|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
23.09.2013 Заседание ММО24 сентября 2013 г. 1. Отчет Правления ММО о работе за год. 2. Доклад: В. А. Васильев Аннотация. Лемма 28 из «Начал» Ньютона гласит, что на плоскости не существует выпуклых ограниченных областей с гладкой границей, таких что площади, отсекаемые от области всевозможными аффинными прямыми, определяют алгебраическую функцию на пространстве прямых. Этот факт контрастирует с теоремой Архимеда, согласно которой объем, отсекаемый плоскостью от шара, определяет алгебраическую функцию на пространстве плоскостей в трехмерном пространстве (это же верно для любых эллипсоидов в любых нечетномерных пространствах). Около 25 лет назад лемму Ньютона удалось доказать для выпуклых областей в любых четномерных пространствах и для невыпуклых плоских областей. В докладе будет рассказано недавнее доказательство аналогичного факта для произвольных областей с гладкой границей во всех четномерных пространствах. Доказательство основано на теории Пикара–Лефшеца и элементарных фактах о группах, порожденных отражениями. к списку новостей |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|