Заседание Московского математического общества (18:30, ауд. 16-10 ГЗ МГУ)
А. А. Глуцюк О периодических орбитах в плоских комплексных бильярдах
Аннотация. Гипотеза В. Я. Иврия (1980 г.) утверждает, что во всяком бильярде в евклидовом пространстве с кусочно-бесконечногладкой границей множество периодических орбит имеет меру нуль. Эта гипотеза тесно связана с гипотезой Германа Вейля (1911 г.) из спектральной теории: об асимптотике собственных значений задачи Дирихле для оператора Лапласа. Частный случай гипотезы Иврия для треугольных орбит был доказан в нескольких работах, в первую очередь, М. Рыхликом (1989 г.) в размерности два и Я. Б. Воробцом (1994 г.) в любой размерности. Частный случай для четырёхугольных орбит в размерности два доказан в совместной работе Ю. Г. Кудряшова и докладчика. Гипотеза Иврия для случая кусочно-аналитической границы открыта, и считается, что этот случай является основным. Новый подход к ней состоит в изучении аналитического продолжения границы и преобразования бильярда в комплексную область. В докладе будет обсуждена двумерная комплексная гипотеза Иврия о периодических орбитах в бильярде, порожденном конечным набором плоских голоморфных кривых. Оказывается, что она не верна уже в случае четырёхугольных орбит. Однако в этом случае удается описать контрпримеры: единственные нетривиальные контрпримеры образованы парами софокусных коник. Будет доказан положительный ответ для орбит нечетного периода в случае алгебраических зеркал, не проходящих через две специальные точки на бесконечности. Если время позволит, будет обсуждена связь с другим аналогом гипотезы Иврия: задачей о невидимости.