Семинар по комплексному анализу 29 апреля 2020 г.

Указания к задачам домашнего задания

Задача 17.07 1) 2)

Пусть $D:=\mathbb{C}\setminus \left((-\infty;-1]\cup [1;\infty)\right)$ и $\varphi(z)$ — голоморфная ветвь аналитической функции $\mathrm{Ln}(1-z^2)$ в области D, удовлетворяющая условию $\varphi(0)=0$. Найдите: $1)\ \varphi(i)$; $2)\ \varphi(-i)$.

К задаче 17.07 1) 2)

$$D := \mathbb{C} \setminus ((-\infty; -1] \cup [1; \infty)); \varphi(z) = \ln(1 - z^2)$$
 в D , $\varphi(0) = 0$.
1) $\varphi(i) = ?;$ 2) $\varphi(-i) = ?$

Ищем φ в виде $\ln(1+z)+\ln(1-z)$ при правильно выбранных ветвях $\ln(1+z)$ в области $\mathbb{C}\setminus(-\infty;-1]$ и $\ln(1-z)$ в области $\mathbb{C}\setminus[1;\infty)$.

Пусть, например,
$$f_0(z)=\ln(1+z), \ -\pi<\arg(z+1)<\pi$$
, и $g_0(z)=\ln(1-z), \ -\pi<\arg(1-z)<\pi$.

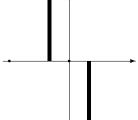
Тогда $f_0(0)=0$ и $g_0(0)=0$, а значит, можно взять $\varphi(z)=f_0(z)+g_0(z)$.

Тогда
$$\varphi(i) = f_0(i) + g_0(i) = \ln \sqrt{2} + \frac{\pi i}{4} + \ln \sqrt{2} - \frac{\pi i}{4} = \ln 2$$
 и $\varphi(-i) = f_0(-i) + g_0(-i) = \ln \sqrt{2} - \frac{\pi i}{4} + \ln \sqrt{2} + \frac{\pi i}{4} = \ln 2$.

Задача 17.08 2.

Пусть $\varphi(z)$ — голоморфная ветвь аналитической функции $\sqrt[3]{1-z^2}$ в области D, удовлетворяющая условию $\varphi(0)=1$. Найдите $\varphi(-3)$.

2.
$$D = \mathbb{C} \setminus ([1; 1-i\infty) \cup [-1; -1+i\infty)).$$



К задаче 17.08 2.

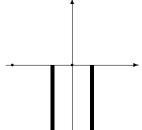
$$\varphi(z) = \sqrt[3]{1-z^2}$$
 в области $D, \, \varphi(0) = 1. \, \varphi(-3) = ?.$

$$arphi(z)=\sqrt[3]{1-z^2}=\sqrt[3]{-1}\sqrt[3]{z-1}\sqrt[3]{z+1}$$
 (нужно $arphi(0)=1$). Например, $g(z)=\sqrt[3]{z-1}$, $-\pi/2<\arg(z-1)<3\pi/2$, а $h(z)=\sqrt[3]{z+1}$, $\pi/2<\arg(z+1)<5\pi/2$. Тогда три ветви $\sqrt[3]{1-z^2}$ есть $arphi_k(z)=e^{\pi i(1+2k)/3}g(z)h(z)$, $k=0,1,2$. $arphi_k(0)=e^{\pi i(1+2k)/3}g(0)h(0)=e^{\pi i(1+2k)/3}e^{\pi i/3}e^{2\pi i/3}=e^{(4+2k)i\pi/3}=1\Rightarrow k=1$. $arphi_1(-3)=e^{3\pi i/3}g(-3)h(-3)=(-1)\sqrt[3]{4}e^{\pi i/3}\sqrt[3]{2}e^{\pi i/3}=-2e^{2\pi i/3}=1-i\sqrt{3}$

Задача 17.08 3.

Пусть $\varphi(z)$ — голоморфная ветвь аналитической функции $\sqrt[3]{1-z^2}$ в области D, удовлетворяющая условию $\varphi(0)=1$. Найдите $\varphi(-3)$.

3.
$$D = \mathbb{C} \setminus ([1; 1-i\infty) \cup [-1; -1-i\infty)).$$



К задаче 17.08 3.

$$arphi(z)=\sqrt[3]{1-z^2}$$
 в области $D,\, arphi(0)=1.\,\, arphi(-3)=?.$

$$arphi(z)=\sqrt[3]{1-z^2}=\sqrt[3]{-1}\sqrt[3]{z-1}\sqrt[3]{z+1}$$
 (нужно $arphi(0)=1$). Например, $g(z)=\sqrt[3]{z-1}$, $-\pi/2<\arg(z-1)<3\pi/2$, а $h(z)=\sqrt[3]{z+1}$, $-\pi/2<\arg(z+1)<3\pi/2$. Тогда три ветви $\sqrt[3]{1-z^2}$ есть $arphi_k(z)=e^{\pi i(1+2k)/3}g(z)h(z)$, $k=0,1,2$. $arphi_k(0)=e^{\pi i(1+2k)/3}g(0)h(0)=e^{\pi i(1+2k)/3}e^{\pi i/3}\cdot 1$ $=e^{(2+2k)i\pi/3}=1\Rightarrow k=2$. $arphi_1(-3)=e^{5\pi i/3}g(-3)h(-3)=e^{5\pi i/3}\sqrt[3]{4}e^{\pi i/3}\sqrt[3]{2}e^{\pi i/3}=2e^{\pi i/3}=1+i\sqrt{3}$

Задача 17.09 3) 4)

Пусть $D=\overline{\mathbb{C}}\setminus[-1;1]$. Пусть $\varphi_2(z)$ — голоморфная ветвь аналитической функции $\operatorname{Ln}\frac{1+z}{1-z}$ в области D такая, что $\varphi_2(-i0)=0$. Найдите $\varphi_2(+i0)$ и $\varphi_2(i)$.

К задаче 17.09 3) 4)

Сначала покажем, что аналитическая функция ${\rm Ln}\, \frac{1+z}{1-z}$ вообще имеет голоморфные ветви в $D=\overline{\mathbb C}\setminus [-1;1].$ Идея: рассмотрим голоморфную ветвь в области $\mathbb C\setminus (-\infty;1]$ и покажем, что она непрерывна на луче $(-\infty;-1]$ (ср. 16.13).

Пусть
$$\varphi(z)=g(z)-h(z)$$
, где: $g(z)=\ln(z+1), \ -\pi<\arg(z+1)<\pi$ — голоморфна в $\mathbb{C}\setminus(-\infty;-1]$. $h(z)=\ln(1-z), \ 0<\arg(1-z)<2\pi$ — голоморфна в $\mathbb{C}\setminus(-\infty;1]$.

Тогда при t > 1 имеем:

$$g(-t+i0) = \ln(t-1) + \pi i; \ h(-t+i0) = \ln(t+1) + 2\pi i;$$

$$\varphi(-t+i0) = \ln(t-1) - \ln(t+1) - \pi i;$$

$$g(-t-i0) = \ln(t-1) - \pi i; \ h(-t-i0) = \ln(t+1);$$

$$\varphi(-t-i0) = \ln(t-1) - \ln(t+1) - \pi i = \varphi(-t+i0).$$

К задаче 17.09 3) 4) (продолжение)

взять $\varphi_2(z) := \varphi(z)$.

Хотим: ветвь
$$\varphi_2(z)=\ln\frac{1+z}{1-z}$$
 такую, что $\varphi_2(-i0)=0$. Построили: $\varphi(z):=g(z)-h(z)$, где: $g(z)=\ln(z+1), \ -\pi<\arg(z+1)<\pi, \ h(z)=\ln(1-z), \ 0<\arg(1-z)<2\pi.$ Тогда $\varphi(-i0)=g(0)-h(-i0)=0-0=0$. Значит, можно

Теперь:
$$\varphi_2(+i0) = g(0) - h(+i0) = 0 - 2\pi i = -2\pi i;$$
 $\varphi_2(i) = g(i) - h(i) = \ln \sqrt{2} + \frac{\pi i}{4} - \left(\ln \sqrt{2} + \frac{7\pi i}{4}\right) = -\frac{3\pi i}{2}.$

Задача 17.13 1) 4)

Пусть $D = \mathbb{C} \setminus (-\infty; 0]$. Пусть $\varphi_1(z)$ — голоморфная ветвь аналитической функции $\operatorname{Ln}^2 z$ в области D такая, что $\varphi_1(1) = 0$.

Пусть $\varphi_4(z)$ — голоморфная ветвь аналитической функции $\sqrt{z} \ln z$ в области D такая, что $\varphi_4(2)>0$.

Найдите
$$\varphi_1(-x+i0)-\varphi_1(-x-i0)$$
 и $\varphi_4(-x+i0)-\varphi_4(-x-i0)$ для всех $x>0$.

К задаче 17.13 1) 4)

$$D=\mathbb{C}\setminus (-\infty;0].$$
 $\varphi_1(z)=\ln^2z$ в области $D,\ \varphi_1(1)=0.$ $\varphi_4(z)=\sqrt{z}\ln z$ в области $D,\ \varphi_4(2)>0.$ $\varphi_1(-x+i0)-\varphi_1(-x-i0)=?$ $\varphi_4(-x+i0)-\varphi_4(-x-i0)=?$ Пусть $g(z)=\ln z,\ -\pi<\arg z<\pi,$ $h(z)=\sqrt{z},\ -\pi<\arg z<\pi.$ Тогда $\varphi_1(z)=g^2(z)$ (поскольку $(g(1))^2=0^2=0)$ и $\varphi_4(z)=g(z)h(z)$ (поскольку $g(2)h(2)=\ln 2\cdot\sqrt{2}>0).$ Значит, $\varphi_1(-x+i0)-\varphi_1(-x-i0)=(g(-x+i0))^2-(g(-x-i0))^2==(\ln x+\pi i)^2-(\ln x-\pi i)^2=4\pi i\ln x;$ $\varphi_4(-x+i0)-\varphi_1(-x-i0)=g(-x-i0)h(x-i0)=g(-x+i0)h(x+i0)-g(-x-i0)h(x-i0)==(\ln x+\pi i)i\sqrt{x}-(\ln x-\pi i)(-i\sqrt{x})=2i\sqrt{x}\ln x.$

Задача 17.27

Докажите, что аналитическая функция $\sqrt[3]{1-z^2}$ не имеет голоморфных ветвей в области $D:=\{1<|z|<\infty\}.$

(Указание. Пусть $D_1:=D\setminus [1;\infty)$ — односвязная область. Покажите, что любая голоморфная ветвь функции $\sqrt[3]{1-z^2}$ в области D_1 имеет различные предельные значения в точках z=x+i0 и z=x-i0 при $1< x<\infty$.)

4 D > 4 P > 4 E > 4 E > 9 Q P

К задаче 17.27

Докажите, что аналитическая функция $\sqrt[3]{1-z^2}$ не имеет голоморфных ветвей в области $D:=\{1<|z|<\infty\}.$

Ищем
$$\varphi(z)=\sqrt[3]{1-z^2}=\sqrt[3]{-1}\sqrt[3]{z-1}\sqrt[3]{z+1}.$$
 Например, $g(z)=\sqrt[3]{z-1}$, $0<\arg(z-1)<2\pi$, а $h(z)=\sqrt[3]{z+1}$, $0<\arg(z+1)<2\pi.$ Тогда все голоморфные ветви $\sqrt[3]{1-z^2}$ в D_1 есть $\varphi_k(z):=e^{\pi i(1+2k)/3}g(z)h(z),\ k=0,1,2.$ Поскольку $g(x+i0)h(x+i0)=\sqrt[3]{x-1}\sqrt[3]{x+1}=\sqrt[3]{x^2-1}$ и $g(x-i0)h(x-i0)=e^{2\pi i/3}\sqrt[3]{x-1}e^{2\pi i/3}\sqrt[3]{x+1}=e^{4\pi i/3}\sqrt[3]{x^2-1},$ то $\varphi_k(x+i0)\neq\varphi_k(x-i0).$

Задача 17.30 1) 2)

Выясните, имеют ли следующие аналитические функции голоморфные ветви в области $D:=\{1<|z|<\infty\}$:

1)
$$\sqrt[3]{\frac{z+1}{z+i}}$$
;

2)
$$2 \ln(z+1) - \ln(z-i)$$
.

Есть как минимум два подхода к этой задаче.

К задаче 17.30 1)

Выясните, имеют ли следующие аналитические функции голоморфные ветви в области $D:=\{1<|z|<\infty\}$:

1)
$$\sqrt[3]{\frac{z+1}{z+i}}$$
;

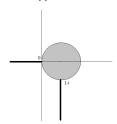
Подход 1: через явное изучение ветвей.

Опишем все голоморфные ветви функции $\sqrt[3]{\frac{z+1}{z+i}}$ в каждой из двух областей, получаемых из D проведением двух разрезов: $D\setminus ((-\infty;-1]\cup [-i;-i\infty))=:D_1\cup D_2.$

Есть ли среди них пара ветвей, непрерывно склеивающихся вдоль обоих разрезов?

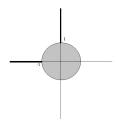
К задаче 17.30 1) (продолжение)

Подход 1: через явное изучение ветвей. Опишем все голоморфные ветви функции $\sqrt[3]{\frac{z+1}{z+i}}$ в каждой из двух областей, получаемых из D проведением двух разрезов: $D\setminus \left((-\infty;-1]\cup [-i;-i\infty)\right)=:D_1\cup D_2.$ Техническая трудность в подходе 1: нужно выделять непрерывные ветви аргумента в областях нестандартной формы. Например, для переменной z'=z+1 области выглядят так:



К задаче 17.30 2)

Выясните, имеют ли следующие аналитические функции голоморфные ветви в области $D:=\{1<|z|<\infty\}$: 2) $2\ln(z+1)-\ln(z-i)$.



Опишем все голоморфные ветви функции

 $2\operatorname{Ln}(z+1)-\operatorname{Ln}(z-i)$ в каждой из двух областей, получаемых из D проведением двух других разрезов:

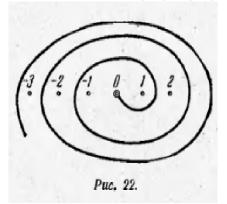
$$D \setminus ((-\infty; -1] \cup [i; i\infty)) =: G_1 \cup G_2.$$

Есть ли среди них пара ветвей, непрерывно склеивающихся вдоль обоих разрезов?

Подход 2 обсудим несколько позже.

Задача 18.03

Пусть $\varphi(z)$ — голоморфная ветвь аналитической функции $\operatorname{Ln} z$ в области, изображенной на рисунке 22, такая, что $\varphi(1)=0$. Найдите значения $\varphi(-1),\ \varphi(-2),\ \varphi(-3)$.



К задаче 18.03

Пусть $\varphi(z)$ — голоморфная ветвь аналитической функции $\operatorname{Ln} z$ в области, изображенной на рисунке 22, такая, что $\varphi(1)=0$. Найдите значения $\varphi(-1),\ \varphi(-2),\ \varphi(-3).$

Нарисуем какой-нибудь путь γ в указанной области, выходящий из точки 1 и последовательно проходящий точки -1, -2, -3. Тогда значения ветви логарифма определяются величиной $\Delta_{\gamma} \operatorname{Arg} z$.

$$\varphi(-1) = \pi i$$
; $\varphi(-2) = \ln 2 + 3\pi i$; $\varphi(-3) = \ln 3 + 5\pi i$.

Задача 17.30 1) 2) Второй подход

Выясните, имеют ли следующие аналитические функции голоморфные ветви в области $D:=\{1<|z|<\infty\}$:

1)
$$\sqrt[3]{\frac{z+1}{z+i}}$$
;
2) $2 \operatorname{Ln}(z+1) - \operatorname{Ln}(z-i)$.

Второй подход состоит в том, чтобы рассмотреть произвольный элемент данной функции в какой-нибудь точке области D (например, в точке $z_0=2$) и изучить, что происходит с ним, если мы продолжим его вдоль пути γ , представляющего собой окружность с центром 0, проходящую через точку z_0 (обход против часовой стрелки).

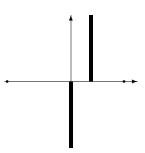
Ответ выражается через величины $\Delta_{\gamma} \operatorname{Arg}(z+1)$ и $\Delta_{\gamma} \operatorname{Arg}(z+i)$ в первом случае и через величины $\Delta_{\gamma} \operatorname{Arg}(z+1)$

и $\Delta_{\gamma}\operatorname{Arg}(z-i)$ во втором. (Все они равны 2π .)

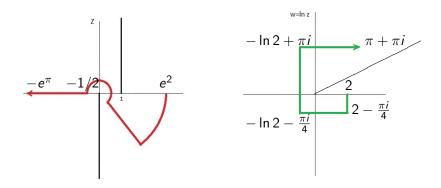
Можно показать, что в пункте 2) элемент продолжается вдоль γ не в себя (и тогда голоморфных ветвей быть не может), а у пункте 1) — в себя (и тогда доказывается, что порожденная им аналитическая функция в D будет голоморфной ветвью).

Задача 17.23

Пусть $D:=\mathbb{C}\setminus ((-i\infty;0]\cup [1;1+i\infty))$, а $\varphi(z)$ — голоморфная ветвь аналитической функции $\operatorname{Ln}\operatorname{Ln} z$ в области D такая, что $\varphi(e^2)=\operatorname{In} 2$. Найдите значение $\varphi(-e^\pi)$.



К задаче 17.23



Если $\psi(w)$ — такая ветвь $\operatorname{Ln} w$, что $\psi(2) = \ln 2$, то результат ее продолжения вдоль пути справа есть $\psi(\pi+\pi i) = \ln(\pi\sqrt{2}) - \frac{7\pi i}{4}$. Достаточно взять $\ln w$, $-2\pi + \pi/8 < \arg w < \pi/8$.

Изолированные особые точки аналитических функций

Напоминание: изолированные особые точки аналитической функции

Точка $a\in \overline{\mathbb{C}}$ называется изолированной особой точкой аналитической функции \mathcal{F} , если \mathcal{F} является аналитической функцией в проколотой окрестности V точки a вида

$$V = \{0 < |z - a| < \varepsilon\}$$

при $a\in\mathbb{C}$ и вида

$$V = \{ z \in \mathbb{C} : |z| > \varepsilon \}$$

при $a=\infty$.

Классификация изолированных особых точек

Изолированная особая точка а называется:

- 1. изолированной особой точкой однозначного характера, если $\mathcal F$ однозначна. В этом случае $\mathcal F$ есть голоморфная функция в V, и точка a может быть ее устранимой особой точкой, полюсом или существенно особой точкой.
- 2. точкой ветвления порядка $n \in \mathbb{N}$, если число листов \mathcal{F} равно n.
- 3. логарифмической точкой ветвления или точкой ветвления бесконечного порядка, если число листов $\mathcal F$ бесконечно.

Как определить тип особой точки?

точка ветвления.

Пусть V есть проколотая окрестность точки $a\in\mathbb{C}$ и $\mathcal{F}-$ аналитическая функция в V. Пусть $z_0\in V$. Пусть F_0- какой-нибудь элемент \mathcal{F} в точке z_0 . Пусть γ_0- это путь, обходящий против часовой стрелки окружность с центром a, на которой лежит точка z_0 , и начинающийся и кончающийся в точке z_0 :

$$\gamma(t) := a + (z_0 - a)e^{2\pi it}, \quad t \in [0; 1].$$

Пусть F_1 — результат продолжения элемента F_0 вдоль пути γ_0 и F_n при $n\in\mathbb{N}$ — результат продолжения элемента F_0 вдоль пути $\gamma_0^n=\underbrace{\gamma_0\cup\gamma_0\cup\cdots\cup\gamma_0}$.

Если $F_1=F_0$, то аналитическая функция $\mathcal F$ однозначна и точка a — изолированная особая точка однозначного характера. Если $F_1\neq F_0$, но $F_n=F_0$ для некоторого $n\in\mathbb N$, причем $F_k\neq F_0$ при $k=1,\ldots,n-1$, то a — точка ветвления порядка n. Если же $F_n\neq F_0$ при всех $n\in\mathbb N$, то a — логарифмическая

Аналогично можно поступить и в окрестности 🔊. 🗀 🗀 🖹 🕫 🗢

Пример:
$$\sqrt[n]{z}$$
, точка $z=0$

$$F_0$$
 в точке $x>0$ (например, $F_0=(U_0,f_0),\ f_0(x)>0$). $F_0\mapsto F_1\mapsto F_2\mapsto\ldots\mapsto F_{n-1}\mapsto F_0$, где $F_k=(U_k,f_k)$ и $f_k(x)=e^{2\pi i/n}f_{k-1}(x)$. Итог: точка ветвления порядка n .

To же рассуждение можно использовать и для описания точки $\infty.$

Пример: $\operatorname{Ln} z$, точка z=0

$$F_0$$
 в точке $x>0$ (например, $F_0=(U_0,f_0),\ f_0(x)\in\mathbb{R}).$ $\mapsto F_{-1}\mapsto F_0\mapsto F_1\mapsto F_2\mapsto\dots$, где $F_k=(U_k,f_k)$ и $f_k(x)=f_{k-1}(x)+2\pi i$. Здесь $k\in\mathbb{Z}$. Итог: логарифмическая точка ветвления.

To же рассуждение можно использовать и для описания точки ∞ .

$$\sqrt{z} + \sqrt[3]{z}, \ z = 0.$$

Начальный элемент $\varphi+\psi$ (например, в точке $\varepsilon>0$, $\varphi(\varepsilon)>0$, $\psi(\varepsilon)>0$).

$$\varphi + \psi \mapsto -\varphi + e^{2\pi i/3}\psi \mapsto \varphi + e^{4\pi i/3}\psi \mapsto -\varphi + \psi \mapsto \varphi + e^{2\pi i/3}\psi \mapsto -\varphi + e^{4\pi i/3}\psi \mapsto \varphi + \psi.$$

Цепочка длины 6, то есть точка ветвления 6-го порядка.

Кроме того, мы видим, что любой элемент в точке ε получается из любого другого продолжением, то есть сумма является единой аналитической функцией.

$$\sqrt{z} + \sqrt[4]{z}$$
, $z = 0$.

Начальный элемент $\varphi+\psi$ (например, в точке $\varepsilon>0$, $\varphi(\varepsilon)>0$, $\psi(\varepsilon)>0$).

$$\varphi + \psi \mapsto -\varphi + i\psi \mapsto \varphi - \psi \mapsto -\varphi - i\psi \mapsto \varphi + \psi \Rightarrow$$
точка ветвления четвертого порядка.

точка ветвления четвертого порядка.

Но ведь есть и другие элементы! Например, $\varphi+i\psi$.

$$\varphi + i\psi \mapsto -\varphi - \psi \mapsto \varphi - i\psi \mapsto -\varphi + \psi \mapsto \varphi + i\psi \Rightarrow$$

еще одна точка ветвления четвертого порядка.

Других элементов в точке $\varepsilon>0$ нет (всего 8=2х4 вариантов для суммы).

Ответ: две точки ветвления четвертого порядка.

Упражнение на дом. Рассмотрите общий случай $\sqrt[k]{z} + \sqrt{z}$, $z = 0, \ k, l \in \mathbb{N}$.

$$\sqrt[3]{z^2}$$
 $(z=0)$ $\varphi\mapsto \mathrm{e}^{4\pi i/3}\varphi\mapsto \mathrm{e}^{8\pi i/3}\varphi=\mathrm{e}^{2\pi i/3}\varphi\mapsto \varphi.$ Одна точка ветвления 3-го порядка.

$$\sqrt[6]{z^4}\ (z=0)$$
 $\varphi\mapsto e^{8\pi i/6}\varphi=e^{4\pi i/3}\varphi\mapsto e^{8\pi i/3}\varphi=e^{2\pi i/3}\varphi\mapsto \varphi\Rightarrow$ одна точка ветвления 3-го порядка. $e^{\pi i/3}\varphi\mapsto e^{5\pi i/3}\varphi\mapsto e^{9\pi i/3}\varphi=-\varphi\mapsto e^{13\pi i/3}\varphi=e^{\pi i/3}\varphi\Rightarrow$ еще одна точка ветвления 3-го порядка. Итого две точки ветвления 3-го порядка.

Vпражнение на дом. Рассмотрите общий случай $\sqrt[k]{z^l}$, z=0, $k,l\in\mathbb{N}$.

$$(\sqrt[6]{z})^4$$
 сравните с $\sqrt[6]{z^4}$:

У $\sqrt[6]{z}$ 6 элементов в точке $\varepsilon > 0$:

$$\varphi_0(\varepsilon)>0$$
 и $\varphi_k=e^{\pi i k/3}\varphi_0$, $k=1,\ldots,5$.

Но
$$\varphi_k^4=e^{4\pi ik/3}\varphi_0^4$$
 и потому $\varphi_3^4=\varphi_0^4$, $\varphi_4^4=\varphi_1^4$, $\varphi_5^4=\varphi_2^4$.

Различных элементов $(\sqrt[6]{z})^4$ ровно 3, одна точка ветвления 3-го порядка.

