннотацию) учебнике Б.В. Шабата.

Доказательство теоремы Коши о разложении голоморфной в круге функции в ряд Тейлора (см. ниже), вывод "табличных" разложений Тейлора, свойств степенных рядов (теорема Абеля, круг сходимости, формула Коши-Адамара, почленное дифференцирование и интегрирование степенного ряда). Нули голоморфных функций (порядок нуля, теорема единственности), ряды Лорана (кольцо сходимости, теорема Лорана, неравенства Коши), изолированные особые точки голоморфных функций и их классификация (в терминах пределов и в терминах рядов Лорана), Теорема Сохоцкого, Лемма Шварца и автоморфизмы круговых областей, вычеты и их вычисление.

Приведем формулировки следующих трех теорем ввиду их важности.

6.13. Теорема Коши о разложении в ряд Тейлора. Пусть $f \in A(B(z_0,r)), r \in (0,+\infty]$. Тогда f разлагается во всем круге $B(z_0,r)$ в степенной ряд

$$f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^n$$
,

где

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\partial^+ B(z_0, \rho)} \frac{f(\zeta)d\zeta}{(\zeta - z_0)^{n+1}}$$

при произвольном фиксированном $\rho \in (0,r)$. Указанный ряд сходится (к f) абсолютно и равномерно внутри $B(z_0,r)$.

- **6.14. Теорема (единственности).** Пусть D область в \mathbb{C} , $f \in A(D)$ и множество ее нулей имеет хотя бы одну предельную точку в D. Тогда $f \equiv 0$ в D.
- **6.15. Теорема (Лорана).** Пусть $V = \{z \in \mathbb{C} \mid r < |z z_0| < R\}$ кольцо с центром z_0 $(0 \le r < R \le +\infty), \ f \in A(V)$. Тогда f разлагается всюду в V в обобщенный степенной ряд

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n ,$$

где

$$c_n = \frac{1}{2\pi i} \int_{\partial^+ B(z_0, \rho)} \frac{f(\zeta)d\zeta}{(\zeta - z_0)^{n+1}}$$

при произвольном фиксированном $\rho \in (r,R)$. Указанный ряд сходится (к f) абсолютно и равномерно внутри V.

Лекция №7

Формула Помпейю.

Стандартное разбиение единицы. Основные пространства функций.

Формула Помпейю

Напомним, что если f есть \mathbb{R} -дифференцируемая функция в точке $a\in\mathbb{C},$ то, по определению,

$$\overline{\partial} f(a) = \left. \frac{\partial f}{\partial \overline{z}} \right|_a = \left. \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \right|_a.$$

По теореме Коши-Римана f является $\mathbb C$ -дифференцируемой в точке $\in \mathbb C$, если и только если она $\mathbb R$ -дифференцируема в этой точке и $\overline{\partial} f(a)=0.$

Оператор $\overline{\partial}:f\to \overline{\partial} f$ называют оператором Коши-Римана.

Пусть Ω – открытое множество в \mathbb{C} , $k \in \mathbb{Z}^+ \cup \{\infty\}$. Положим $C_0^k(\Omega) = \{f \in C^k(\Omega) : \operatorname{supp}(f) - \operatorname{компакт} \mathsf{B} \Omega\}$, где $\operatorname{supp}(f)$ - наименьшее замкнутое подмножество из Ω , вне которого f обращается в ноль (в Ω). При k = 0 пишем $C_0^0(\Omega) = C_0(\Omega)$.

7.1. Теорема (формула Помпейю). Пусть $\varphi \in C^1_0(\mathbb{C}),$ тогда для всех $z \in \mathbb{C}$ имеет место равенство:

$$\varphi(z) = \frac{1}{\pi} \int_{\mathbb{C}} \frac{\overline{\partial} \varphi(\zeta) dm(\zeta)}{z - \zeta},$$

где $m(\cdot)$ – мера Лебега в \mathbb{C} .

 \mathcal{A} оказательство. Фиксируем $z\in\mathbb{C}$ и найдем R>0 с условием $\mathrm{supp}(\varphi)\subset B(z,R)$. Введем полярные координаты $\rho,\ \theta$ с центром z:

$$\zeta - z = \rho e^{i\theta}$$
 , $\overline{\zeta - z} = \rho e^{-i\theta}$

при $\zeta \neq z$. Таким образом,

$$e^{2i\theta} = \frac{\zeta - z}{\overline{\zeta} - \overline{z}}$$
 , $\rho^2 = (\zeta - z)(\overline{\zeta} - \overline{z})$.

Дифференцируя последние два равенства по $\overline{\zeta}$, находим:

$$e^{2i\theta}2i\frac{\partial\theta}{\partial\overline{\zeta}} = -\frac{\zeta-z}{(\overline{\zeta}-\overline{z})^2} \quad , \quad 2\rho\frac{\partial\rho}{\partial\overline{\zeta}} = \zeta-z \; ,$$

откуда

$$\frac{\partial \theta}{\partial \overline{\zeta}} = \frac{i e^{i\theta}}{2\rho} \quad , \quad \frac{\partial \rho}{\partial \overline{\zeta}} = \frac{e^{i\theta}}{2} \; .$$

Рассмотрим $F(\rho,\theta)=\varphi(\zeta)=\varphi(z+\rho e^{i\theta}),$ являющуюся 2π -периодической по θ при $\rho>0.$ Тогда при $\zeta\neq z$ имеем:

$$\overline{\partial}\varphi(\zeta) = F'_\rho \frac{\partial\rho}{\partial\overline{\zeta}} + F'_\theta \frac{\partial\theta}{\partial\overline{\zeta}} = F'_\rho \frac{e^{i\theta}}{2} \ + F'_\theta \frac{ie^{i\theta}}{2\rho} \ .$$

Интегрируя повторно в полярных координатах и учитывая периодичность F по θ , получаем:

$$\frac{1}{\pi} \int_{\mathbb{C}} \frac{\overline{\partial} \varphi(\zeta) dm(\zeta)}{z - \zeta} = \lim_{\delta \to 0} \frac{1}{\pi} \int_{0}^{2\pi} \int_{\delta}^{R} (F_{\rho}' \frac{e^{i\theta}}{2} + F_{\theta}' \frac{ie^{i\theta}}{2\rho}) \frac{1}{-\rho e^{i\theta}} \rho d\rho d\theta =$$

$$= -\frac{1}{2\pi} \lim_{\delta \to 0} \left(\int_{0}^{2\pi} \int_{\delta}^{R} F_{\rho}' d\rho d\theta + \int_{\delta}^{R} \int_{0}^{2\pi} F_{\theta}' d\theta \frac{i}{\rho} d\rho \right) =$$

$$= \lim_{\delta \to 0} \frac{1}{2\pi} \int_{0}^{2\pi} (F(\delta, \theta) - F(R, \theta)) d\theta = \varphi(z),$$

где в последнем равенстве мы пользуемся непрерывностью φ в точке z и условием $F(R,\theta)=0$. Отметим, что переходом к введенным выше полярным координатам легко доказывается и абсолютная сходимость исходного интеграла. \square

7.2. Замечание. При z = 0 имеем:

$$\varphi(0) = \frac{-1}{\pi} \int \frac{\overline{\partial} \varphi(\zeta) dm(\zeta)}{\zeta}.$$

По определению обобщенных производных последнее означает, что $\overline{\partial}(1/(\pi\zeta))$ есть δ -функция Дирака, т.е. $1/(\pi\zeta)$ есть ϕ ундаментальное решение уравнения Коши-Римана $\overline{\partial}f=0$.

Стандартное разбиение единицы

Пусть $\mathbb{Z}^2=\{j=(j_1,j_2)\equiv j_1+ij_2\}_{j_1,j_2\in\mathbb{Z}}$ – стандартная 1-решетка, $\delta\mathbb{Z}^2=\{a_j\equiv \delta j_1+i\delta j_2\}_{j_1,j_2\in\mathbb{Z}}$ – стандартная δ -решетка $(\delta>0)$ в $\mathbb C$ и

$$Q_j^{\delta} = [\delta j_1, \delta(j_1+1)) \times [\delta j_2, \delta(j_2+1))$$

— соответствующие последней решетке квадраты, покрывающие $\mathbb{C}.$ Фиксируем функцию

$$\varphi^1 \in C_0^1(B(0,1)), \quad 0 \le \varphi^1 \le 1, \quad \int_{B(0,1)} \varphi^1(z) dm(z) = 1.$$

Пусть $c_1=\|\overline{\partial}\varphi^1\|$, где, как и ранее, при произвольном $E\subset\mathbb{C}$ полагаем

$$||f||_E = \sup\{|f(z)| : z \in E\}, \quad ||f|| = ||f||_{\mathbb{C}}.$$

Фиксируем $\delta>0$. Пусть $\varphi^\delta(z)=\delta^{-2}\varphi^1(z/\delta),\ Q_j=Q_j^\delta,\ \chi_{Q_j}\equiv\chi_j$ – индикатор Q_j (т.е. $\chi_j=1$ на Q_j и $\chi_j=0$ вне Q_j). При $j\in\mathbb{Z}^2$ определим

$$\varphi_j^{\delta}(z) \equiv \varphi_j(z) = \int \varphi^{\delta}(z - \zeta) \chi_j(\zeta) dm(\zeta)$$

- функции разбиения единицы. Справедлива

7.3. Лемма. Пусть
$$B_j = B(a_j, 3\delta), j \in \mathbb{Z}^2$$
, тогда

$$\varphi_j \in C^1_0(B_j), \quad 0 \leq \varphi_j \leq 1, \quad \|\overline{\partial} \varphi_j\| \leq \frac{c_1}{\delta}, \quad \sum_{j \in \mathbb{Z}^2} \varphi_j \equiv 1 \text{ Ha } \mathbb{C},$$

причем каждая точка z принадлежит не более чем 50 кругам B_j .

Доказательство. Если $|z - a_j| \ge 3\delta$ и $\zeta \in Q_j$, то $|z - \zeta| > \delta$, откуда $\varphi^{\delta}(\zeta - z) = 0$, так что $\varphi_j(z) = 0$. Далее, дифференцируя по переменным x и y (z = x + iy), по определению $\overline{\partial} \varphi_j(z)$ получаем:

$$\overline{\partial}\varphi_j(z) = \int \overline{\partial}\varphi^{\delta}(z-\zeta)\chi_j(\zeta)dm(\zeta), \quad z \in \mathbb{C}.$$

Следовательно, $\varphi_j \in C_0^1(B_j)$. Для любого z имеем:

$$|\overline{\partial}\varphi_j(z)| \leq \int_{Q_j} |\overline{\partial}\varphi^\delta(z-\zeta)| dm(\zeta) \leq \frac{c_1}{\delta},$$

поскольку

$$\overline{\partial}\varphi^{\delta}(w)=\overline{\partial}(\frac{1}{\delta^{2}}\varphi^{1}(\frac{w}{\delta}))=\frac{1}{\delta^{3}}[\overline{\partial}\varphi^{1}](\frac{w}{\delta}),$$

и, следовательно, $\|\overline{\partial}\varphi^\delta\| \le c_1/\delta^3$. Осталось доказать, что $\sum_j \varphi_j \equiv 1$. Действительно:

$$\sum_{j\in\mathbb{Z}^2}\varphi_j(z)=\int\varphi^\delta(z-\zeta)\sum_j\chi_j(\zeta)dm(\zeta)=\int\varphi^\delta(z-\zeta)\,dm(\zeta)=1.\ \Box$$

Определения основных пространств функций

7.4. Введем (или напомним) ряд общепринятых обозначений, важных для дальнейшего. Пусть H – произвольное множество в \mathbb{C} . Обозначим через A(E) класс функций f, каждая из которых определена и голоморфна в некоторой (своей) окрестности U_f множества E (если E открыто, то A(E) есть класс всех голоморфных на E функций). Как и ранее, C(E) – пространство всех комплекснозначных непрерывных и ограниченных на E функций f с равномерной нормой $||f||_E$. Для компакта X через (X) обозначается замыкание в C(X) подпространства $\{P\}|_{X}$, где $\{P\}$ – совокупность всех полиномов комплексного переменного z. Ясно, что $f \in P(X)$, если и только если f равномерно на X приближается (с любой точностью) полиномами от z. Определим еще пространство R(X) – замыкание в C(X) подпространства $\{g|_X\}$, где g пробегает класс всех рациональных функций (от z) с полюсами вне X. По аналогии, $f \in R(X)$ тогда и только тогда, когда f равномерно на X приближается рациональными функциями. Наконец, положим $C_A(X) = C(X) \cap A(X^o)$, где E^o – множество внутренних точек множества Е. Следующие включения очевид-

$$P(X) \subseteq R(X) \subseteq C_A(X) \subseteq C(X)$$
.

Иначе говоря, приближать полиномами и рациональными функциями (равномерно на X) можно только функции класса $C_A(X)$ ("простейшее" необходимое условие приближаемости).

Напомним, что компонентой (связности) множества E в $\mathbb C$ называется всякое максимальное связное подмножество из E. Если E – открыто, то всякая его связная компонента является областью, причем E есть конечное или счетное объединение своих компонент. Поэтому, если X – компакт, то его *дополнение* состоит из неограниченной компоненты Ω и ограниченных компонент $\Omega_1, \Omega_2, \cdots$ (если они есть).

7.5. Определение. *Оболочкой* компакта в $\mathbb C$ (обозначается через $\widehat X$) называется объединение компакта X и всех ограниченных компонент его дополнения.

Условие
$$X=\widehat{X}$$
 очевидно означает, что $\mathbb{C}\setminus X=\Omega$ – связно.

- В 1885 г. К. Вейерштрасс и К. Рунге доказали свои знаменитые теоремы о равномерных приближениях функций полиномами. Приведем их формулировки, используя введенные выше обозначения.
- **7.6. Теорема (Вейерштрасса).** Пусть X отрезок на вещественной оси, тогда C(X) = P(X).
- **7.7. Теорема (Рунге).** Пусть произвольный компакт в $\mathbb{C},$ тогда
 - 1. $A(X) \subset R(X)$;
 - 2. $\{A(X) \subset P(X)\} \Leftrightarrow \{X = \widehat{X}\}.$

Нашей ближайшей целью является доказательство теоремы Рунге. Одной из основных задач этого раздела является доказательство следующего *критерия* полиномиальной аппроксимации, полученного С.Н. Мергеляном в 1952 г.

7.8. Теорема (Мергеляна). $\{C_A(X) = P(X)\} \Leftrightarrow \{X = \widehat{X}\}.$

Лекция №8

Свойства потенциала Коши. Доказательство теоремы Рунге

Свойства потенциала Коши

Нам неоднократно понадобится следующее утверждение.

8.1. Лемма. Пусть - компакт, $h \in L_{\infty}(K, m(\cdot))$. Положим

$$f(z) = \int_{K} \frac{h(\zeta)dm(\zeta)}{z - \zeta}$$

(интеграл абсолютно сходится при всех z, см. ниже). Тогда

(a) Для любого компакта X с условием $X \cap K = \emptyset$ имеем $f \in R(X)$, причем f равномерно на с любой точностью приближается рациональными дробями вида

$$\sum_{n=1}^{N} \frac{\lambda_n}{z - a_n}, \quad \text{где } a_n \in K, \quad \lambda_n \in \mathbb{C}.$$

(б) Функция f голоморфна вне , $f \in C(\overline{\mathbb{C}}), f(\infty) = 0$, причем

$$||f|| = ||f||_{\overline{\mathbb{C}}} \le 2M\sqrt{\pi m(K)},$$

где $M = \|h\|_{K,m}$ – норма h в $L_{\infty}(K, m(\cdot))$.

8.2. Замечание. Функция f, определенная в предыдущей лемме, называется *потенциалом Коши* функции h *по мере Лебега* $m(\cdot)$. При этом наша функция h финитна, т.е. обращается в ноль вне компакта K.

Доказательство Леммы 8.1. (а) Пусть $d={\rm dist}(X,K), d>0$. При $\mu\in(0,d/2)$ разобьем K на конечное число $(N=N(\mu))$ попарно непересекающихся борелевских множеств $K_n,\,1\leq n\leq N,$ с условиями ${\rm diam}(K_n)<\mu$. Фиксируем

$$a_n \in K_n, \quad \lambda_n = \int_{K_n} h(\zeta) dm(\zeta),$$

тогда при $z \in X$ получаем:

$$\left| \int_{K} \frac{h(\zeta)dm(\zeta)}{z - \zeta} - \sum_{n=1}^{N} \frac{\lambda_{n}}{z - a_{n}} \right| = \left| \sum_{n=1}^{N} \int_{K_{n}} \frac{h(\zeta)dm(\zeta)}{z - \zeta} \right|$$

$$- \sum_{n=1}^{N} \int_{K_{n}} \frac{h(\zeta)dm(\zeta)}{z - a_{n}} \right| \leq \sum_{n=1}^{N} M \int_{K_{n}} \left| \frac{(z - a_{n}) - (z - \zeta)}{(z - \zeta)(z - a_{n})} \right| dm(\zeta)$$

$$\leq M \sum_{n=1}^{N} \frac{\mu}{d^{2}} m(K_{n}) \leq \frac{m(K)M}{d^{2}} \mu \to 0 \quad \text{при } \mu \to 0.$$

(б) Поскольку функции $\sum_{n=1}^{N} \frac{\lambda_n}{z-a_n}$ голоморфны вне K, то в

силу (а) и теоремы Вейерштрасса f голоморфна вне K. Свойство $f(\infty)=0$ очевидно. Оценим |f(z)| для произвольного $z\in\mathbb{C}$. Пусть $r=\sqrt{m(K)/\pi}$. Поскольку m(B(z,r))=m(K) и функция $1/|\zeta-z|$ убывает при удалении ζ от (фиксированного) z, мы получаем:

$$\begin{split} |f(z)| & \leq M \int_K \frac{1}{|z-\zeta|} dm(\zeta) \leq M \int_{B(z,r)} \frac{1}{|z-\zeta|} dm(\zeta) = \\ M \int_0^{2\pi} \int_0^r \frac{\rho d\rho d\theta}{\rho} & = 2M\pi r = 2M\sqrt{\pi m(K)}, \end{split}$$

причем вместе с нужной равномерной оценкой мы автоматически доказали абсолютную сходимость (при всех z) интеграла, определяющего f. Непрерывность f вытекает из Леммы 8.4 ниже. \square

8.3. Определение. Пусть $E\subset \mathbb{C},\, \tau\in (0,1]$. Пространство $\mathrm{Lip}_{\tau}(E)$ есть совокупность функций $g\in C(E)$, для каждой из которых найдется $c=c(g)\in [0,\infty)$ с условиями

$$|g(z_1) - g(z_2)| \le c|z_1 - z_2|^{\tau}, \quad |g(z_1)| \le c$$

для всех $z_1, z_2 \in E$. Банахова норма в $\operatorname{Lip}_{\tau}(E)$ определяется так: $\|g\|_{\tau,E} = \min\{c(g)\}$, где (достигающийся) тип берется по всем c(g), удовлетворяющим последним двум неравенствам (проверить!).

Очевидно, что $\operatorname{Lip}_{\tau}(E) \subset C(E)$ при всех $\tau \in (0,1]$.

8.4. Лемма. В условиях Леммы 8.1, для любого $\tau \in (0,1)$ имеем $f \in \text{Lip}_{\tau}\mathbb{C}$, причем $\|f\|_{\tau,\mathbb{C}} \leq Mc(\tau,K)$. Однако найдется K, такой, что даже при $h \equiv 1|_K$ имеем $f \notin \text{Lip}_1(\mathbb{C})$.

Доказательство. Фиксируем $z_1 \neq z_2$ и пусть $\delta = |z_1 - z_2|/2$, $a = (z_1 + z_2)/2$, $D_1 = B(z_1, \delta)$, $D_2 = B(z_2, \delta)$, $D_3 = B(a, 2\delta) \setminus (D_1 \cup D_2)$, $D_4 = \mathbf{C} \setminus B(a, 2\delta)$. Нам нужно оценить слагаемые в правой части неравенств:

$$|f(z_1) - f(z_2)| \le \sum_{s=1}^4 \int_{D_s \cap K} |h(\zeta)| \frac{|z_1 - z_2|}{|z_1 - \zeta||z_2 - \zeta|} dm(\zeta) \le$$

$$\le \sum_{s=1}^4 2M\delta \int_{D_s \cap K} \frac{1}{|z_1 - \zeta||z_2 - \zeta|} dm(\zeta).$$

Слагаемое, соответствующее s=1 (s=2 аналогично), оценивается сверху величиной $4\pi M\delta$ как в предыдущей лемме переходом к полярным координатам с центром z_1 и интегрированием по всему D_1 . Слагаемое при s=3 оценивается сверху тривиально (тем же $4\pi M\delta$). Выберем r>0 так, что $m(B(a,r)\cap D_4)=m(K)$. При интегрировании по D_4 мы пользуемся оценкой $|z_1-\zeta||z_2-\zeta|\geq |\zeta-a|^2/4$, монотонным убыванием подинтегральной функции (от $|\zeta-a|$) и полярными координатами с центром a:

$$\int_{D_4 \cap K} \frac{1}{|z_1 - \zeta| |z_2 - \zeta|} dm(\zeta) \le \int_{D_4 \cap K} \frac{4}{|\zeta - a|^2} dm(\zeta) \le 8\pi \int_{2\delta}^r \rho^{-1} d\rho = 8\pi \ln(r/(2\delta)).$$

Теперь легко видеть, что при фиксированном $\tau \in (0,1)$ величина $|f(z_1) - f(z_2)|/(|z_1 - z_2|^{\tau})$ имеет оценку сверху, не зависящую от z_1 и z_2 , если $\delta < 1$. Случай $\delta \geq 1$ оставляем читателю.

Контрпример для $\tau=1$ строится так. Полагаем $K=\{z:|z|\leq 1, \mathrm{Re}(z)\geq |\mathrm{Im}(z)|\}$ и рассматриваем $z_1=0,\,z_2=-2\delta,$ где $\delta>0$ достаточно мало. \square

Доказательство Теоремы 7.7 (Рунге). (1). Докажем, что $A(X)\subset R(X)$ для любого компакта X.

Пусть f голоморфна в d-окрестности U_d компакта , надо приблизить f рациональными функциями. Пусть $\delta=d/7$. Построим стандартное 3δ -разбиение единицы $\{B_j,\varphi_j\}$ (см. Лемму 7.3) : $B_j=B(a_j,3\delta)\;(a_j\in\delta\mathbb{Z}^2),\;\varphi_j\in C_0^1(B_j),\;\sum\limits_{j\in\mathbb{Z}^2}\varphi_j\equiv 1.$ Пусть

$$J = \{j \in \mathbb{Z}^2 : B_j \subset U_d\}, \quad \varphi = \sum_{j \in J} \varphi_j \in C_0^1(U_d).$$

Ясно, что $\varphi=1$ в δ -окрестности U_δ компакта , $\varphi=0$ вне U_d . Положим $g=f\varphi,\,g\in C^1_0(\mathbb{C}).$ По Теореме 7.1 (Помпейю), при $z\in X$ имеем:

$$f(z) = g(z) = \frac{1}{\pi} \int_{U_d \backslash U_{\delta}} \frac{\overline{\partial} g(\zeta) dm(\zeta)}{z - \zeta},$$

поскольку $\overline{\partial}g(\zeta)=\overline{\partial}f(\zeta)=0$ в U_{δ} . Остается воспользоваться Леммой 8.1 при $h(\zeta)=\overline{\partial}g(\zeta),\ K=\overline{U_d}\setminus U_{\delta}$.

Следует отметить, что при доказательстве этой части теоремы Рунге как правило пользуются интегральной формулой Коши. Однако для *аккуратного* ее применения (при построении специального контура интегрирования) требуются дополнительные топологические построения, которые в контексте нашего изложения проще обойти интегрированием по площади, т.е. с помощью формулы Помпейю.

(2). Надо показать, что $\{A(X) \subset P(X)\} \Leftrightarrow \{X = \widehat{X}\}.$

(\Rightarrow). Пусть, от противного, $A(X)\subset P(X)$, но $\mathbb{C}\setminus X$ не связно, т.е. существует ограниченная связная компонента Ω_1 в $\mathbb{C}\setminus X$, в частности $\partial\Omega_1\subset X$. Фиксируем $a_1\in\Omega_1$. Так как $f(z)=1/(z-a_1)\in A(X)\subset P(X)$, то для всякого $\varepsilon>0$ найдется полином $p_\varepsilon(z)$ с условием $|1/(z-a_1)-p_\varepsilon(z)|<\varepsilon$ при всех $z\in X$ и, в частности, при $z\in\partial\Omega_1$. Пусть $d=\mathrm{diam}(\Omega_1)$, тогда

$$|1 - p_{\varepsilon}(z)(z - a_1)| \le \varepsilon d, \quad \forall z \in \partial \Omega_1.$$

При $\varepsilon<1/d$ мы получаем противоречие с принципом максимума модуля в Ω_1 , так как функция $1-p_\varepsilon(z)(z-a_1)$ равна 1 при $z=a_1$.

 (\Leftarrow) . Пусть $\Omega=\mathbb{C}\setminus X$ — связно, $f\in A(X)$. Согласно (1), для каждого $\varepsilon>0$ найдутся $\{a_1,\cdots,a_N\}\subset\Omega$ и $\{\lambda_1,\cdots,\lambda_N\}\subset\mathbb{C}\backslash\{0\}$ такие, что

$$|f(z) - \sum_{n=1}^{N} \frac{\lambda_n}{z - a_n}| < \frac{\varepsilon}{2}, \quad z \in X.$$

Остается доказать, что $1/(z-a)|_X\in P(X)$ при всех $a\in\Omega$ (потом каждую функцию $\lambda_n/(z-a_n)$ приблизим многочленом $p_{\varepsilon_n}(z)$ с точностью $\varepsilon_n=\varepsilon/(2N)$, так что f будет приближена с точностью ε).

Пусть $G=\{a\in\Omega:1/(z-a)|_X\in P(X)\}$. Установим, что $G=\Omega$. Действительно, во-первых $G\neq\emptyset$, так как по Теореме 6.13 (Коши-Тейлора) G содержит все точки из внешности какого-либо круга, содержащего X. Во-вторых, G — замкнуто в Ω , ибо если $\{a_k\}_{k=1}^\infty\subset G$ и $a=\lim_{k\to\infty}a_k\in\Omega$, то $a\in G$, что непосредственно вытекает из равномерной сходимости $1/(z-a_k)$ к 1/(z-a) на X при $k\to\infty$. Установим, в-третьих, что G — открыто в Ω . Пусть $a\in G,\ d=\operatorname{dist}(a,X),\ a_1\in B(a,d)$. Докажем, что $a_1\in G$. Из элементарных свойств геометрических прогрессий вытекает, что для любого $\varepsilon>0$ найдется такое натуральное L, что

$$\left| \frac{1}{z - a_1} - \sum_{l=1}^{L} \frac{(a_1 - a)^{l-1}}{(z - a)^l} \right| < \varepsilon$$

для всех $z\in X$. Но $1/(z-a)\in P(X)$, откуда $1/(z-a)^l\in P(X)$ при всех натуральных l и, следовательно, $1/(z-a_1)\in P(X)$. Теперь равенство $G=\Omega$ следует из связности Ω . \square

- **8.5.** Замечание. Определим $\overline{A(X)}$ как замыкание в () пространства $A(X)|_X$. Тогда теорема Рунге в точности означает, что $\overline{A(X)} = R(X)$ для всякого компакта X, причем $\{R(X) = P(X)\} \Leftrightarrow \{X = \widehat{X}\}$.
 - **8.6.** Пусть $f \in C^1(\mathbb{C})$, причем $\operatorname{supp}(\overline{\partial} f)$ компакт. Положим

$$F(z) = \frac{1}{\pi} \int \frac{\overline{\partial} f(\zeta) dm(\zeta)}{z - \zeta} \ .$$

Доказать, что f-F – целая функция, причем $f\equiv F\Leftrightarrow \lim_{z\to\infty}f(z)=0.$

8.7. Пусть X – произвольный компакт в \mathbb{C} , а Ω_0, \cdots – его компоненты дополнения. Фиксируем a_j в каждой из Ω_j . Доказать, что для любой $f \in A(X)$ и произвольного $\varepsilon > 0$, найдется $R(\cdot)$ – рациональная функция с полюсами, принадлежащими множеству $\{a_j\}_{j\geq 0}$ такая, что $\|f-R\|_X < \varepsilon$.

Лекция №9

Формулировка теорем Мергеляна. Свойства локализационного оператора Витушкина. Теорема Брауэра.

Формулировка теорем Мергеляна и доказательство теоремы Коши

- **9.1. Теорема (Мергеляна).** Пусть X компакт в \mathbb{C} . Для выполнения равенства $C_A(X) = P(X)$ необходимо и достаточно, чтобы $\mathbb{C} \setminus X$ было связным.
- **9.2.** Следствие (теорема Лаврентьева). () = () если и только если $X = \widehat{X}$ и $X^o = \emptyset$.

Доказательство Теоремы 9.1. (\Rightarrow) Пусть $C_A(X) = P(X)$, тогда автоматически $A(X) \subset P(X)$ и по теореме Рунге $X = \widehat{X}$.

- (\Leftarrow) Пусть $X=\widehat{X}$. По теореме Рунге достаточно установить, что $C_A(X)=\overline{A(X)}$. Мы докажем следующий более сильный результат.
- **9.3. Теорема (Мергеляна).** Пусть компакт, $\Omega_0 = \mathbb{C} \setminus \widehat{X}$, Ω_1, \cdots компоненты дополнения компакта , т.е. $\mathbb{C} \setminus X = \sqcup_s \Omega_s$. Если $d = \inf_s \{ \operatorname{diam}(\Omega_s) \} > 0$, то $C_A(X) = \overline{A(X)}$.
- **9.4.** Замечание. Если $\Omega_0 = \mathbb{C} \setminus X$, т.е. $\mathbb{C} \setminus X$ связно, то индексы $s=1,\cdots$ отсутствуют и мы полагаем $d=\infty$. Доказательство Теоремы 9.3 весьма сложно. Мы приведем его в следующей лекции после соответствующей подготовки.
- 9.5. Следствие (уточненная интегральная теорема Коши). Пусть D допустимая область в $\mathbb C$ со спрямляемой границей. Тогда для любой функции $f \in C(\overline D) \cap A(D)$ выполняется равенство:

$$\int_{\partial D} f(z)dz = 0.$$

При этих же условиях справедлива интегральная формула Коши, а также формула Коши для производных.

 $\overline{\mathcal{A}}$ оказательство. Фиксируем произвольное $\varepsilon>0$ и пусть ℓ – длина ∂D . По Теореме 9.3 (для $X=\overline{D}$) найдется $g\in A(\overline{D})$ с условием $\|f-g\|_{\overline{D}}<\varepsilon/\ell$, откуда

$$\left| \int_{\partial D} (f(z) - g(z)) dz \right| < \varepsilon.$$

По Теореме 5.10 (упрощенный вариант интегральной теоремы Коши),

$$\int_{\partial D} g(z)dz = 0,$$

откуда все нужные утверждения следуют стандартным образом. $\ \sqcap$

Свойства локализационного оператора Витушкина

Напомним, что если $f \in C^1(\mathbb{C})$, то по теореме Коши-Римана множество $\operatorname{supp}(\overline{\partial} f)$ есть множество особых точек функции f (вне него f голоморфна). Пусть $\varphi \in C^1_0(\mathbb{C})$. Рассмотрим функцию

$$f_{(\varphi)}(z) = \frac{1}{\pi} \int \frac{\overline{\partial} f(\zeta)\varphi(\zeta)}{z - \zeta} dm(\zeta).$$

В последней формуле интегрирование (реально) ведется по множеству $K=\operatorname{supp}(\overline{\partial}f)\cap\operatorname{supp}(\varphi)$. По Лемме 8.1 $f_{(\varphi)}$ голоморфна вне K, т.е. ее особые точки лежат среди особых точек функции f и одновременно на supp φ . Говорят, что оператор $f\to f_{(\varphi)}$ (при фиксированном φ) локализует особенности f на $\operatorname{supp}(\varphi)$.

фиксированном φ) локализует особенности f на $\mathrm{supp}(\varphi)$. Пусть $f \in C^1_0(\mathbb{C})$. Сделаем стандартное 3δ -разбиение единицы $\{B_j,\varphi_j\}$ (см. Лемму 7.3). Положим $J=\{j:\overline{B_j}\cap\mathrm{supp}(\overline{\partial}f)\neq\emptyset\}$. Ясно, что J – конечное множество индексов, причем функция $\varphi=\sum_{j\in J}\varphi_j$ удовлетворяет условиям $\varphi\in C^1_0(\mathbb{C})$ и $\varphi(z)=1$ в неко-

торой окрестности $\operatorname{supp}(\overline{\partial} f)$.

Пусть $f_j = f_{(\varphi_j)}$. Тогда по Теореме 7.1 (Помпейю)

$$\sum_{j \in J} f_j(z) = \frac{1}{\pi} \int \frac{\overline{\partial} f(\zeta) \sum_{j \in J} \varphi_j(\zeta) dm(\zeta)}{z - \zeta} = \frac{1}{\pi} \int \frac{\overline{\partial} f(\zeta) dm(\zeta)}{z - \zeta} = f(z)$$

для всех z. Тем самым f разлагается в конечную сумму функций с "локализованными" особенностями. (Для указанной цели нельзя полагать $f_j = f \varphi_j$, так как φ_j не голоморфна в $\mathbb C$ и у таких f_j могут появиться новые особенности.)

Нашей ближайшей целью является получение аналогичного разложения для произвольной функции f класса $C_0(\mathbb{C})$.

Пусть пока $f \in C^1(\mathbb{C})$. Пользуясь формулой Помпейю, получим:

$$f_{(\varphi)}(z) = \frac{1}{\pi} \int \frac{\overline{\partial}(f(\zeta)\varphi(\zeta)) - f(\zeta)\overline{\partial}\varphi(\zeta)}{z - \zeta} dm(\zeta) =$$

$$=f(z)\varphi(z)-\frac{1}{\pi}\int\frac{f(\zeta)\overline{\partial}\varphi(\zeta)}{z-\zeta}dm(\zeta)=\frac{1}{\pi}\int\frac{f(z)-f(\zeta)}{z-\zeta}\overline{\partial}\varphi(\zeta)dm(\zeta).$$

Это уже нужная формула локализации.

9.6. Определение. Пусть $\varphi\in C^1_0(\mathbb{C})$. Локализационным оператором (оператором $A.\Gamma$. Витушкина), соответствующим функции φ , называется оператор $f\to \Upsilon_\varphi f$, где $f\in C(\mathbb{C})$ и

$$\Upsilon_{\varphi}f(z) \equiv f_{(\varphi)}(z) = \frac{1}{\pi} \int \frac{f(z) - f(\zeta)}{z - \zeta} \overline{\partial} \varphi(\zeta) dm(\zeta) =$$
$$= f(z)\varphi(z) - \frac{1}{\pi} \int \frac{f(\zeta)\overline{\partial}\varphi(\zeta)}{z - \zeta} dm(\zeta).$$

- **9.7.** Лемма (свойства $\Upsilon_{\varphi}f$). Пусть $B=B(a,r), \varphi\in C^1_0(B),$ т.е. $S:=\mathrm{supp}(\varphi)\subset B.$ При $f\in C_0(\mathbb{C})$ обозначим через $\omega(t)$ модуль непрерывности функции f на $\mathbb{C},\,t\geq 0.$ Тогда:
 - (а) $\Upsilon_{\varphi}f\equiv f_{(\varphi)}\in C(\overline{\mathbb{C}}),\, f_{(\varphi)}(\infty)=0,$ причем имеет место оценка:

$$||f_{(\varphi)}|| \le 4\omega(r)r||\overline{\partial}\varphi||$$
 (9.1)

- (б) Если f голоморфна на открытом множестве U, то $f_{(\varphi)}$ голоморфна на множестве $U\cup (\mathbb{C}\setminus S)$ (т.е. особенности $f_{(\varphi)}$ локализуются на носителе S функции φ).
 - Пусть $U_1=\{z:\varphi(z)=1\}^o$, тогда $f-f_{(\varphi)}\in A(U_1)$, т.е. $\Upsilon_\varphi f$ "вбирает"в себя все особенности функции f на U_1 .

(в) Разложим $f_{(\varphi)}$ вне $\overline{B(a,r)}$ в ряд Лорана:

$$f_{(\varphi)}(z) = \sum_{n=1}^{\infty} \frac{c_n}{(z-a)^n}.$$

Тогда справедливы оценки:

$$|c_n| \le \omega(r)r^{n+1} \|\overline{\partial}\varphi\|. \tag{9.2}$$

Доказательство. Первое и второе утверждения в (а), а также голоморфность f_{φ} вне S вытекают из Леммы 8.1(б) и локализационной формулы. Для доказательства (9.1) воспользуемся принципом максимума модуля вне B, согласно которому нам достаточно оценить $|f_{(\varphi)}(z)|$ только при $z \in \overline{B}$:

$$\begin{split} |f_{(\varphi)}(z)| & \leq \frac{1}{\pi} \int_{B} \frac{|f(z) - f(\zeta)|}{|z - \zeta|} |\overline{\partial} \varphi(\zeta)| dm(\zeta) \leq \\ & \leq \frac{1}{\pi} \omega(2r) \|\overline{\partial} \varphi\| \int_{B} \frac{1}{|z - \zeta|} dm(\zeta) \leq 4\omega(r) r \|\overline{\partial} \varphi\|. \end{split}$$

При этом мы воспользовались очевидным неравенством $\omega(2r) \leq 2\omega(r)$ и оценкой, полученной в Лемме 8.1 :

$$\int_{B} \frac{1}{|z-\zeta|} dm(\zeta) \le 2\pi r.$$

(б). Пусть f голоморфна в $B(b,\delta)\subset U$; докажем, что $f_{(\varphi)}\in A(B(b,\delta/2))$. Выберем $\psi\in C_0^1(B(b,\delta)),\ \psi(z)=1$ в $B(b,\delta/2),\$ и рассмотрим $g=f\psi,\ h=f(1-\psi),\$ так что $f_{(\varphi)}=g_{(\varphi)}+h_{(\varphi)}.$ Для функции g класса $C_0^1(\mathbb C)$ соответствующее утверждение доказано выше. А поскольку h=0 в $B(b,\delta/2),\$ то голоморфность $h_{(\varphi)}$ в $B(b,\delta/2)$ вытекает из локализационной формулы и Леммы 8.1(6). Итак, $f_{(\varphi)}\in A(U)$.

Аналогично, по Лемме 8.1(б) и ввиду $\overline{\partial}\varphi = 0$ в U_1 , имеем:

$$f(z) - f_{(\varphi)}(z) = f(z)(1 - \varphi(z)) + \frac{1}{\pi} \int_{S \setminus U_1} \frac{f(\zeta)\overline{\partial}\varphi(\zeta)}{z - \zeta} dm(\zeta) \in A(U_1).$$

(в) Найдем $c_n, n \ge 1$. Из равенств

$$\begin{split} f_{(\varphi)}(z) &= \frac{1}{\pi} \int \frac{(f(z) - f(a)) - (f(\zeta) - f(a))}{z - \zeta} \overline{\partial} \varphi(\zeta) dm(\zeta) = \\ &= (f(z) - f(a)) \varphi(z) - \frac{1}{\pi} \int_{B(a,r)} \frac{(f(\zeta) - f(a)) \overline{\partial} \varphi(\zeta)}{z - \zeta} dm(\zeta), \end{split}$$

учитывая, что $\varphi(z)=0$ вне B(a,r)=B и используя формулу для суммы геометрической прогрессии:

$$\frac{1}{z-\zeta} = \sum_{n=1}^{\infty} \frac{(\zeta - a)^{n-1}}{(z-a)^n}$$

(при |z-a| > r ряд сходится абсолютно и равномерно по ζ на \overline{B}), находим при |z-a| > r:

$$\begin{split} f_{(\varphi)}(z) &= \\ &\sum_{n=1}^{\infty} \frac{1}{(z-a)^n} \left[-\frac{1}{\pi} \int\limits_{\mathcal{D}} (f(\zeta) - f(a)) \overline{\partial} \varphi(\zeta) (\zeta - a)^{n-1} dm(\zeta) \right]. \end{split}$$

Следовательно,

$$c_n = -\frac{1}{\pi} \int_B (f(\zeta) - f(a)) \overline{\partial} \varphi(\zeta) (\zeta - a)^{n-1} dm(\zeta).$$

Теперь оценка (9.2) тривиальна:

$$|c_n| \le \frac{1}{\pi}\omega(r)\|\overline{\partial}\varphi\|r^{n-1}\pi r^2 = \omega(r)\|\overline{\partial}\varphi\|r^{n+1}.$$

Теорема Брауэра о продолжении непрерывной функции

Завершим эту лекцию доказательством следующего частного случая известной теоремы Брауэра-Титце-Урысона, необходимого для доказательства Теоремы 9.3 (Мергеляна).

9.8. Теорема (Брауэра). Если – компакт в $\mathbb C$ и $f \in C(X)$, то найдется функция $F \in C_0(\mathbb C)$ с условиями $F|_X = f, \ \|F\| \le \|f\|_X$.

 \mathcal{A} оказательство. При $k\in\mathbb{Z}$ определим $G_k=\{z: \operatorname{dist}(z,X)\in [2^{-k},2^{-k+1}]\}$ и пусть J(k) — совокупность тех индексов j в стандартном $3\delta_k$ -разбиении единицы $\{B_j^{(k)},\varphi_j^{(k)}\}$ при $\delta_k=2^{-k-4}$, для которых $B_j^{(k)}\cap G_k\neq\emptyset$. При всех k и $j\in J(k)$ положим

$$\psi_j^k(z) = \varphi_j^{(k)}(z) \left(\sum_{l \in \mathbb{Z}, \sigma \in J(l)} \varphi_\sigma^{(l)}(z) \right)^{-1}$$

— совокупность этих функций представляет собой локально-конечное разбиение единицы на $G=\mathbf{C}\setminus X$ (проверить!). Пусть a_j^k — центр $B_j^{(k)}$ и z_j^k — какая-либо конкретная точка на X, ближайшая к a_j^k . Теперь остается положить F(z)=f(z) при $z\in X$ и

$$F(z) = \sum_{k=1}^{\infty} \sum_{j \in J(k)} f(z_j^k) \psi_j^k(z)$$

при $z \in G$. Окончательную проверку оставляем читателю. \square

- **9.9.** Пусть K_1 замкнуто, а K_2 компакт в $\mathbb C$, причем $K_1\cap K_2=\emptyset$. Если $f\in C(\mathbb C)\cap A(\mathbb C\setminus (K_1\cup K_2))$, то существуют такие f_1 и f_2 класса $C(\mathbb C)$, голоморфные вне K_1 и K_2 соответственно, что $f=f_1+f_2$. Эти f_1 и f_2 определены однозначно с точностью до аддитивных постоянных.
- **9.10.** Пусть K компакт, $\mathbb{C}\setminus K$ связно, $f\in A(K)$. Тогда найдется $\{p_n\}$ последовательность полиномов таких, что для всех $k\in\mathbb{Z}_+$ выполнено $p_n^{(k)}\to f^{(k)}$ при $n\to\infty$ равномерно на K.

Лекция №10

Схема аппроксимации. Окончание доказательства теоремы Мергеляна.

Оценка приближения при касании третьего порядка

Доказательство Теоремы 9.3 (Мергеляна). Фиксируем с указанным условием и f – произвольную непрерывную на и голоморфную на X^o функцию. Продолжим f по теореме Брауэра до функции $f \in C_0(\mathbb{C})$. Пусть $\omega(t) = \omega_{\mathbb{C}}(f,t)$ – модуль непрерывности f на \mathbb{C} ($\omega(t) \to 0$ при $t \to 0+$).

Мы докажем, что найдется константа c>0 такая, что для любого $\delta>0$ существует $g\in A(X)$ с условием $\|f-g\|_X< c\omega(\delta)$. Затем останется устремить δ к 0.

Отметим, что через c, c(1), c(2), \cdots (в доказательстве сей теоремы) будут обозначаться положительные константы, которым, в принципе, можно придать конкретные числовые значения.

Фиксируем произвольное $\delta \in (0,1)$ и построим стандартное 3δ -разбиение единицы $\{B_j, \varphi_j\}$ (см. Лемму 7.3). Напомним, что $B_j = B(a_j, 3\delta), \varphi_j \in C_0^1(B_j),$

$$0 \le \varphi_j(z) \le 1, \ \|\overline{\partial}\varphi_j\| \le \frac{c(1)}{\delta}, \ \sum_{j \in \mathbb{Z}^2} \varphi_j \equiv 1.$$

При каждом j определим

$$f_{j}(z) = \Upsilon_{\varphi_{j}} f(z) = \frac{1}{\pi} \int \frac{(f(z) - f(\zeta))}{z - \zeta} \overline{\partial} \varphi_{j}(\zeta) dm(\zeta) =$$
$$= f(z) \varphi_{j}(z) - \frac{1}{\pi} \int \frac{f(\zeta) \overline{\partial} \varphi_{j}(\zeta)}{z - \zeta} dm(\zeta).$$

Пусть $J=\{j\in\mathbb{Z}^2: B_j\cap \mathrm{supp}(f)\neq\emptyset\}$. Отметим, что при $j\notin J$ все соответствующие $f_j\equiv 0$ и что число элементов в J (коротко $\sharp J$) может иметь порядок $1/\delta^2$ (не выше), что "очень велико"при малом δ .

10.1. Лемма. Каждая функция f_j обладает следующими свойствами:

- (a) $f_j \in C(\overline{\mathbb{C}}), f_j(\infty) = 0, ||f_j|| \le c(2)\omega(\delta).$
- (б) f_j голоморфна на X^o и вне $\mathrm{supp}(\varphi_j)$; в частности, если $B_j\subset X^o$, то $f_j\equiv 0.$ Наконец, $\sum\limits_{i\in J}f_j\equiv f.$
- (в) Пусть

$$f_j(z) = \sum_{n=1}^{\infty} \frac{c_n^j}{(z - a_j)^n}$$

– ряд Лорана f_j вне B_j . Тогда

$$|c_n^j| \le c(2)\omega(\delta)(3\delta)^n$$
.

Доказательство. Утверждения (а) и (в) вытекают непосредственно из Леммы 9.7 при $r=3\delta$ с учетом $\omega(3\delta)\leq 3\omega(\delta)$. Установим (б). Рассмотрим $\varphi=\sum_{j\in J}\varphi_j,\,\varphi\equiv 1$ в некоторой окрестности $\mathrm{supp}(f),\,\mathrm{t.e.}\,\,\mathrm{supp}(f)\subset U_1=(\varphi^{-1}(1))^o.$ Согласно (б) Леммы 9.7 , функция

$$f - \sum_{j \in J} f_j = f - f_{(\varphi)}$$

является целой и равной нулю в точке ∞ , т.е она – тождественный ноль. \square

Пусть $J_1 = \{j \in J: B_j \cap \partial X \neq \emptyset\}$. Если $j \notin J_1$, то либо $B_j \subset X^o$ и $f_j \equiv 0$, либо $B_j \cap X = \emptyset$ и, по Лемме $10.1(6), f_j \in A(X)$, так что такие f_j не нуждаются в приближении.

- **10.2.** Замечание. Если $m(\partial X)>0$, то $\sharp J_1$ имеет в точности порядок $1/\delta^2$, т.е. при приближении функции f с заданной точностью ε на первый взгляд мы должны бы приближать каждую f_j , $j\in J_1$, с точностью порядка $\varepsilon\delta^2$. Следующая лемма А.Г. Витушкина показывает, что достаточно приближать каждую f_j с точностью порядка ε , если дополнительно имеется "касание" третьего порядка на ∞ .
- **10.3.** Лемма (О касании третьего порядка). Пусть существует c(3)>0 такая, что для каждого $j\in J_1$ найдется функция $g_j\in A(X)\cap C(\mathbf{C})$, голоморфная вне $B_j^*=B(a_j,4\delta)$ и с оценкой $\|g_j\|\leq c(3)\omega(\delta)$. Кроме того, предположим, что

$$f_j(z)-g_j(z)=O(rac{1}{z^3})$$
 при $z o\infty$

 $(f_j$ и g_j имеют касание порядка 3 на ∞).

Тогда найдется c (выражающаяся только через c(2) из Леммы 10.1 и c(3)) с условием

$$\|\sum_{j\in J_1} (f_j - g_j)\| \le c\omega(\delta).$$

10.4. Замечание. Смысл этой леммы таков: если ее требования выполнены при всех достаточно малых δ (где c(3) не зависит от δ), то $f\in \overline{A(X)}$, поскольку она равномерно на X (с точностью $c\omega(\delta)\to 0$ при $\delta\to 0$) приближается функциями

$$g = \sum_{j \in J_1} g_j + \sum_{j \in J \setminus J_1} f_j$$

класса A(X).

Доказательство Леммы 10.3. Ниже подразумевается, что встречающиеся по мере необходимости константы c(4) - c(7) выражаются только через c(2) и c(3).

Разложим каждую g_j (здесь всюду $j \in J_1$) в ряд Лорана вне B_j^* (с центром a_j):

$$g_j(z) = \sum_{n=1}^{\infty} \frac{b_n^j}{(z - a_j)^n}.$$

Напомним, что

$$f_j(z) = \sum_{n=1}^{\infty} \frac{c_n^j}{(z - a_j)^n}.$$

Условие "касания" (порядка 3) эквивалентно тому, что

$$c_1^j = b_1^j, \quad c_2^j = b_2^j,$$

т.е. у функций f_j и g_j "уравнены"
первые два коэффициента Лорана.

Следующие оценки сразу следуют из свойств f_j и g_j :

$$||f_j - g_j|| \le c(4)\omega(\delta) \tag{10.1}$$

Теперь покажем, что при $|z-a_j| \geq 4\delta$ (т.е. вне B_j^*) справедливы неравенства:

$$|f_j(z) - g_j(z)| \le c(5)\omega(\delta) \frac{\delta^3}{|z - a_j|^3}.$$
 (10.2)

Действительно, пусть $F_j(z)=(f_j(z)-g_j(z))(z-a_j)^3$, тогда F_j голоморфна вне B_j^* , причем ∞ – устранима для F_j , ибо F_j ограничена вблизи ∞ по условиям "касания". Так как на $\overline{B_j^*}$ очевидным образом (см. (10.1)) выполнено

$$|F_i(z)| \le c(4)\omega(\delta)(4\delta)^3 = c(5)w(\delta)\delta^3,$$

то по принципу максимума модуля вне B_j^* (см. Теорему 6.3) последняя оценка верна для всех z, что дает (10.2).

 Φ иксируем z и оценим

$$|\sum_{j\in J_1} (f_j(z) - g_j(z))|.$$

Пусть $J_3=\{j\in J_1:|z-a_j|<4\delta\},$ а при $k=4,5,\cdots$ положим $J_k=\{j\in J_1:k\delta\leq |z-a_j|<(k+1)\delta\}.$

Из элементарной геометрии находим, что $\sharp J_k \leq c(6)k$ при всех $k \geq 3$. Отсюда, а также из (10.1) и (10.2) окончательно получаем:

$$|\sum_{j \in J_1} (f_j(z) - g_j(z))| \leq \sum_{j \in J_3} |f_j(z) - g_j(z)| + \sum_{k=4}^{\infty} \sum_{j \in J_k} |f_j(z) - g_j(z)| \leq \sum_{j \in J_1} |f_j(z) - g_j(z)| \leq \sum_{j \in J_1} |f_j(z) - g_j(z)| \leq \sum_{j \in J_2} |f$$

$$\leq c(7)\omega(\delta) + \sum_{k=4}^{\infty} c(6)kc(5)\omega(\delta)\frac{1}{k^3} = c\omega(\delta). \ \Box$$

Отметим, что ввиду Замечания 10.4 нам остается для всех достаточно малых $\delta \in (0,1)$ найти g_j , удовлетворяющие Лемме 10.3 .

Окончание доказательства теоремы Мергеляна

Завершим доказательство Теоремы 9.3.

10.5. Предложение. В условиях Теоремы 9.3 и Леммы 10.3 при любом $\delta < \min\{1,d/3\}$ соответствующие $g_j,\ j\in J_1,$ существуют.

Доказательство. Фиксируем δ $(0 < \delta < \min\{1, d/3\}), j \in J_1$. Тогда найдется такое s, что $B_j \cap \Omega_s \neq \emptyset$ и, следовательно, имеется жорданова ломаная $\Gamma_1: [0,1] \to \Omega_s \cap B_j^*$ с условием $\operatorname{diam}([\Gamma_1]) = \delta$. Поскольку функция $\operatorname{diam}(\Gamma_1([t_0,t]))$ непрерывна по t $(0 \le t_0 \le t \le 1)$, нетрудно показать, что существуют t_1 и t_2 $(0 \le t_1 < t_2 \le 1)$ такие, что ломаная $\Gamma = \Gamma_1|_{[t_1,t_2]}$ с началом $\Gamma(t_1) = \alpha$ и концом $\Gamma(t_2) = \beta$ удовлетворяет свойствам: $\operatorname{diam}(\Gamma) = |\beta - \alpha| = \delta$ и $\Gamma \subset \Omega_s \cap B_j^*$. В частности, Γ лежит вне X (здесь и далее мы отождествляем Γ и ее носитель).

Положим $G_1=B(\alpha,\delta)\cap B(\beta,\delta)$, так что $\Gamma\subset \overline{G_1}$; пусть I – замкнутый луч с вершиной в точке α , идущий в направлении $(\alpha-\beta)$. По Следствию 5.4, в $\mathbb{C}\setminus I$ существует голоморфная ветвь $V_1(z)$ многозначной функции $\sqrt{z-\alpha}$, а в $\mathbb{C}\setminus (I\cup\Gamma)$ –голоморфная ветвь $V_2(z)$ многозначной функции $\sqrt{z-\beta}$.

ветвь $V_2(z)$ многозначной функции $\sqrt{z-\beta}$. Определим $h_0(z)=V_1(z)V_2(z)$ в $\mathbb{C}\setminus (I\cup\Gamma)$. Так как при переходе через I функции V_1 и V_2 меняют только свой знак, то h_0 непрерывно продолжается на область $G_2=\mathbb{C}\setminus\Gamma$, а из Теоремы 6.8 (Мореры) сразу следует, что $h_0\in A(G_2)$. Меняя, при необходимости, знак у V_1 , мы дополнительно можем считать, что $h_0(z)=z+o(z)$ при $z\to\infty$. Теперь положим

$$h_1(z) = \frac{8}{\delta} \left(h_0(z) - z + \frac{\alpha + \beta}{2} \right) = \frac{8}{\delta} \frac{(z - \alpha)(z - \beta) - (z - \frac{\alpha + \beta}{2})^2}{h_0(z) + (z - \frac{\alpha + \beta}{2})} =$$

$$= \frac{8}{\delta} \frac{\alpha \beta - \frac{(\alpha + \beta)^2}{4}}{2z + o(z)} = -\frac{(\beta - \alpha)^2}{\delta(z + o(z))}.$$

Следовательно, разложение Лорана функции h_1 вне B_j^* имеет вид:

$$h_1(z) = \frac{\delta e^{i\theta}}{z - a_j} + \frac{d_2}{(z - a_j)^2} + \cdots$$

(напомним, что $|\beta - \alpha| = \delta$, т.е. указанное $\theta \in \mathbb{R}$ существует).

По принципу максимума (вне $\overline{G_1}$, и полагаем $h_1=0$ на Γ) имеем:

$$||h_1|| \le ||h_1||_{\overline{G_1}} \le \frac{8}{\delta} (\delta + \delta) \le 16,$$

откуда

$$|d_2| = \left| \frac{1}{2\pi i} \int_{|z-a_j|=4\delta} h_1(\zeta)(\zeta - a_j) d\zeta \right| \le \frac{1}{2\pi} 16 \cdot 4\delta \cdot 2\pi 4\delta = 256\delta^2.$$

Пусть $\mu=\mathrm{dist}(X,\Gamma),\,U$ — открытая $\mu/2$ -окрестность ломаной $\Gamma.$ По Теореме 9.8 продолжим h_1 из $\mathbb{C}\setminus U$ до функции $h\in C(\mathbb{C})$ c сохранением sup-нормы (вне B_j^* функция h_1 не меняется). При этом h голоморфна вне \overline{U} , т.е в окрестности X.

Наконец, ищем g_j в виде $g_j(z)=\lambda_1h(z)+\lambda_2(h(z))^2 \quad (\lambda_1,\lambda_2\in\mathbb{C}).$ Напомним, что

$$f_j(z) = \frac{c_1^j}{z - a_j} + \frac{c_2^j}{(z - a_j)^2} + \cdots,$$
$$|c_1^j| \le 3c(2)\delta\omega(\delta), \ |c_2^j| \le 9c(2)\delta^2\omega(\delta).$$

Нужные условия "касания" имеют вид:

$$c_1^j = \lambda_1 \delta e^{i\theta}, \quad c_2^j = \lambda_1 d_2 + \lambda_2 \delta^2 e^{2i\theta},$$

откуда λ_1 и λ_2 однозначно находятся, причем очевидны оценки:

$$|\lambda_1| \le c(8)\omega(\delta), \quad |\lambda_2| \le c(8)\omega(\delta).$$

Таким образом $\|g_j\| \leq c\omega(\delta)$ и теоремы Мергеляна полностью доказаны. \square

- **10.6.** Доказать теорему Гартогса-Розенталя: если m(K) = 0, то C(K) = R(K).
- **10.7.** Привести пример компакта K с условиями $K^{\circ}=\emptyset$ и $C(K)\neq R(K).$
- **10.8.** Привести пример компакта K с условиями $K^{\circ} \neq \emptyset$ связна, односвязна и плотна в K, причем $C_A(K) \neq R(K)$.
- **10.9.** Пусть $\varphi \in C_0^1(\mathbb{C})$. Доказать, что оператор Витушкина $\Upsilon_{\varphi}: f \to \Upsilon_{\varphi} f$ (действующий по стандартной формуле) непрерывен в пространствах $\operatorname{Lip}_{\tau}(\mathbb{C}) \ (\tau \in (0,1)), \ C^1(\mathbb{C}), \ L_p(\mathbb{C})$ при p > 2.
- **10.10.** Пусть K график непрерывной функции на отрезке [0, 1] с ограниченной вариацией. Тогда K аналитически устраним в классе непрерывных функций.

Лекция №11

Принцип аргумента и его следствия

Принцип аргумента и теорема Руше. Обратный принцип соответствия границ

Для произвольного компакта K в $\mathbb C$ положим $C_*(K)=\{f\in C(K)\mid f(z)\neq 0\ \forall z\in K\}.$

11.1. Определение. Пусть γ – путь в \mathbb{C} , $f \in C_*([\gamma])$. Величина $\Delta_{\gamma} \operatorname{Arg}(f) := \Delta_{f \circ \gamma} \operatorname{Arg}(z)$ называется приращением (полярного) аргумента функции f вдоль γ .

Нетрудно доказать, что если пути γ_1 и γ_2 эквивалентны и $f \in C_*[\gamma_1]$, то $\Delta_{\gamma_1} \operatorname{Arg}(f) = \Delta_{\gamma_2} \operatorname{Arg}(f)$. Таким образом, можно корректно определить выражение $\Delta_{\Gamma^+} \operatorname{Arg}(f)$ для произвольной кривой Γ^+ и $f \in C_*([\Gamma])$.

Мы доверяем читателю дать (единственно разумное) определение величины $\Delta_{\partial^+ G} \operatorname{Arg}(f)$ для произвольной жордановой области G в $\mathbb C$ и $f \in C_*(\partial G)$.

Наконец, если $D=D_1 \setminus (\cup_{s=2}^{s=S}D_s)$ – допустимая область ранга $S\geq 2$ (см. Лекцию 5) и $f\in C_*(\partial D)$, то

$$\Delta_{\partial^+ D} \operatorname{Arg}(f) = \Delta_{\partial^+ D_1} \operatorname{Arg}(f) - \sum_{s=2}^S \Delta_{\partial^+ D_s} \operatorname{Arg}(f) .$$

11.2. Лемма. Пусть D — допустимая область, $h \in C(\partial D)$, причем $\|h\|_{\partial D} < 1$. Тогда $\Delta_{\partial^+ D} \operatorname{Arg}(1+h) = 0$.

Доказательство. Из приведенных выше определений вытекает, что нам достаточно установить следующий факт: если $\gamma: [\alpha,\beta] \to \mathbb{C}$ – замкнутый путь и $h \in C([\gamma])$ удовлетворяет условию $\|h\|_{[\gamma]} < 1$, то $\Delta_{\gamma} \operatorname{Arg}(1+h) = 0$. Имеем

$$\Delta_{\gamma} \operatorname{Arg}(1+h) = \Delta_{(h \circ \gamma+1)} \operatorname{Arg}(z)$$
,

причем носитель пути $\gamma_1=h\circ\gamma+1$ есть компактное подмножество (открытой) правой полуплоскости. В качестве непрерывной ветви многозначной функции $\mathrm{Arg}(\gamma_1(t)),\,t\in[\alpha,\beta],$ (см. Теорему 1.18) можно взять функцию

$$\varphi(t) = \operatorname{arctg} \frac{\operatorname{Im}(\gamma_1(t))}{\operatorname{Re}(\gamma_1(t))}$$
.

При этом ясно, что $\varphi(\beta) - \varphi(\alpha) = 0$. \square

11.3. Теорема (принцип аргумента). Пусть D – допустимая область в \mathbb{C} , а функция f голоморфна в D, за исключением полюсов $\{b_1, \cdots, b_M\}$, и непрерывна на $\overline{D} \setminus \{b_1, \cdots, b_M\}$. Если f не обращается в 0 на ∂D , то

$$N_D(f) - P_D(f) = \frac{1}{2\pi} \Delta_{\partial^+ D} \operatorname{Arg}(f).$$
 (11.1)

Здесь $N_D(f)$ и $P_D(f)$ — общее число нулей (с учетом кратностей) и общее число полюсов (с учетом порядков) функции f в D соответственно.

Доказательство. Следующие утверждения непосредственно выводятся из соответствующих определений и Теоремы 4.3:

(a) Если f_1 и f_2 принадлежат $C_*(\partial D)$, то

$$\Delta_{\partial^+ D} \operatorname{Arg}(f_1 f_2) = \Delta_{\partial^+ D} \operatorname{Arg}(f_1) + \Delta_{\partial^+ D} \operatorname{Arg}(f_2),$$

И

$$\Delta_{\partial^+ D} \operatorname{Arg}(f_1/f_2) = \Delta_{\partial^+ D} \operatorname{Arg}(f_1) - \Delta_{\partial^+ D} \operatorname{Arg}(f_2).$$

(б)

$$\Delta_{\partial^+ D} \operatorname{Arg}(z-b) \Big|_{b \in D} = 2\pi, \quad \Delta_{\partial^+ D} \operatorname{Arg}(z-b) \Big|_{b \notin \overline{D}} = 0.$$

Отсюда получаем, что (11.1) имеет место для любой рациональной функции f, не имеющей нулей и полюсов на ∂D . Более того, если (11.1) верно для f_1 и f_2 , то оно верно и для f_1f_2 и f_1/f_2 .

Пусть $\{a_1,\cdots,a_N\}$ – нули f в D $(a_n$ имеет порядок k_n). Определим $P(z)=(z-a_1)^{k_1}\cdots(z-a_N)^{k_N}$, $Q(z)=(z-b_1)^{p_1}\cdots(z-b_M)^{p_M}$, где p_m – порядок полюса b_m у исходной функции $f,\ m=1,\cdots,M$ (так что $N_D(f)=k_1+\cdots+k_N$, $P_D(f)=p_1+\cdots+p_M$). Положим F=fQ/P. В точках $\{a_n\}$ и $\{b_m\}$ особенности устранимы, так что $F\in A(D)\cap C(\overline{D})$. Таким образом, достаточно установить (11.1) для F вместо f (f=FP/Q), а для P и Q утверждение доказано).

Поскольку $\varepsilon:=\min\{|F(z)|:z\in\overline{D}\}>0$, то по Теореме 9.3 (Мергеляна) и Теореме 7.7 (Рунге) существуют многочлены P_ε и Q_ε ($Q_\varepsilon\neq 0$ в \overline{D}) такие, что

$$||F - \frac{P_{\varepsilon}}{Q_{\varepsilon}}||_{\overline{D}} < \varepsilon .$$

Так как, очевидно, P_{ε} также не обращается в 0 на \overline{D} , то справедливо

$$N_D(F) = N_D(P_{\varepsilon}/Q_{\varepsilon}) = P_D(F) = P_D(P_{\varepsilon}/Q_{\varepsilon}) = 0$$
.

Для $P_{\varepsilon}/Q_{\varepsilon}$ равенство (11.1), по доказанному, верно. Остается учесть, что

$$0 = \triangle_{\partial^+ D} \operatorname{Arg}(\frac{P_{\varepsilon}}{Q_{\varepsilon}}) = \triangle_{\partial^+ D} \operatorname{Arg}(\frac{P_{\varepsilon}}{Q_{\varepsilon}} - F + F) =$$

$$\triangle_{\partial^+ D} \operatorname{Arg}(F) + \triangle_{\partial^+ D} \operatorname{Arg}\left(1 + \frac{\frac{P_{\varepsilon}}{Q_{\varepsilon}} - F}{F}\right) = \triangle_{\partial^+ D} \operatorname{Arg}(F),$$

поскольку из неравенства

$$\left| \frac{\frac{P_{\varepsilon}}{Q_{\varepsilon}} - F}{F} \right| < 1$$

на ∂D по Лемме 11.2 получаем, что

$$\triangle_{\partial^+ D} \operatorname{Arg} \left(1 + \frac{\frac{P_{\varepsilon}}{Q_{\varepsilon}} - F}{F} \right) = 0 . \square$$

11.4. Теорема (Руше). Пусть D — допустимая область в \mathbb{C} . Пусть $f,g\in A(D)\cap C(\overline{D})$, причем |g(z)|<|f(z)| всюду на ∂D . Тогда $N_D(f)=N_D(f+g)$.

Доказательство. По предыдущей теореме и по Лемме 11.2 (при h=g/f) получаем:

$$N_D(f+g) = \frac{1}{2\pi} \Delta_{\partial^+ D} \operatorname{Arg}(f+g) = \frac{1}{2\pi} \Delta_{\partial^+ D} \operatorname{Arg}(f) +$$

$$\frac{1}{2\pi}\Delta_{\partial^+ D}\operatorname{Arg}(1+g/f) = \frac{1}{2\pi}\Delta_{\partial^+ D}\operatorname{Arg}(f) = N_D(f) . \square$$

В качестве приложения докажем следующий важный факт.

11.5. Теорема (принцип сохранения области). Если D – область в $\mathbb C$ и $f \in A(D)$ не постоянна, то $\Omega := f(D)$ – область.

Доказательство. Связность Ω очевидна. Докажем открытость. Фиксируем $w_0 \in \Omega$ и $z_0 \in D$, $f(z_0) = w_0$. Функция $f_1(z) = f(z) - w_0$ не постоянна, следовательно z_0 — ее изолированный ноль. Найдется $\delta > 0$ со свойствами $\overline{B(z_0, \delta)} \subset D$ и $f_1(z) \neq 0$ на $\Gamma := \partial B(z_0, \delta)$, так что $\varepsilon := \min_{z \in \Gamma} |f_1(z)| > 0$. Утверждаем, что $B(w_0, \varepsilon) \subset \Omega$. Действительно, пусть $|w - w_0| < \varepsilon$. По теореме Руше в области $B_\delta := B(z_0, \delta)$ для функций f_1 и $g_1 \equiv w_0 - w$ (на Γ имеем $|g_1(z)| < |f_1(z)|$) находим :

$$N_{f-w}(B_{\delta}) = N_{f_1+g_1}(B_{\delta}) = N_{f_1}(B_{\delta}) \ge 1$$
. \Box

11.6. Следствие. Пусть D – область в $\overline{\mathbb{C}}$ и f конформна в D. Тогда $\Omega = f(D)$ – область, а f – гомеоморфизм D и Ω .

Доказательство. Пусть D и Ω лежат в \mathbb{C} . Из предыдущей теоремы следует открытость Ω , а также тот факт, что при отображении f^{-1} прообраз всякого открытого множества — открыт. Связность Ω очевидна. Остальные случаи легко сводятся к рассмотренному с помощью Определения 2.28. \square

Мы также получаем наиболее общий вариант следующей теоремы.

11.7. Теорема (обратный принцип соответствия границ). Пусть D – жорданова область в $\mathbb C$ с (положительно ориентированной) границей $\Gamma^+, f \in A(D) \cap C(\overline D)$, причем f – взаимнооднозначна на ∂D . Тогда $\Sigma^+ = f(\Gamma^+)$ – жорданова (замкнутая) кривая, ориентированная положительно относительно ограниченной ею области Ω , а f – конформно отображает D на Ω .

Доказательство. Носители Γ^+ и Σ^+ обозначим через Γ и Σ соответственно. Жордановость Σ^+ очевидна, так что по теореме Жордана она "ограничивает"некоторую область Ω (в \mathbb{C}_w). Пусть $b \in \mathbb{C} \setminus \Sigma$. По принципу аргумента (ввиду $f - b \neq 0$ на Γ) имеем:

$$N_D(f-b) = \frac{1}{2\pi} \Delta_{\Gamma^+} \operatorname{Arg}(f-b) = \frac{1}{2\pi} \Delta_{\Sigma^+} \operatorname{Arg}(w-b) = 1$$

при $b\in\Omega$ (поскольку $N_D(f-b)\geq 0$, то случай значения -1 в последнем равенстве исключается). Аналогично, $N_D(f-b)=0$ при $b\notin\overline{\Omega}$. \square

Однолистные функции и их сходящиеся последовательности

Нашей целью является доказательство теоремы Римана и теоремы Каратеодори (частного случая). Для этого нам потребуется значительная предварительная подготовка.

11.8. Определение. Пусть $f \in A(a), a \in \mathbb{C}$. Функция f называется *однолистной* в точке a, если существует $\delta > 0$ такое, что f взаимно-однозначна в $B(a,\delta)$.

Пусть D – область в \mathbb{C} .

- **11.9.** Определение. Функция $f \in A(D)$ локально однолистна в D, если f однолистна в каждой точке области D.
- **11.10.** Определение. Функция $f \in A(D)$ однолистна в области D, если она взаимно-однозначна в D. (Всюду ниже термин "однолистность функции в области" подразумевает ее голоморфность в той же области).

11.11. Теорема (критерии однолистности).

- (1) $f \in A(a)$ однолистна в точке a, если и только если $f'(a) \neq 0$;
- (2) f локально однолистна в области D, если и только если $f \in A(D)$ и $f'(z) \neq 0$ при всех $z \in D$;
- (3) f однолистна в области D, если и только если f конформна в D и не обращается в ∞ .

Доказательство. Достаточно доказать (1) и воспользоваться критерием конформности (Теорема 2.26). Итак, пусть $a \in \mathbb{C}, f \in A(a)$ и $f'(a) \neq 0$. Положим f(z) - f(a) = f'(a)(z-a) + h(z)(z-a), где h голоморфна там же, где и f (возможная особенность у h в точке a устранима), причем h(a) = 0. Следовательно, найдется $\delta_1 > 0$ такое, что f и h голоморфны g замыкании области $G_1 := B(a, \delta_1)$, причем $\|h\|_{\overline{G_1}} < |f'(a)|/2$. Выберем $\delta_2 \in (0, \delta_1)$ так, что $|f(z) - f(a)| < |f'(a)|\delta_1/2$ при $z \in G_2 := B(a, \delta_2)$. Докажем однолистность f в G_2 , используя теорему Руше g области G_1 . Фиксируем g собласти g

$$|g_1(z)| \le |f'(a)|\delta_1/2 + |f'(a)|\delta_1/2 < |f_1(z)|$$
.

По теореме Руше функция f(z)-f(b) имеет в G_1 столько же нулей, сколько f_1 , т.е. один ноль z=b.

Обратно, пусть f'(a)=0. Докажем неоднолистность f в . Пусть $f(z)\not\equiv f(a)$ в окрестности точки a (иначе все тривиально), тогда найдутся $n\ge 2$ ($n\in\mathbb{Z}$) и $g\in A(a)$ такие, что $f(z)-f(a)=(z-a)^ng(z)$, причем $g(a)\not=0$. Выберем голоморфную ветвь V(w) многозначной функции $\sqrt[n]{w}$ в B(g(a),|g(a)|) и определим $h(z)=V(g(z))\in A(a)$. Тогда $f(z)-f(a)=((z-a)h(z))^n$ есть композиция однолистной в точке a функции $w_1(z)=(z-a)h(z)$ и функции $w_2(w_1)=w_1^n$, "склеивающей" точки в любой окрестности точки $w_1=0$. \square

- **11.12.** Определение. Пусть $f \in A(a)$, $a \in \mathbb{C}$. Говорят, что f локально обратима в точке , если существуют окрестность G точки , окрестность Ω точки f(a) и функция $g \in A(\Omega)$ такие, что g(f(z)) = z для всех $z \in G$.
- **11.13. Теорема.** Функция $f \in A(a)$ локально обратима в точке $a \in \mathbb{C}$ если и только если $f'(a) \neq 0$.

Доказательство. Если f'(a)=0, то локальной обратимости в точке a нет (см. конец доказательства предыдущей теоремы). Пусть теперь $f'(a)\neq 0$, тогда по Теореме 11.11 существует (круговая) окрестность G точки a, где f однолистна (и голоморфна). По Теореме 11.5 (принцип сохранения области) функция f гомеоморфно отображает G на область $\Omega=f(G)$ (прообраз всякого открытого множества при отображении $\varphi=f^{-1}|_{\Omega}$ открыт). По Теореме 2.18 (об обратной функции), $\varphi\in A(\Omega)$. \square

11.14. Теорема (Гурвица). Пусть D – область в $\mathbb C$ и последовательность $\{f_n\}_{n=1}^\infty\subset A(D)$ равномерно сходится к f внутри D при $n\to\infty$. Если f не постоянна в D и f(a)=0 в некоторой точке $a\in D$, то для любого $\delta>0$ найдется $N\ge 1$ такое, что при всех n>N у функции f_n есть хотя бы один ноль в $B(a,\delta)$.

Доказательство. Поскольку $f(z)\not\equiv 0$ в D, то по Теореме 6.14 (единственности) найдется $\delta_1\in (0,\min\{\delta,\mathrm{dist}(a,\partial D)\})$ такое, что при $G:=B(a,\delta_1)$ имеем:

$$\min_{z \in \partial G} |f(z)| = \mu > 0.$$

Из равномерной сходимости $\{f_n\}$ к f на ∂G найдется натуральное N такое, что для всех n>N имеет место $|f_n(z)-f(z)|<\mu$ при $z\in\partial G$. По теореме Руше в G, примененной к функциям f

и $g=f_n-f$ находим, что функция $f_n=f+g$ имеет в G хотя бы один ноль. \square

11.15. Теорема (о сходящейся последовательности однолистных функций). Пусть D – область в \mathbb{C} , $\{f_n\}_{n=1}^{\infty}$ – последовательность (голоморфных) функций, однолистных в D. Если $\{f_n\}$ равномерно сходится к f внутри D при $n \to \infty$, то f либо однолистна в D, либо постоянна.

Доказательство. По Теореме 6.12 (Вейерштрасса) $f \in A(D)$. Пусть, от противного, $f \neq const$, но f не однолистна, т.е. найдутся $z_1 \neq z_2$ в D с условием $f(z_1) = f(z_2)$. Рассмотрим последовательность функций $g_n = f_n - f_n(z_1)$, равномерно внутри D сходящуюся к функции $g = f - f(z_1)$ при $n \to \infty$. Так как $g(z_2) = 0$, то по предыдущей теореме (при $\delta = |z_1 - z_2|$) для всех достаточно больших n найдутся точки $z_n \in D \cap B(z_2, \delta)$ (т.е. $z_n \neq z_1$) с условием $g_n(z_n) = 0$. Равенство $f_n(z_n) = f_n(z_1)$ противоречит однолистности f_n в D. \square

- **11.16.** Найти число корней многочлена $p(z)=z^3+2z^2+3z+8$: (a) в левой полуплоскости; (b) в верхней полуплоскости; (c) в полукруге $\{|z|<4, \operatorname{Im}(z)>0\}$.
- **11.17.** Доказать, что уравнение $\sin(z)=z$ имеет в $\mathbb C$ бесконечно много решений.
- **11.18.** Доказать, что функция ze^{-z} однолистна в круге $\{|z|<1\}$ и ни в каком большем круге с центром в нуле.
- **11.19.** Исследовать на устойчивость нулевое решение дифференциального уравнения y'''+py''+qy'+12y=0 при различных значениях параметров p>0 и q>0.
- **11.20.** Доказать, что уравнение $\operatorname{tg}(z)=z$ имеет только вещественные корни.
- **11.21.** Доказать, что всякое голоморфное отображение замкнутого круга в себя имеет неподвижную точку.
- **11.22.** Останется ли верным обратный принцип соответствия границ, если соответствующие области жордановы в $\overline{\mathbb{C}}$, а функция непрерывна в топологии $\overline{\mathbb{C}}$?

Лекция №12

Принцип симметрии. Теорема Римана.

Принцип симметрии Римана-Шварца

12.1. Определение. Пусть $E \subset \overline{\mathbb{C}}$, $f_0 : E \to \mathbb{C}$, $D \subset \overline{\mathbb{C}}$ – область, содержащая E. Если существует $f \in A(D)$ с условием $f|_E = f_0$, то f называется аналитическим (голомофным) продолжением f_0 с на D.

Задача аналитического продолжения состоит в отыскании условий на , f_0 и D, необходимых и достаточных для существования f. Требуется также указать процедуру нахождения f.

12.2. Пример. Пусть $E=\mathbb{R},\ f_0(x)=e^x,\ \cos x,\ \sin x.$ Тогда можно взять $D=\mathbb{C},\ f(z)=e^z,\ \cos z,\ \sin z$ соответственно.

Непосредственным следствием теоремы единственности является

12.3. Принцип аналитического продолжения. Если имеет предельную точку в D, то у f_0 может существовать не более одного аналитического продолжения f в D.

Следующая теорема весьма важна в приложениях. Встречающиеся в литературе "укороченные" формулировки на деле приводят к неточностям или даже ошибкам.

12.4. Теорема (принцип симметрии Римана-Шварца). Пусть D_1 и Ω_1 — области в $\overline{\mathbb{C}}$, границы которых содержат дуги γ_1 и Γ_1 обобщенных окружностей γ и Γ соответственно (γ_1 и Γ_1 — непусты, открыты и связны в γ и Γ соответственно). Предполагается, что D_1 и Ω_1 расположены по одну сторону от γ и Γ соответственно. Пусть D_1^* и Ω_1^* — области, симметричные D_1 и Ω_1 относительно γ и Γ соответственно, причем $D = D_1 \cup \gamma_1 \cup D_1^*$ и $\Omega = \Omega_1 \cup \Gamma_1 \cup \Omega_1^*$ — являются областями. Если $f_1: D_1 \to \Omega_1$ — конформный изоморфизм, причем f_1 определена и непрерывна на $D_1 \cup \gamma_1$ и f_1 гомеоморфио отображает γ_1 на Γ_1 , то f_1 единственным образом продолжается до конформного изоморфизма D на Ω . При этом симметричные относительно γ точки переходят в точки, симметричные относительно Γ (в частности, $f(D_1^*) = \Omega_1^*$).

Доказательство. Разберем случай, когда $\gamma_1 \neq \gamma$ (и, следовательно, $\Gamma_1 \neq \Gamma$). При этом мы предполагаем, что γ и Γ – замкнутые кривые в $\overline{\mathbb{C}}$. Оставшийся случай $\gamma_1 = \gamma$ доверяем читателю.

Существует дробно-линейное отображение φ с условиями $\varphi(\gamma_1)=:\tilde{\gamma}_1\subset\mathbb{R}$ и $\varphi(D_1)=:\tilde{D}_1\subset\Pi_+$ (полагаем $\varphi(D)=\tilde{D}$). Аналогично, существует дробно-линейное отображение ψ с условиями: $\psi(\Gamma_1)=:\tilde{\Gamma}_1\subset\mathbb{R}$ и $\psi(\Omega_1)=:\tilde{\Omega}_1\subset\Pi_+$ (полагаем $\psi(\Omega)=:\tilde{\Omega}$).

Определим $\tilde{f}_1 = \psi \circ f_1 \circ \varphi^{-1} : \tilde{D}_1 \to \tilde{\Omega}_1$. Если мы найдем соответствующее продолжение $\tilde{f}: \tilde{D} \to \tilde{\Omega}$ для \tilde{f}_1 , то искомое f равно $\psi^{-1} \circ \tilde{f} \circ \varphi$. Итак, задача сведена к случаю $\gamma = \Gamma = \mathbb{R}$, который мы и будем рассматривать, отождествляя обозначения с "тильдой"и без. Положим $f(z) = f_1(z)$ при $z \in D_1 \cup \gamma_1$ и $f(z) = \overline{f_1(\overline{z})}$ при $z \in D_1^*$. Используя разложения f_1 в ряды Тейлора в кругах из D_1 , легко показать, что $f \in A(D_1^*)$. Кроме того, f непрерывна в D. Из Теоремы 6.8 (Мореры) получаем, что $f \in A(D)$. Конформность f в D вытекает из ее однолистности. \square

12.5. Теорема (принцип симметрии для мероморфных функций). Пусть $\gamma, \gamma_1, D_1, D_1^*, D$ — такие же, как и в предыдущей теореме. Пусть f_1 мероморфна в D_1 (т.е. f_1 голоморфна в D_1 , за исключением дискретного множества полюсов). Пусть $f \in C(D_1 \cup \gamma_1)$ (в смысле топологии $\overline{\mathbb{C}}$ в прообразе и образе). Пусть Γ — обобщенная окружность и $f(\gamma_1) \subset \Gamma$. Тогда f_1 продолжается единственным образом до мероморфной функции в D, при этом симметричные относительно γ точки переходят в точки, симметричные относительно Γ .

Доказательство. Аналогично предыдущему.

Пространства функций и функционалы

Пусть D – область в $\mathbb{C},$ $\{f\}$ – некоторое семейство функций из D в $\mathbb{C}.$

- **12.6.** Определение. Семейство $\{f\}$ называется равномерно ограниченным внутри D, если для любого компакта $K \subset D$ найдется $M \in (0, +\infty)$ такое, что $\|f\|_K \leq M$ для всех $f \in \{f\}$.
- **12.7.** Определение. Семейство $\{f\}$ называется равностепенно непрерывным внутри D, если для любого компакта $K \subset D$ и любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любых $z_1, z_2 \in K$ из условий $|z_1 z_2| < \delta$ и $f \in \{f\}$ следует, что $|f(z_1) f(z_2)| < \varepsilon$.

12.8. Теорема. Пусть D — область в \mathbb{C} , $\{f\} \subset A(D)$. Если $\{f\}$ равномерно ограничено внутри D, то оно равностепенно непрерывно внутри D.

 \mathcal{A} оказательство. Фиксируем произвольный компакт K в D и положим

$$d = \min\{\operatorname{dist}(K, \partial D), 1\}, \ d > 0.$$

При $\rho\in(0,d)$ определим множество $K_{\rho}=\overline{\bigcup_{z\in K}B(z,\rho)}$ (называемое ρ -раздутием K). Ясно, что K_{ρ} – компакт в D. Из условия равномерной ограниченности $\{f\}$ внутри D следует, что найдется $M\in(0,+\infty)$ такое, что $\|f\|_{K_{d/2}}\leq M$ для всех $f\in\{f\}$. Оценим |f'(z)| при $z\in K_{d/4}$. Для таких z имеем $\overline{B(z,d/4)}\subset K_{d/2}$, так что можно воспользоваться формулой Коши для производной f'(z), $z\in K_{d/4}$:

$$|f'(z)| = \left| \frac{1}{2\pi i} \int_{\partial B(z,d/4)} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta \right| \le \frac{1}{2\pi} M \frac{2\pi d/4}{(d/4)^2} = \frac{4M}{d},$$

таким образом, семейство $\{f'\}$ *также* равномерно ограничено внутри D. Фиксируем произвольное $\varepsilon>0$ и положим $\delta=\min\{d/4\,,\,\varepsilon d/(4M)\}$. Для любых z_1 и z_2 из K с условием $|z_1-z_2|<\delta$ выполняется $[z_1,z_2]\subset K_{d/4}$, откуда по формуле Ньютона – Лейбница получаем:

$$|f(z_1) - f(z_2)| = |\int_{[z_1, z_2]} f'(z)dz| < 4M\delta/d \le \varepsilon . \square$$

- **12.9.** Определение. Семейство $\{f\}$ называется $npe\partial \kappa omna\kappa m + b + b + b + c$ (в топологии равномерной сходимости внутри D), если для любой последовательности $\{f_n\}_{n=1}^{\infty} \subset \{f\}$ (т.е. каждая $f_n \in \{f\}$) существует $nodnocnedo amenahocmo \{f_{n_k}\}_{k=1}^{\infty}$ в $\{f_n\}_{n=1}^{\infty}$, которая равномерно сходится внутри D (не обязательно к элементу из $\{f\}$).
- **12.10.** Определение. Если в предыдущем определении *любая* последовательность $\{f_n\}$ из $\{f\}$ имеет подпоследовательность $\{f_{n_k}\}$ равномерно внутри D сходящуюся κ элементу из $\{f\}$, то семейство $\{f\}$ называется κ омпактным внутри D.
- **12.11. Теорема (Монтеля).** Если $\{f\} \subset A(D)$ равномерно ограничено внутри D, то оно предкомпактно внутри D.

Доказательство. Пусть $\{f\}\subset A(D)$ равномерно ограничено внутри D. Занумеруем последовательностью $\{z_m\}_{m=1}^{\infty}$ все точки из D, имеющие (обе) рациональные координаты. Фиксируем произвольную последовательность $\{f_n\}_{n=1}^{\infty}$ из $\{f\}$. Каждая точка z_{m} – компакт, поэтому последовательность $\{f_{n}(z_{1})\}$ равномерно ограничена и, следовательно, у нее найдется сходящаяся подпо*следовательность* $\{f_{n_k^1}(z_1)\}$. Аналогично, в точке z_2 , из последовательности $\{f_{n_h^1}(z_2)\}$ выделяем сходящуюся подпоследовательность $\{f_{n_{L}^{2}}(z_{2})\}$ и так далее. Соответствующая диагональная последовательность $\{f_{n_k^k}\}$ удовлетворяет условию, что $\{f_{n_k^k}(z_m)\}$ сходится к конечному пределу для любого номера m. Не нарушая общности, мы будем считать, что $\{f_{n_k^k}\}=\{f_n\}$. Пусть K – произвольный компакт в D. Надо доказать, что $\{f_n\}$ сходится равномерно на K. Пусть $\varepsilon > 0$ – произвольно и $d = \min\{\operatorname{dist}(K, \partial D), 1\}$. На $K_{d/2}$ семейство $\{f_n\}$ равностепенно непрерывно (см. Теорему 12.8), поэтому найдется $\delta \in (0,d/2)$ такое, что для всех zи z' из $K_{d/2}$ с условием $|z-z'|<\delta$ и для всех n выполняется $|f_n(z) - f_n(z')| < \varepsilon/3$. Выберем конечную δ -сеть $\{z_{m(s)}\}_{s \in S}$ (из точек последовательности $\{z_m\}_{m=1}^\infty$) для компакта . Поскольку S конечно, найдется номер N такой, что при всех n(1)>N, n(2)>N и $s \in S$ выполняется оценка $|f_{n(1)}(z_{m(s)}) - f_{n(2)}(z_{m(s)})| < \varepsilon/3$. Докажем, что для любых $z \in K$ и n(1) > N, n(2) > N имеет место $|f_{n(1)}(z) - f_{n(2)}(z)| < \varepsilon$, откуда по критерию Коши получим, что $\{f_n\}$ равномерно сходится на . Фиксируем $z \in K$, тогда по определению δ -сети найдется $z_{m(s)}, s \in S$, с условием $|z-z_{m(s)}|<\delta$. Суммируя вышесказанное, получаем:

$$|f_{n(1)}(z) - f_{n(2)}(z)| \le |f_{n(1)}(z) - f_{n(1)}(z_{m(s)})| + |f_{n(1)}(z_{m(s)}) - f_{n(2)}(z_{m(s)})| + |f_{n(2)}(z_{m(s)}) - f_{n(2)}(z)| < 3\frac{\varepsilon}{3} = \varepsilon . \square$$

- **12.12.** Определение. Пусть $\{f\}$ семейство функций в области $D \subset \mathbb{C}, J : \{f\} \to \mathbb{C}$ функционал. Функционал J называется непрерывным на $\{f\}$ (в топологии равномерной сходимости внутри D), если для любых $f_0 \in \{f\}$ и $\{f_n\} \subset \{f\}$ из условий $f_n \to f_0$ равномерно внутри D при $n \to \infty$ следует, что $\lim_{n \to \infty} J(f_n) = J(f_0)$.
- **12.13. Предложение.** Если $\{f\}$ компактно внутри D и J непрерывный функционал на $\{f\}$, то J равномерно ограничен на $\{f\}$ и достигает своего максимума модуля.

Доказательство. Пусть $S = \sup_{f \in \{f\}} |J(f)|$. Тогда существует

последовательность $\{f_n\}\subset\{f\}$ такая, что $|J(f_n)|\to S$ при $n\to\infty$. Из компактности $\{f\}$ найдется подпоследовательность $\{f_{n_k}\}$ в $\{f_n\}$, равномерно внутри D сходящаяся к некоторой $f_0 \in \{f\}$. Из непрерывности J получаем $|J(f_0)|=|\lim_{k\to\infty}J(f_{n_k})|=S.$ \square

Доказательство теоремы Римана

12.14. Теорема (Римана). Пусть $D - o\partial носвязная$ область в \mathbb{C} , отличная от \mathbb{C} . Тогда D конформно эквивалентна единичному кругу $B_1 = B(0,1)$. Более того, для любых $a \in D$ и th $\in (-\pi, \pi]$ существует и единственный конформный изоморфизм f из D на B_1 с условиями f(a) = 0, $\arg(f'(a)) = \text{th}$.

Доказательство. Умножением на $e^{\pm i\,\mathrm{th}}$ теорема сводится к случаю th = 0, который и рассматривается в дальнейшем.

Пусть S – семейство всех однолистных функций $g:D \to B_1$ с условием g(a)=0. Докажем, что $S\neq\emptyset$. Фиксируем $\alpha\neq\beta$ в $\mathbb{C} \setminus D$. Из Следствия 5.4 вытекает, что в D существуют голоморфные ветви $V_1(z)$ и $V_2(z)$ многозначных функций $\sqrt{z-\alpha}$ и $\sqrt{z-\beta}$ соответственно. Пусть $g_1(z) = V_1(z)/V_2(z)$, $g_2 = -g_1$.

Докажем, что g_1 и g_2 однолистны в D. Если $g_1(z)=g_1(z')$, то, возводя в квадрат последнее равенство, получим: $(z-\alpha)/(z-\beta) =$ $(z'-\alpha)/(z'-\beta)$, откуда z=z' из биективности ДЛО.

Теперь докажем, что $g_1(D)\cap g_2(D)=\emptyset$. Если $g_1(z)=g_2(z'),$ z и z' из D, то $(z-\alpha)/(z-\beta)=(z'-\alpha)/(z'-\beta)$ и снова z=z'.Но $g_1(z) = -g_2(z) \neq 0$, противоречие.

Так как $g_2(D)$ – область, то найдется $B(w_0,r)\subset g_2(D),\ r\in$ $(0,\infty)$. Следовательно

$$g_0(z) = \frac{1}{2} \left(\frac{r}{g_1(z) - w_0} - \frac{r}{g_1(a) - w_0} \right) \in S$$

 (g_0) однолистна как композиция g_1 и ДЛО, причем $|r/(g_1(z))|$

 $|w_0| \le 1$ для всех $z \in D$), т.е. $S \ne \emptyset$. Введем $S_0 = \{f \in S \mid f'(a) \ge |g_0'(a)|\}$. Ясно, что при некотором th $\in (-\pi,\pi]$ имеем $e^{i\operatorname{th}}g_0 \in S_0 \ne \emptyset$.

12.15. Лемма. Семейство S_0 компактно внутри D.

Доказательство. Пусть $\{f_n\}$ – произвольная последовательность в S_0 . Поскольку S_0 равномерно ограничено, оно предкомпактно (внутри D), поэтому найдется подпоследовательность $\{f_{n_k}\}$ в $\{f_n\}$, равномерно сходящаяся к некоторой f_* внутри D. По Теореме 6.12 (Вейерштрасса) $f_* \in A(D)$, причем

$$f'_*(a) = \lim_{k \to \infty} f'_{n_k}(a) \ge |g'_0(a)| \ne 0$$
,

так что f_* не постоянна. По Теореме 11.15 f_* однолистна в D. Очевидно, что $|f_*(z)| \le 1$ $(z \in D)$, причем по принципу максимума на самом деле $|f_*(z)| < 1$ $(z \in D)$ и значит $f_* \in S_0$. \square

Определим функционал J на S_0 , полагая J(f)=f'(a). По Теореме 6.12 (Вейерштрасса) J непрерывен на S_0 , а из компактности S_0 получаем, что найдется $f_0 \in S_0$, для которой $J(f_0)=\max_{f\in S_0}J(f)$. Утверждается, что f_0 - искомое отображение. Для этого достаточно показать, что $f_0(D)=B_1$. Допустим противное: найдется $b\in B_1\setminus f_0(D),\ b\neq 0$. Рассмотрим ДЛО $\Lambda(w)=(w-b)/(1-\bar{b}w)$, конформно отображающее B_1 на B_1 . Функция $\Lambda(f_0(z))$ конформно отображает D на некоторую область $\Omega\subset B_1$ (см. Теорему 11.5), причем Ω – односвязна. Последний факт вытекает из Определения 4.14 односвязной области в $\mathbb C$ и Теоремы 11.7 (или, чуть сложнее, из Следствия 11.6). Наконец, $0\notin\Omega$. Согласно Следствию 5.4, найдется голоморфная (и, очевидно, однолистная) в Ω ветвь $V(\zeta)$ многозначной функции $\sqrt{\zeta}$. Определим $h_1(z)=V(\Lambda(f_0(z)))$ – однолистную в D, причем (см. Следствие 5.4) $h_1(D)\subset B_1$, $h_1(a)=V(-b)$, $(|h_1(a)|=\sqrt{|b|})$,

$$h'_1(a) = \frac{f'_0(a)(1-|b|^2)}{2V(-b)}$$
.

Наконец, положим

$$h_2(z) = \frac{h_1(z) - h_1(a)}{1 - \overline{h_1(a)}h_1(z)}$$
.

Функция h_2 однолистна, как композиция однолистной функции h_1 и ДЛО, причем последнее (как и ранее) отображает B_1 на B_1 . Таким образом $h_2:D\to B_1$ и $h_2(a)=0$. Имеем:

$$h_2'(a) = \lim_{z \to a} \frac{h_2(z) - h_2(a)}{z - a} = \frac{h_1'(a)}{1 - |h_1(a)|^2}$$

откуда

$$|h_2'(a)| = \frac{|f_0'(a)|(1-|b|^2)}{2\sqrt{|b|}(1-|b|)} = \frac{|f_0'(a)|(1+|b|)}{2\sqrt{|b|}} > |f_0'(a)|.$$

В результате,

$$h = h_2 \frac{|h'_2(a)|}{h'_2(a)} \in S_0 , |h'(a)| > |f'_0(a)|$$

- противоречие с определением S_0 и f_0 . \square
- **12.16.** Упражнение. Доказать, что для любых односвязных областей D_1 и D_2 в $\mathbb C$, отличных от $\mathbb C$, для любых $a_1 \in D_1$, $a_2 \in D_2$ и th $\in (-\pi,\pi]$ существует и единственный конформный изоморфизм $f:D_1$ на D_2 с условиями $f(a_1)=a_2$, $\arg(f'(a_1))=\theta$. Указание: Используя ДЛО, свести к случаю, когда $D_2=B_1$,

Указание: Используя ДЛО, свести к случаю, когда $D_2 = B_1$ $a_2 = 0$.

- **12.17.** Доказать следующий вариант теоремы Рунге: если область D односвязна в $\mathbb C$ и $f \in A(D)$, то найдется последовательность полиномов, равномерно сходящаяся к f внутри D.
- **12.18.** Пусть f конформное отображение круга B на некоторую жорданову область. Доказать, что найдется последовательность полиномов, однолистных в B, равномерно на B сходящаяся к f.
- **12.19.** Пусть $D\subset \mathbb{C}$ ограниченная *односвязная* область, $a\in D$. Если f голоморфна в $D,\,f(D)\subset D,\,f(a)=a,\,f'(a)=1,$ то f тождественное отображение. Остается ли указанное утверждение верным *без требования односвязности* D ?

Лекция №13

Принцип соответствия границ (теорема Каратеодори).

Доказательство (частного случая) теоремы Каратеодори

Здесь мы докажем некоторый упрощенный вариант принципа соответствия границ (теоремы Каратеодори), который, тем не менее, вполне достаточен в ряде важных приложений, например при доказательстве малой теоремы Пикара и разрешимости задачи Дирихле для гармонических функций в жордановых областях (см. далее).

- **13.1. Теорема (Каратеодори).** Пусть D и Ω жордановы области в $\mathbb C$. Пусть $f:D\to\Omega$ какой-либо их конформный изоморфизм (существующий по теореме Римана). Тогда f продолжается до гомеоморфизма \overline{D} на $\overline{\Omega}$.
- **13.2.** Замечание. Не ограничивая общности, мы будем рассматривать случай $\Omega = B_1 := B(0,1)$. Кроме того, мы будем опираться на хорошо известный, но не тривиальный (даже по модулю теоремы Жордана) факт, что \overline{D} гомеоморфно $\overline{B_1}$ для любой жордановой области D (если угодно, то мы доказываем теорему только для $maxux\ D$).

Доказательство разобьем на несколько лемм, представляющих самостоятельный интерес.

13.3. Лемма (Кебе). Пусть $f \in A(B_1)$, $\|f\|_{B_1} = M < \infty$. Пусть в B_1 проведены два радиуса I_0 и I_1 под углом π/p (p – натурально), а жорданов путь $\gamma:[0,1]\to B_1$ соединяет эти радиусы (т.е. $\gamma(0)\in I_0, \gamma(1)\in I_1$). Тогда при $\varepsilon=\|f\|_{[\gamma]}$ справедлива оценка $|f(0)|\leq \sqrt[2p]{\varepsilon M^{2p-1}}$.

Доказательство. Если $0 \in [\gamma]$, то $|f(0)| \le \varepsilon$ и все доказано ввиду $\varepsilon \le M$. Далее предполагается, что $0 \notin [\gamma]$.

Без ограничения общности мы будем считать, что I_0 совпадает с $[0,1),\ I_1$ — с полуинтервалом $[0,e^{i\pi/p}),\ a\ [\gamma]$ не имеет других общих точек с I_0 и I_1 , кроме концевых, причем $[\gamma]$ целиком лежит в том секторе между I_0 и I_1 , который принадлежит (замкнутой) верхней полуплоскости.

Положим $g(z)=f(z)\overline{f(\overline{z})}$ и $\gamma^*(t)=\overline{\gamma(t)},\,t\in[0,1].$ Тогда

$$g \in A(B_1)$$
, $||g||_{B_1} \le M^2$, $||g||_{[\gamma] \cup [\gamma^*]} \le M\varepsilon$.

Рассмотрим

$$h(z) = g(z)g(ze^{2\pi i/p})\cdots g(ze^{2\pi i(p-1)/p})$$

и (жорданову) область D, ограниченную множеством $[\gamma] \cup [\gamma^*]$ и результатами поворотов этого множества на углы $2\pi/p$, \cdots , $2\pi(p-1)/p$. Имеем:

$$h \in A(D) \cap C(\overline{D})$$
, $||h||_{\partial D} \le \varepsilon M(M^2)^{p-1}$,

откуда по принципу максимума модуля (в D) окончательно получаем: $|h(0)|=|f(0)|^{2p}\leq \varepsilon M^{2p-1}$. \square

13.4. Следствие. Пусть $f \in A(B_1)$, $\|f\|_{B_1} < \infty$, p – натурально, $\delta \in (0,1)$. Пусть существует последовательность жордановых путей $\{\gamma_n\}_{n=1}^{\infty}$ таких, что (при каждом n) $[\gamma_n] \subset B_1 \setminus \overline{B(0,\delta)}$ и γ_n соединяет некоторую пару радиусов (не обязательно одну и ту же для разных n), образующую угол π/p . Если $\|f\|_{[\gamma_n]} \to 0$ при $n \to \infty$, то $f \equiv 0$.

Доказательство. Пусть $\varepsilon_n = \|f\|_{[\gamma_n]}, \ M = \|f\|_{B_1}.$ По предыдущей лемме, $|f(0)| \leq \sqrt[2p]{\varepsilon_n M^{2p-1}} \to 0$ при $n \to \infty$, так что f(0) = 0. Пусть, от противного, $f \not\equiv 0$ в B_1 и $f(z) = \sum_{n=k}^{\infty} c_n z^n$ разложение Тейлора функции f в B_1 , где k натурально и $c_k \not= 0$. Рассмотрим $f_1(z) = f(z)/(z^k)$ при $z \in B_1 \setminus \{0\}, \ f_1(0) = c_k$. Тогда f_1 удовлетворяет условиям настоящего следствия и, по доказанному, должно быть $f_1(0) = 0$. Противоречие. \square

- **13.5.** Лемма (Линделефа). Пусть D произвольная область в $\mathbb{C}, f \in A(D)$ и имеют место следующие условия:
 - (1) $M = ||f||_D < \infty$;
 - (2) $a \in D$ и $r \in (0, +\infty)$ таковы, что окружность $\{|z a| = r\}$ имеет (связную) дугу длины $2\pi r/p$ (p натурально), лежащую вне D;
 - (3) при приближении z из $D\cap B(a,r)$ к ∂D все предельные значения функции |f(z)| не превосходят $\varepsilon\geq 0$.

Тогда $|f(a)| \leq \sqrt[p]{\varepsilon M^{p-1}}$.

Доказательство. Будем считать, что a=0. Пусть Ω – связная компонента (содержащая точку 0) открытого множества $\cap_{k=0}^{p-1} D_k$, где D_k – результат поворота области D вокруг начала координат на угол $2\pi k/p$). Очевидно, что $\{|z|=r\}\cap\Omega=\emptyset$, так что $\Omega\subset B(0,r)$. Нетрудно показать, что все предельные значения функции

$$h(z) = f(z)f(ze^{2\pi i/p})\cdots f(ze^{2\pi i(p-1)/p})$$

на $\partial\Omega$ (изнутри Ω) не превышают εM^{p-1} . По принципу максимума модуля (см. Упражнение 6.4), $|h(0)|=|f(0)|^p\leq \varepsilon M^{p-1}$. \square

13.6. Лемма (граничная теорема единственности в жордановых областях). Пусть D – жорданова область, $f \in A(D)$ и $\|f\|_D < \infty$. Пусть найдутся $z_0 \in \partial D$ и $\delta > 0$ такие, что при стремлении z из $D \cap B(z_0, \delta)$ к ∂D все предельные значения функции f(z) равны компексному числу c. Тогда $f \equiv c$ в D.

Доказательство. При $a\in D\cap B(z_0,\delta/2)$ и $r=\delta/2$ окружность $\{|z-a|=r\}$ имеет дугу, лежащую вне D (по теореме Жордана точка z_0 является граничной также для области $\mathbb{C}\setminus\overline{D}$). Применяя предыдущую Лемму для области D, функции (f-c) и значения $\varepsilon=0$, получим f(a)-c=0. По теореме единственности $f\equiv c$ в D. \square

Доказательство Теоремы 13.1 Пусть D – жорданова область и $f:D\to B_1$ – конформный изоморфизм. Считаем известным, что \overline{D} гомеоморфна $\overline{1}$.

 1^o . Докажем, что f непрерывно продолжается на ∂D . Если, от противного, это не так, то найдутся $z_0 \in \partial D$ и последовательности $\{z_n'\}, \{z_n''\}$ в D, сходящиеся к z_0 , такие, что $f(z_n') \to w_0'$, $f(z_n'') \to w_0''$ при $n \to \infty$, причем $w_0' \neq w_0''$ (проверить !). Существование таких последовательностей следует из orpahuvehhocmu f. Поскольку $f:D\to B_1$ — romeomop fusm, то romeomop fusm r

 2^o . Продолжим f по непрерывности (единственным образом) из D на \overline{D} согласно 1^o . Как нетрудно видеть, $f(\partial D) \subset \partial B_1$. Поскольку $f:D\to B_1$ — гомеоморфизм, то остается установить взаимную-однозначность функции f на ∂D .

От противного, пусть найдутся $z_1 \neq z_2 \in \partial D$, для которых $f(z_1) = f(z_2) = w_0$. Тогда существуют жордановы $nymu \ \gamma_1 \ , \ \gamma_2 : [0,1] \to \overline{D}$ (причем $\gamma_1 \ , \ \gamma_2 : [0,1) \to D$), $\gamma_1(0) = \gamma_2(0), \ \gamma_1(1) = z_1, \ \gamma_2(1) = z_2$, при этом $[\gamma_1]$ и $[\gamma_2]$ имеют только одну общую точку $\gamma_1(0)$ (здесь можно воспользоваться гомеоморфизмом \overline{D} и $\overline{1}$, а в B_1 взять два соответствующих радиуса). При этом $f(\gamma_1(t)) \to w_0$ и $f(\gamma_2(t)) \to w_0$ при $t \to 1-$.

Положим $\gamma_1^* = f \circ \gamma_1$, $\gamma_2^* = f \circ \gamma_2$. Пусть Ω_1 — жорданова область (в B_1), ограниченная кривой $\{\gamma_1^*\} \cup \{\gamma_2^*\}^-$, и пусть $D_1 = f^{-1}(\Omega_1)$ (область D_1 тоже *жорданова*!). Пусть $z_0 \in \partial D_1 \setminus ([\gamma_1] \cup [\gamma_2])$. При некотором $\delta > 0$ круг $B(z_0, \delta)$ не пересекает $[\gamma_1]$ и $[\gamma_2]$, так что к функции $f(z) - w_0$ в D_1 можно применить Лемму 13.6, по которой $f \equiv w_0$ в D_1 . Противоречие. \square

- **13.7.** Найти все кольца с центром в 0, конформно эквивалентные кольцу $\{r < |z| < R\}$, где $0 \le r < R < \infty$.
- **13.8.** Найти группу конформных автоморфизмов кольца $\{\frac{1}{2} < |z| < 2\}$ и ее групповую операцию.
- 13.9. Доказать, что любой конформный изоморфизм одного прямоугольника на другой прямоугольник, переводящий все четыре вершины в вершины, линеен. Следовательно, указанный изоморфизм существует только для подобных прямоугольников.
- **13.10.** Установить теоремы единственности для конформных отображений жордановых областей в $\overline{\mathbb{C}}$.

Лекция №14

Гомотопия и односвязность. Другие приложения теории конформных отображений.

Топологические следствия из теоремы Римана: гомотопия и односвязность.

Для начала введем одно базовое топологическое понятие.

14.1. Определение. Пусть D – область в \mathbb{C} , γ_0 и $\gamma_1:[0,1]\to D$ – пути в D с одинаковыми концами, т.е. $a:=\gamma_0(0)=\gamma_1(0)$ и $b:=\gamma_0(1)=\gamma_1(1)$. Эти пути называются гомотопными в D как пути с одинаковыми концами, если существует непрерывная функция (гомотопия) $\gamma:[0,1]_t\times[0,1]_s\to D$ со следующими свойствами: $\gamma(t,0)=\gamma_0(t)$ и $\gamma(t,1)=\gamma_1(t)$ при всех $t\in[0,1]$, $\gamma(0,s)=a$ и $\gamma(1,s)=b$ при всех $s\in[0,1]$.

Такую гомотопию назовем гомотопией первого рода ((1)-гомотопией) и примем обозначение $\gamma_0 \simeq_{(1),D} \gamma_1$.

14.2. Определение. Пусть γ_0 и $\gamma_1:[0,1]\to D$ — замкнутые пути в области D. Эти пути называются гомотопными e D как замкнутые пути, если существует непрерывная функция (гомотопия) $\gamma:[0,1]_t\times[0,1]_s\to D$ со следующими свойствами: $\gamma(t,0)=\gamma_0(t)$ и $\gamma(t,1)=\gamma_1(t)$ при всех $t\in[0,1],\ \gamma(0,s)=\gamma(1,s)$ при всех $s\in[0,1]$.

Это – гомотопия *второго рода* ((2)-гомотопия), с обозначением $\gamma_0 \simeq_{(2),D} \gamma_1$).

При этом говорят, что семейство путей $\{\gamma_s(\cdot):=\gamma(\cdot,s)\}_{s\in[0,1]}$ осуществляет соответствующую гомотопию.

- **14.3.** Упражнение. Гомотопность (в D) каждого рода есть отношение эквивалентности на множестве всех путей в D.
- **14.4.** Упражнение. Если пути γ_0 и $\gamma_1:[0,1]\to\mathbb{C}$ эквивалентны, то для всякой области D, содержащей их носители, имеем $\gamma_0\simeq_{(1),D}\gamma_1$. Если эти пути еще и замкнуты, то $\gamma_0\simeq_{(2),D}\gamma_1$. При этом соответствующую гомотопию γ можно выбрать так, что $\gamma:[0,1]_t\times[0,1]_s\to[\gamma_0]=[\gamma_1]$.

Таким образом, корректно говорить о гомотопиях кривых (соответствующего рода) при этом все представители кривых

считаются определенными на [0,1]. Обозначения для гомотопии кривых такие же, как и для путей.

14.5. Упражнение. Гомотопия $\Gamma_0 \simeq_{(1),D} \Gamma_1$ кривых Γ_0 и Γ_1 (с одинаковыми концами) имеет место если и только если $(\Gamma_0 \cup \Gamma_1^-) \simeq_{(2),D} \{0\}$ (т.е. $\Gamma_0 \cup \Gamma_1^-$ (2)-гомотопна тривиальным одноточечным кривым в D или, как говорят, гомотопна нулю в D).

Как и ранее, полагаем $B_1 = B(0,1)$. Мы готовы доказать следующий важный топологический факт.

- **14.6.** Теорема (характеристика односвязных областей в \mathbb{C}). Для произвольной области D в \mathbb{C} следующие условия эквивалентны:
 - (1) D односвязна в смысле Жордана, т.е. всякая замкнутая жорданова кривая $\Gamma, [\Gamma] \subset D,$ ограничивает область $D(\Gamma),$ целиком лежащую в D;
 - (2) D гомеоморфна B_1 ;
 - (3) $D=\bigcup_{\ell=1}^\infty D_\ell$ исчерпывается строго возрастающей $(\overline{D_\ell}\subset D_{\ell+1})$ последовательностью жордановых областей D_ℓ ;
 - (4) $\partial_{\overline{\mathbb{C}}}D$ (граница области D, взятая в топологии $\overline{\mathbb{C}})$ связна в $\overline{\mathbb{C}}$:
 - (5) любые две кривые в D с одинаковыми концами (1)-гомотопны в D :
 - (6) любая замкнутая кривая в D гомотопна нулю в D;
 - (7) любые две замкнутые кривые в D (2)-гомотопны в D .

Доказательство. Если $D=\mathbb{C}$, то для нее, очевидно, выполняются все условия (1)-(7) (гомотопии 1 и 2 рода при естественных условиях на nymu γ_0 и γ_1 задаются по единой формуле $\gamma(t,s)=(1-s)\gamma_0(t)+s\gamma_1(t))$. Следовательно ∂ алее мы можем считать, что $D\neq\mathbb{C}$.

 $(1)\Rightarrow (2)$ непосредственно вытекает из Теоремы 12.14 (Римана).

- $(2)\Rightarrow (5)$. Гомеоморфно переносим пути из D в B_1 , там осуществляем гомотопию, используя выпуклость B_1 , затем "возвращаемся назад". Провести простые выкладки предлагаем читателю.
 - $(5) \Rightarrow (6) \Leftrightarrow (7)$ очевидно.

Установим (6) \Rightarrow (1). Пусть $\gamma_0:[0,1]\to D$ – произвольный замкнутый жорданов путь. Предположим от противного, что найдется $a\in D(\gamma_0)\setminus D$. Согласно (6), $\gamma_0\simeq_{(2),D}\gamma_1$, где γ_1 – путь (на [0,1]) с носителем в некоторой точке $b, a\neq b\in D$. По Теореме 4.3 $|\operatorname{ind}_a(\gamma_0)|=1$. Пусть $\{\gamma_s\}, s\in [0,1]$, – семейство путей, осуществляющих гомотопию γ_0 и γ_1 в D. Из Леммы 1.22 следует, что (целочисленная) функция $\operatorname{ind}_a(\gamma_s)$ непрерывна на $[0,1]_s$, а значит постоянна. Последнее противоречит очевидному равенству $\operatorname{ind}_a(\gamma_1)=0$.

Докажем $(2)\Rightarrow (4)$. Пусть, от противного, $f:B_1\to D$ – гомеоморфизм, но ∂D не связна (до конца доказательства сей теоремы ace топологические понятия определяются относительно топологии $\overline{\mathbb{C}}$). Найдем открытые Ω_1 и Ω_2 с условиями $\Omega_1\cap\Omega_2=\emptyset$, $\partial D\subset\Omega_1\cup\Omega_2$, $\partial D\cap\Omega_1\neq\emptyset$ и $\partial D\cap\Omega_2\neq\emptyset$. Введем $K=\partial\Omega_1\cap D$ – компакт в D. Тогда $K_1=f^{-1}(K)$ – компакт в B_1 , так что найдется $r\in(0,1)$ с условием $K_1\subset\overline{B_r}$, где $B_r=B(0,r)$. Так как $f(\overline{B_r})$ – компакт в D, то найдутся $z_1\in\Omega_1\setminus f(\overline{B_r})$ и $z_2\in\Omega_2\setminus f(\overline{B_r})$. Положим $w_1=f^{-1}(z_1)$, $w_2=f^{-1}(z_2)$ и соединим их путем (ломаной) γ в $B_1\setminus\overline{B_r}$. Но тогда $f\circ\gamma$ – путь, соединяющий z_1 и z_2 в D, не пересекающий $f(\overline{B_r})$ и, следовательно, содержащееся в нем множество $\partial\Omega_1\cap D$. Таким образом, $f\circ\gamma$ не пересекает всю $\partial\Omega_1$. Поскольку $z_1\in\Omega_1$, а $z_2\notin\Omega_1$, мы приходим к противоречию (достаточно воспользоваться принципом вложенных отрезков).

- $(4)\Rightarrow (1)$. Пусть ∂D связна (в $\overline{\mathbb{C}}$), γ замкнутый жорданов путь в D, но, от противного, $D(\gamma)\setminus D\neq\emptyset$. Так как $D(\gamma)\cap D\neq\emptyset$ (используется Теорема 1.16 (Жордана)), то легко показать, что $D(\gamma)\cap\partial D\neq\emptyset$. Пусть $\Omega(\gamma)=\overline{\mathbb{C}}\setminus D(\gamma)$. Снова по Теореме 1.16 имеем $\Omega(\gamma)\cap D\neq\emptyset$, причем $\infty\in\Omega(\gamma)\setminus D\neq\emptyset$. Как и ранее отсюда получаем $\Omega(\gamma)\cap\partial D\neq\emptyset$, что противоречит связности ∂D .
- $(2)\Rightarrow (3).$ Пусть $f:B_1\to D$ гомеоморфизм. Искомое исчерпание имеет вид $\{f(\overline{B(0,1-1/\ell)}\}_{\ell=1}^\infty$ (доказать).
- (3) \Rightarrow (1). Пусть γ –жорданов путь в D. Из (3) найдется жорданова область G с условиями $[\gamma] \subset G \subset \overline{G} \subset D$. По доказанному ранее $((4)\Rightarrow(1)), G$ односвязна по Жордану, так что $D(\gamma) \subset G \subset D$. \square

В Лекции 5 мы оставили без доказательства следующий важный факт.

14.7. Теорема (о допустимых областях). Пусть D_1, \ldots, D_S — жордановы области в \mathbb{C} ($S \geq 2$ — натурально). Предположим, что *замыкания* областей D_2, \ldots, D_S попарно не пересекаются и целиком содержатся внутри D_1 . Тогда множество $D = D_1 \setminus (\bigcup_{s=2}^{s=S} \overline{D_s})$ является областью.

 \mathcal{A} оказательство. Мы приведем доказательство для случая S=2, в котором уже содержатся все необходимые ингредиенты для дальнейшей индукции.

Пусть $a \in D_2$. ДЛО w = 1/(z-a) переводит область $\Omega_2 = \overline{\mathbb{C}} \setminus \overline{D_2}$ в некоторую жорданову область G в \mathbb{C} . По предыдущей теореме мы можем ucuepnamb G жордановыми областями:

 $G=igcup_{\ell=1}^{\infty}G_{\ell}$. Пусть G'_{ℓ} есть образ области $\overline{\mathbb{C}}\setminus\overline{G_{\ell}}$ под действием

 $\ell=1$ ДЛО z=a+1/w. Последовательность областей $\{G'_\ell\}_{\ell=1}^\infty$ является строго убывающей и пересечение ее элементов есть \overline{D} (доказать !). Последнее означает, что для любого $\delta>0$ найдется такое ℓ , что область G'_ℓ принадлежит δ -окрестности области D.

Завершим доказательство теоремы. Пусть a_0 и a_1 – произвольные точки из D. Поскольку D_1 линейно связна, найдется путь $\gamma:[0,1]\to D_1$ с условиями $\gamma(0)=a_0$ и $\gamma(1)=a_1$. Теперь найдем ℓ такое, что $\overline{G'_\ell}\subset D\setminus\{a_0,a_1\}$, и пусть $\Gamma^+=\partial^+G'_\ell$. Пусть t_0 и t_1 – минимальное и максимальное (соответственно) значения $t\in[0,1]$, для которых $\gamma(t)\in[\Gamma^+]$. Если таковых нет, то γ соединяет a_0 и a_1 в D и все доказано. В противном случае искомый путь, соединяющий a_0 и a_1 в D, совпадает с γ на $[0,t_0]\cup[t_1,1]$, а на $[t_0,t_1]$ он "идет" по Γ^+ в направлении от $\gamma(t_0)$ до $\gamma(t_1)$. \square

- **14.8.** Доказать, что всякий замкнутый путь γ в $\mathbb{C}_* = \mathbb{C} \setminus \{0\}$ (ind₀(γ) = $n \in \mathbf{Z}$) гомотопен в \mathbb{C}_* равномерному n-кратному обходу единичной окружности.
- **14.9.** Сформулировать и доказать теорему об инвариантности индекса при гомотопии замкнутых кривых.

Другие приложения теории конформных отображений

Добравшийся до этого места читатель почти наверное знаком с азами теории *гармонических функций*, в частности, с постанов-

кой соответствующей задачи Дирихле в ограниченных областях \mathbb{R}^2 . Формула Пуассона дает решение задачи Дирихле в круге при любых непрерывных граничных данных. Элементарно доказывается свойство инвариантности гармоничности при конформной замене переменных (см. книгу Б.В. Шабата: Добавление, пп. 1 и 2). Пользуясь указанными утверждениями, теоремой Римана и теоремой Каратеодори, мы получаем следующий весьма тонкий факт.

14.10. Теорема. Во *всякой эсордановой области* задача Дирихле разрешима при любых непрерывных граничных данных.

Приведенное выше доказательство теоремы Каратеодори на самом деле покрывает только случай, когда ∂ano , что \overline{D} гомеоморфно $\overline{B_1}$.

Отметим одно важное приложение Теоремы 11.7 (обратного принципа соответствия границ) к задаче конформного отображения верхней полуплоскости на многоугольник. Эта задача решается с помощью интеграла Кристоффеля-Шварца, причем на конечном этапе Теорема 11.7 используется в полном объеме, поскольку соответствующее конформное отображение имеет особые точки (ветвления) на вещественной оси и всего лишь непрерывно на замыкании верхней полуплоскости.

В заключение приведем формулировку и вкратце обсудим доказательство так называемой малой теоремы Пикара.

14.11. Теорема (Пикара). Всякая *целая* непостоянная функция принимает (в \mathbb{C}) все значения (из \mathbb{C}), кроме, быть может, одного.

Всякая *мероморфная* в \mathbb{C} непостоянная функция принимает (в \mathbb{C}) все значения (из $\overline{\mathbb{C}}$), кроме, быть может, двух.

Доказательство этой теоремы основано на использовании свойств так называемой модулярной функции. При ее построении применяются теорема Римана, теорема Каратеодори (приведенное выше доказательство срабатывает в возникающей конкретной ситуации) и принцип симметрии. На самом деле, возникает потребность в использовании функции обратной к модулярной, которая многозначна и, таким образом, вступает в силу аналитическое продолжение вдоль путей и теорема о монодромии, "полноправное" использование которой гарантируется Теоремой 14.6. Подробности читатель найдет в книге Б.В. Шабата: гл. IV, п. 42.

- **14.12.** Найти *ограниченную* гармоническую функцию в полукруге $D=B(0,1)\cap\{\mathrm{Im}(z)>0\}$, у которой все предельные значения на верхней полуокружности (границы) равны 1, а на диаметре полукруга равны -1 (в точках ± 1 пределов нет). Найти множество нулей этой функции.
 - **14.13.** Доказать однолистность функции $F(z) = \int\limits_{[0,z]} t^{-\frac{3}{4}} (1 t^{-\frac{3}{4}}) dt$
- $t)^{-3/4}dt$ на верхней полуплоскости Π_+ и найти $F(\Pi_+)$ (ветвь подинтегральной функции положительна на (0,1) со стороны $\Pi_+)$. Используя эту функцию, построить какое-либо конформное отображение круга на квадрат.
- **14.14.** Доказать, что модулярная функция определена и голоморфна в единичном круге, причем не продолжается голоморфно за его пределы.
- **14.15.** Найти все целые функции, удовлетворяющие уравнению $e^{f(z)} + e^{g(z)} \equiv 1$.
- **14.16.** Доказать, что целая функция $f(z)=ze^z$ не имеет исключительных пикаровских значений.
- **14.17.** Сколько исключительных пикаровских значений имеют функции tg(z) и z+tg(z)?
- **14.18.** Пусть $n \geq 2$ натуральное число. Найти все целые функции f и g такие, что $f^n(z) + g^n(z) \equiv 1$

Парамонов Петр Владимирович

Избранные главы комплексного анализа

Учебное пособие

Оригинал-макет подготовлен П.В. Парамоновым с использованием издательской системы \LaTeX на механико-математическом факультете МГУ.

Подписано в печать 01.11.2000 г. Формат 60×90 1/16. Объем 6,0 п.л. Заказ Тираж 100 экз.

Издательство ЦПИ при механико-математическом факультете МГУ, г. Москва, Воробьевы горы Лицензия на издательскую деятельность ЛР № 040746 от 12.03.1996 г.

Отпечатано на типографском оборудовании механико-математического факультета МГУ им. М. В. Ломоносова и Франко-русского центра им. А. М. Ляпунова