новости   абитуриенту
история структура учебный процесс научная жизнь полезные ссылки сервисы
Форма обратной связиЭкспорт новостей в RSSКарта сайта
пн вт ср чт пт сб вс
 123456
78910111213
14151617181920
21222324252627
28293031   

02.12.2013

Заседание ММО

3 декабря 2013 г.
Заседание Московского математического общества
(18:30, ауд. 16-10 ГЗ МГУ)

С. И. Адян
Новые оценки нечётных периодов, при которых свободные бернсайдовы группы бесконечны

Аннотация. В докладе будет рассказано о современном состоянии исследований по известной проблеме Бернсайда о периодических группах. Отрицательное решение этой проблемы было впервые опубликовано в 1968 году в совместной работе П. С. Новикова и докладчика для нечётных периодов n>4381, а значит, и всех кратных им периодов.
   Будут изложены основные идеи и определения усовершенствованного автором в последние годы варианта доказательства бесконечности свободных периодических групп достаточно большого нечётного периода. Новое доказательство позволяет понизить известную до сих пор нижнюю границу периодов с 665 до 101. Граница 665 для нечётных периодов была установлена докладчиком в его монографии 1975 года и с тех пор никем не была улучшена. В изданной в 1982 году и переведённой на русский язык монографии В. Магнуса и Б. Чандлера по истории комбинаторной теории групп было отмечено, что проблема Бернсайда по своему влиянию на теорию групп аналогична известной проблеме Ферма в теории чисел, а решение этой проблемы, изложенное в монографии С. И. Адяна, было названо «возможно, самой трудной для чтения среди всех работ по математике, которые когда-либо были написаны». Новое доказательство существенно проще и короче того, что было опубликовано в 1975 году.


к списку новостей


Контакты      Обратная связь      Карта сайта     
Часто задаваемые вопросы (F.A.Q.)

  

Яндекс цитирования