В. М. МИЛЛИОНЩИКОВ

О ТИПИЧНЫХ СВОЙСТВАХ УСЛОВНОЙ ЭКСПОНЕНЦИАЛЬНОЙ УСТОЙЧИВОСТИ. X

ВВЕДЕНИЕ

1. Пусть V^n — n-мерное связное дифференцируемое (класса C^3) многообразие со счетной базой, на котором фиксирована некоторая риманова метрика $\delta(\cdot,\cdot)$ (класса C^2). Через $\left(TV^n,\pi,V^n\right)$ обозначаем касательное расслоение многообразия V^n , пространство TV^n которого стандартным образом наделяется структурой дифференцируемого многообразия (класса C^2).

С помощью римановой метрики $\delta(\cdot,\cdot)$ многообразие V^n стандартным способом наделяется структурой метрического пространства, которое обозначаем через $\left(V^n,\rho\right)$, где $\rho(\cdot,\cdot)$ — расстояние.

Потребуем, чтобы метрическое пространство (V^n, ρ) было полным.

2. Через S обозначается множество всех диффеомофизмов $f:V^n\to V^n$ класса C^1 , отображающих V^n на V^n и удовлетворяющих условию *)

$$\max\left\{\left\|\left|df\right|\right\|,\left\|\left(df\right)^{-1}\right\|\right\} < +\infty,\tag{B.1}$$

где

$$\|df\| = \sup_{def} \|df_x\|, \tag{B.2}$$

$$\left\| (df)^{-1} \right\| = \sup_{def} \left\| (df_x)^{-1} \right\|.$$
 (B.3)

Для всякого $j \in S$ через S_j обозначается подмножество множества S_j состоящее из диффеоморфизмов f_j , удовлетворяющих неравенству

$$\sup_{x\in V^n} \rho\left(fx, jx\right) < +\infty.$$

При всяком $j \in S$ множество S_j наделяется структурой метрического пространства заданием расстояния (в [1] это формула (55)):

$$d_{1}(f,g) = \sup_{x \in V^{n}} \inf_{u \in G(f^{x},g^{x})} \left\{ s(u) + \|\varphi_{u}dg_{x} - df_{x}\| + \|(\varphi_{u}dg_{x})^{-1} - (df_{x})^{-1}\| \right\};$$
 (B.4)

здесь: 1) G(y,z) — множество всех кусочно-гладких путей, идущих из точки z в точку y; при этом под кусочно-гладким путем, идущим из точки z в точку y, понимается непрерывное, имеющее кусочно-непрерывную производную отображение u отрезка [0,1] в многообразие V^n , причем значение u_0 этого отображения в точке θ равно z, а его

 $^{^*}$) Через dt_x обозначается производная отображения f в точке x. Через $\|\cdot\|$ обозначается норма линейного отображения касательного пространства в касательное пространство, определенная стандартным образом через нормы в касательных пространствах, индуцированные римановой метрикой $\delta(\cdot,\cdot)$.

значение u_1 в точке 1 равно y (через u_t обозначаем значение отображения u в точке $t \in [0,1]$);

2)
$$s(u) = \int_{def}^{1} (\delta(\dot{u}_t, \dot{u}_t))^{1/2} dt$$
 — длина пути u ; (B.5)

3) $\varphi_u : \pi^{-1}(z) \to \pi^{-1}(y)$ — параллельный перенос вдоль пути $u \in G(y,z)$.

При всяком $j \in S$ метрическое пространство $\left(S_j, d_1\right)$ полно ([2] предложение 2).

3. При всяком $j \in S$ множество S_j наделяется также другой структурой метрического пространства заданием расстояния $\tilde{d}_1(\cdot,\cdot)$, определяемого формулой (в [1] это формула (56)):

$$\tilde{d}_{1}(f,g) = \sup_{d \in f} \inf_{x \in V^{n}} \inf_{u \in G(fx,gx)} \{s(u) + \|\varphi_{u} dg_{x} - df_{x}\|\}.$$
(B.6)

При всяком $j \in S$ расстояние $d_1(\cdot,\cdot)$ и расстояние $\tilde{d}_1(\cdot,\cdot)$ индуцируют на S_j одну и ту же топологию (см. [1], п. 5).

4. Струей первого порядка*) (или 1-струей) (в многообразии V^n) называется тройка (x, y, L_x^y) , где**) $x \in V^n$, $y \in V^n$, $L_x^y \in Hom(\pi^{-1}(x), \pi^{-1}(y))$.

Множество всех 1-струй (в многообразии V^n) обозначаем через J_1V^n . Множество J_1V^n наделяется структурой метрического пространства заданием расстояния $\rho_1(\cdot,\cdot)$, определяемого формулой

$$\rho_{1}\left(\left(x_{1}, y_{1}, L_{x_{1}}^{y_{1}}\right), \left(x_{2}, y_{2}, M_{x_{2}}^{y_{2}}\right)\right) = \inf_{\substack{u \in G(x_{2}, x_{1}) \\ v \in G(y_{1}, y_{2})}} \left\{s\left(u\right) + s\left(v\right) + \left\|\varphi_{v}M_{x_{2}}^{y_{2}}\varphi_{u} - L_{x_{1}}^{y_{1}}\right\|\right\}$$
(B.7)

для всяких $(x_1, y_1, L_{x_1}^{y_1}) \in J_1V^n$, $(x_2, y_2, M_{x_2}^{y_2}) \in J_1V^n$. В [4] доказано, что эта формула в самом деле определяет расстояние в множестве J_1V^n .

§ 1. Формула

$$p_1(x, y, L_x^y) = x \tag{1}$$

определяет отображение $\rho_{\scriptscriptstyle 1}:J_{\scriptscriptstyle 1}V^{\scriptscriptstyle n}\to V^{\scriptscriptstyle n}$.

Предложение 1. Отображение p_1 метрического пространства $\left(J_1V^n,\rho_1\right)$ в метрическое пространство $\left(V^n,\rho\right)$ равномерно непрерывно.

Доказательство. Для всяких $\left(x_{1},y_{1},L_{x_{1}}^{y_{1}}\right)\in J_{1}V^{n},\;\left(x_{2},y_{2},M_{x_{2}}^{y_{2}}\right)\in J_{1}V^{n}$ имеем

$$\rho\left(p_1\left(x_1,y_1,L_{x_1}^{y_1}\right),p_1\left(x_2,y_2,M_{x_2}^{y_2}\right)\right) = \rho\left(x_1,x_2\right) = \inf_{def} \sup_{u \in G(x_2,x_1)} s\left(u\right) =$$

 $^{^{*)}}$ Это определение, как известно, согласуется с определением, приведенным в [3, с: 188].

^{**)} Через $Hom(V_1,V_2)$ обозначается множество линейных отображений векторного пространства V_1 в векторное пространство V_2 .

$$= \inf_{\substack{u \in G(x_2,x_1) \\ v \in G(y_1,y_2)}} s(u) \leqslant \inf_{\substack{u \in G(x_2,x_1) \\ v \in G(y_1,y_2)}} \left\{ s(u) + s(v) + \left\| \varphi_v M_{x_2}^{y_2} \varphi_u - L_{x_1}^{y_1} \right\| \right\}_{(B.7)} = \rho_1 \left(\left(x_1, y_1, L_{x_1}^{y_1} \right), \left(x_2, y_2, M_{x_2}^{y_2} \right) \right).$$

Предложение 1 доказано.

В силу предложения 1 тройка (J_1V^n, p_1, V^n) является расслоением. В этой статье под (J_1V^n, p_1, V^n) всюду понимается тройка $((J_1V^n, \rho_1), p_1, (V^np))$ (для вас существенна не только топология, но и метрика (вернее, равномерная структура) на J_1V^n и на V^n).

Будем рассматривать сечения s расслоения $\left(J_{1}V^{n}, p_{1}, V^{n}\right)$, т.е. отображения $s:V^{n}\to I_{1}V^{n}$, удовлетворяющие равенству *) $p_{1}s=1_{_{V^{n}}}$. Множество всех сечений расслоения $\left(J_{1}V^{n}, p_{1}, V^{n}\right)$ будем обозначать через \mathbf{G} . Напомним, что сечение s расслоения $\left(J_{1}V^{n}, p_{1}, V^{n}\right)$ называется равномерно непрерывным, если отображение $s:\left(V^{n}\rho\right)\to\left(J_{1}V^{n}, \rho_{1}\right)$ равномерно непрерывно, т. е. если для всякого **) $\varepsilon\in R_{*}^{+}$ найдется $\delta\in R_{*}^{+}$ такое, что для всяких точек $x\in V^{n}$, $y\in V^{n}$, удовлетворяющих неравенству $\rho\left(x,y\right)<\delta$, выполнено неравенство $\rho_{1}\left(sx,sy\right)<\varepsilon$.

Множество всех равномерно непрерывных сечений расслоения (J_1V^n, p_1, V^n) будем обозначать через \mathfrak{S}^u .

Для всякого $q\in \mathfrak{S}$ обозначим через \mathfrak{S}_q множество всех $s\in \mathfrak{S}$, удовлетворяющих условию $\sup_{z\in V^n} \rho_1\big(sz,qz\big) < +\infty$.

При всяком $q \in \mathfrak{S}$ наделим множество \mathfrak{S}_q структурой метрического пространства, задав расстояние

$$\tilde{\rho}_1(s_1, s_2) = \sup_{def} \rho_1(s_1 z, s_2 z)$$
(2)

для всяких $s_1 \in \mathfrak{S}_q$, $s_2 \in \mathfrak{S}_q$.

Предложение 2. Для всякого $q \in \mathfrak{S}$ множество $\mathfrak{S}_q \cap \mathfrak{S}^u$ замкнуто в метрическом пространстве $(\mathfrak{S}_q, \tilde{\rho}_1)$.

Доказательство. Пусть дано $q \in \mathfrak{S}$. Пусть

$$s_i \in \mathfrak{S}_q \cap \mathfrak{S}^u \quad (i \in N), \quad (s \in \mathfrak{S}_q),$$
 (3)

$$\tilde{\rho}_1(s_i,s) \underset{t \to \infty}{\longrightarrow} 0$$
. (4)

Пусть дано $\varepsilon \in R_*^+$. Возьмем $m = m(\varepsilon) \in N$ такое, что

$$\tilde{\rho}_1(s_m, s) < \frac{1}{3}\varepsilon \tag{5}$$

^{*)} Таким образом, в принятом здесь определении сечения не требуется непрерывности отображения $s:V^n \to J_1V^n$

 $^{^{**}}$ Через R_{\star}^{+} обозначается множество всех положительных вещественных чисел.

(такое m существует в силу формулы (4)). Так как $s_m \in \mathfrak{S}^u$, то найдется $\delta = \delta\left(\varepsilon, m(\varepsilon)\right) \in R_*^+$ такое, что для, всяких точек $x \in V^n$, $y \in V^n$, удовлетворяющих неравенству $\rho\left(x,y\right) < \delta$, выполнено неравенство

$$\rho_1(s_m x, s_m y) < \frac{1}{3}\varepsilon. \tag{6}$$

Для всяких точек $x \in V^n$, $y \in V^n$, удовлетворяющих неравенству $\rho(x,y) < \delta$, имеем

$$\rho_1(sx,sy) \leqslant \rho_1(sx,s_mx) + \rho_1(s_mx,s_my) + \rho_1(s_my,sy) \leqslant$$

$$\leq \sup_{z \in V^n} \rho_1(sz, s_m z) + \rho_1(s_m x, s_m y) + \sup_{z \in V^n} \rho_1(s_m z, sz) = 2 \tilde{\rho}_1(s_m, s) + \rho_1(s_m x, s_m y) \lesssim_{(6)}^{(5)} \varepsilon.$$

Таким образом, доказано, что для всякого $\varepsilon \in R_*^+$ найдется $\delta \in R_*^+$ такое, что для всяких точек $x \in V^n$, $y \in V^n$, удовлетворяющих неравенству $\rho(x,y) < \delta$, выполнено неравенство $\rho_1(sx,sy) < \varepsilon$, иными словами, доказано, что $s \in \mathfrak{S}^u$. Предложение 2 доказано.

Пусть $f: V^n \to V^n$ — дифференцируемое отображение. Формула

$$jet_1 fx = (x, fx, df_x) \quad (x \in V^n)$$
(7)

определяет отображение $jet_1f:V^n\to J_1V^n$, называемое 1-струйным расширением отображения (см. [3], с. 188). Из формул (1), (7) следует формула $p_1jet_1f=1_{V^n}$ (для всякого дифференцируемого отображения $f:V^n\to V^n$. Таким образом, для всякого дифференцируемого отображения $f:V^n\to V^n$ отображение $jet_1f:V^n\to J_1V^n$, определенное формулой (7), есть сечение расслоения $\left(J_1V^n,p_1,V^n\right)$ (т.е. $jet_1f\in\mathfrak{S}$).

Так как всякий элемент множества S (см. п. 2 введения) является диффеоморфизмом $V^n \to V^n$, то можно всякому $f \in S$ поставить в соответствие $jet_1 f \in \mathfrak{S}$ и таким образом определить отображение

$$jet_1: S \to \mathfrak{S}.$$
 (8)

Предложение 3. Для всякого $j \in S$ отображение^{*)}

$$jet_1|_{s_i}: S_j \to \mathfrak{S}.$$

является равномерно непрерывным отображением метрического пространства $\left(S_{_{j}}, \tilde{d}_{_{1}}\right)$ в метрическое пространство $\left(\mathfrak{S}_{_{jet_{_{l}}}}, \tilde{\rho}_{_{1}}\right)$.

Доказательство. Пусть дано $j \in S$.

1) Пусть дано $f \in S_i$. Имеем

$$\tilde{d}_{1}(f,j) = \sup_{(B.6)} \inf_{x \in V^{n}} \inf_{u \in G(fx,jx)} \{s(u) + \|\varphi_{u}dj_{x} - df_{x}\|\} < +\infty$$
(9)

(используемые в этой формуле обозначения разъяснены в п. 3 введения; в [1], п. 5 доказано, что $\tilde{d}_1(f,g)<+\infty$ для всяких $f\in S_j$, $g\in S_j$ (напомним, что $j\in S_j$, как видно из определения множества S_j , воспроизведенного выше в п. 2 введения)). Имеем

$$\sup_{x \in V^{n}} \rho_{1}(jet_{1}fx, jet_{1}jx) = \sup_{(7)} \rho_{1}((x, fx, df_{x}), (x, jx, dj_{x})) = \sup_{(B.7)} \inf_{x \in V^{n}} \inf_{u \in G(x, x)} \{s(u) + s(v) + \|\varphi_{v}dj_{x}\varphi_{u} - df_{x}\|\}.$$
(10)

 $^{^{*)}}$ Через $\left. jet_1 \right|_{S_j}$ обозначается сужение на множество $\left. S_j \right.$ отображения $\left. jet_1 : S \to \mathfrak{S}. \right.$

Так как при всяком $x \in V^n$ множеству G(x,x) принадлежит путь u[x], определенный формулой $u[x]_t \equiv x \big(t \in [0,1] \big)$, для которого $s \big(u[x] \big) = 0$, $\varphi_{u[x]} = 1_{\pi^{-1}(x)}$, то при всяком $x \in V^n$ имеет место неравенство

$$\inf_{\substack{u \in G(x,x) \\ v \in G(f_{x},j_{x})}} \left\{ s(u) + s(v) + \|\varphi_{v}dj_{x}\varphi_{u} - df_{x}\| \right\} \leqslant \inf_{\substack{v \in G(f_{x},j_{x}) \\ v \in G(f_{x},j_{x})}} \left\{ s(v) + \|\varphi_{v}dj_{x} - df_{x}\| \right\}.$$

Поэтому из формулы (10) следует неравенство

$$\sup_{x\in V^n} \rho_1(jet_1fx, jet_1jx) \leqslant \sup_{x\in V^n} \inf_{\upsilon\in G(fx, jx)} \left\{ s(\upsilon) + \left\| \varphi_\upsilon dj_x - df_x \right\| \right\}_{(9)} < +\infty,$$

следовательно, $jet_1 f \in \mathfrak{S}jet_{1i}$.

Тем самым доказано включение

$$jet_1S_i \subset \mathfrak{S}jet_1$$
 (11)

2) Пусть $f \in S_i$, $g \in S_i$. Имеем

$$\tilde{\rho}_{1}(jet_{1}f, jet_{1}g) = \sup_{(2)} \rho_{1}(jet_{1}fx, jet_{1}gx) = \sup_{(7)} \rho_{1}((x, fx, df_{x}), (x, gx, dg_{x})) = \sup_{(B.7)} \inf_{x \in V^{n}} \inf_{v \in G(x, x)} \{s(u) + s(v) + \|\varphi_{v}dg_{x}\varphi_{u} - df_{x}\|\}.$$

$$(12)$$

Так как при всяком $x \in V^n$ множеству G(x,x) принадлежит путь u[x], определенный формулой $u[x]_t \equiv x (t \in [0,1])$, для которого s(u[x]) = 0, $\varphi_{u[x]} = 1_{\pi^{-1}(x)}$, то при всяком $x \in V^n$ имеет место неравенство

$$\inf_{\substack{u \in G(x,x) \\ v \in G(fx,gx)}} \left\{ s(u) + s(v) + \|\varphi_v dg_x \varphi_u - df_x\| \right\} \leqslant \inf_{\substack{v \in G(fx,gx) \\ v \in G(fx,gx)}} \left\{ s(v) + \|\varphi_v dg_x - df_x\| \right\}$$

Поэтому из формулы (12) следует неравенство

$$\tilde{\rho}_1(jet_1f, jet_1g) \leqslant \sup_{x \in V^n} \inf_{\upsilon \in G(fx,gx)} \left\{ s(\upsilon) + \left\| \varphi_\upsilon dg_x - df_x \right\| \right\}_{(B.6)} = \tilde{d}_1(f,g).$$

Отсюда следует равномерная непрерывность отображения

$$jet_1|_{s_i}: (S_j, \tilde{d}_1) \rightarrow (\mathfrak{S}jet_{1j}, \tilde{\rho}_1).$$

Предложение 3 доказано.

Положим $S^u = (jet_1)^{-1} \mathfrak{S}^u$ (полный прообраз множества равномерно непрерывных сечений при отображении jet_1).

При всяком $j \in S^u$ рассмотрим множество

$$S_{j}^{u} = \left(\left. jet_{1} \right|_{s_{j}} \right)^{-1} \left(\mathfrak{S}_{jet_{1}j} \cap \mathfrak{S}^{u} \right). \tag{13}$$

Так как при всяком $j \in S$ имеет место включение (11), то $S_j^u = S_j \cap S^u$, иными словами, S_i — есть полный прообраз множества равномерно непрерывных сечений расслоения $\left(J_1V^n, p_1, V^n\right)$ при отображении $jet_1|_{s_j} \colon S_j \to \mathfrak{S}$. Словесное описание множества S_j^u таково: это — множество всех тех диффеоморфизмов $f \in S_j$, 1-струйные расширения которых равномерно непрерывны.

Предложение 4. Для всякого $j \in S^u$ множество S^u_j замкнуто в метрическом пространстве (S_j, \tilde{d}_1) .

Доказательство. Пусть дано $j \in S^u$. В силу предложения 2 (и формулы (8)) множество $\mathfrak{S}_{jet_1j} \cap \mathfrak{S}^u$ замкнуто в метрическом пространстве $(\mathfrak{S}_{jet_1j}, \tilde{\rho}_1)$. В силу предложения 3 отображение

$$jet_1|_{s_i}:(S_j,\tilde{d}_1) \rightarrow (\mathfrak{S}jet_{1j},\tilde{\rho}_1)$$

непрерывно. Следовательно, множество $S_{j}^{u} = \left(jet_{1}|_{s_{j}}\right)^{-1} \left(\mathfrak{S}_{jet_{1}j} \cap \mathfrak{S}^{u}\right)$ замкнуто в метрическом пространстве (S_{j}, \tilde{d}_{1}) . Предложение 4 доказано.

Предложение 5. Для всякого $j \in S^u$ множество S^u_j замкнуто в метрическом, пространстве (S_i, d_1) .

Доказательство. Пусть дано $j \in S^{u}$.

1) Отображение 1_{s_j} метрического пространства (S_j, d_1) на метрическое пространство (S_j, \tilde{d}_1) есть гомеоморфизм (см. п. 3 введения); впрочем, здесь нам достаточна непрерывность этого отображения, следующая из неравенства

$$\tilde{d}_1(f,g) \leqslant d_1(f,g) \quad (f \in S_i, g \in S_i),$$

очевидным образом вытекающего из формул (В.4), (В.6).

2) Множество S_j^u замкнуто в метрическом пространстве (S_j, \tilde{d}_1) в силу предложения 4. В силу непрерывности отображения 1_{s_j} прообраз этого множества, т.е. $\left(1_{s_j}\right)^{-1} S_j^u = S_j^u$ замкнут в метрическом пространстве (S_j, d_1) . Предложение 5 доказано.

Предложение 6. Для всякого $j \in S^u$ метрическое пространство (S_i^u, d_1) полно.

Доказательство. Пусть дано $j \in S^u$. В силу предложения 2 [2] метрическое пространство (S_j,d_1) полно. В силу предложения 5 множество S_j^u замкнуто в метрическом пространстве (S_j,d_1) . Поэтому метрическое пространство (S_j^u,d_1) полно. Предложение 6 доказано.

Литература

- 1. Миллионщиков В. М.—Дифференц. уравнения, 1982, т. 18, № 5, с. 804—821.
- 2. Миллионщиков В. М.— Дифференц. уравнения, 1982, т. 18, № 6, с. 957— 978.
- 3. Ленг С. Введение в теорию дифференцируемых многообразий.— М.: Мир, 1967.— 203 с.
 - 4. Миллионщиков В. М.— Дифференц. уравнения, 1985, т. 21, № 2, с. 223— 236. Московский государственный университет Поступила в редакцию* им. М. В. Ломоносова 24 февраля 1983 г.