Программа спецкурса "Расщепление вычислительных алгоритмов в задачах механики". Лектор - профессор Коробейников В.П. (1 год)
- Вводные замечания. Особенности многомерных задач математической физики. Задача Коши для системы линейных уравнений в частных производных. Линейные пространства. Корректность и устойчивость решения задачи Коши.
- Понятие вычислительного алгоритма. Сведения из систем линейных уравнений и теории матриц. Алгоритмы расщепления для решения систем линейных уравнений и отыскания корней алгебраических уравнений. Факторизация полиномиальных выражений.
- Квадратичные формы, полиномы и тензоры. Пространства квадратичных форм. Тензорные функции.
- Системы линейных и квазилинейных уравнений. Характеристические многообразия. Линейные системы физической механики. Корректность эволюционных задач для уравнений Максвелла. Примеры некорректных задач.
- Метод конечных разностей. Конечноразностные аналогии дифференциальных уравнений. Сходимость и устойчивость. Явные и неявные схемы. Устойчивость различных разностных схем.
- Разностные схемы для систем уравнений Навье-Стокса и теории упругости.
- Метод дробных шагов и другие приемы расщепления численных алгоритмов в задачах механики. Сведение к последовательности локально одномерных задач.
- Примеры из газодинамики и теории упругости.
|