В. М. МИЛЛИОНЩИКОВ

БЭРОВСКИЕ КЛАССЫ ФУНКЦИЙ И ПОКАЗАТЕЛИ ЛЯПУНОВА. XII

Эта, заключительная, статья цикла представляет собой сводку основных результатов статей [1—11].

ГЛАВА 1

Пусть V^n — связное полное n- мерное риманово многообразие*). Через S обозначается множество всех векторных полей F класса C^1 на V^n , удовлетворяющих условию**) $\sup_{x \in V^n} \|\nabla F(x)\| < +\infty$.

В множестве S определяется расстояние

$$d(F, G) = |F(x_0) - G(x_0)| + \sup_{x \in V^n} ||\nabla F(x) - \nabla G(x)||,$$

где x_0 — некоторая фиксированная точка многообразия V^n .

Всякое векторное поле $F \in S$ индуцирует гладкое (класса C^1) действие f^t группы \mathbf{R} на V^n .

Для всяких $F \in S$, $x \in V^n$, $k \in \{1, ..., n\}$ определяется показатель Ляпунова***):

$$\lambda_{n-k+1}((F, x)) = \min_{\substack{\text{def } \mathbf{R}^k \in G_k(T_xV^n) \\ \text{(} t \in \mathbf{R})}} \max_{\substack{t \to +\infty \\ \text{(} t \in \mathbf{R})}} \frac{1}{t} \ln |df^t \mathfrak{X}|, \tag{1}$$

где $G_k(T_xV^n)$ — множество всех k-мерных векторных подпространств касательного пространства T_*V^n многообразия V^n в точке x, $\mathbf{R}_*^k = \mathbf{R}^k \setminus \{0\}$.

Через $S \times V^n$ обозначается произведение топологического пространства S (с топологией, индуцированной метрикой $d(\cdot, \cdot)$) и топологического пространства V^n .

Теорема 1. При всяком $i \in \{1, ..., n\}$ функция $\lambda_i(\cdot): S \times V^n \to \mathbf{R}$ есть бэровская функция второго класса.

Теорема 2. В пространстве $S \times V^n$ найдется всюду плотное множество D типа G_δ такое, что при всяком $i \in \{1, ..., n\}$ функция **** $\lambda_i|_D(\cdot): D \to \mathbf{R}$ непрерывна.

Теорема 3. В пространстве $S \times V^n$ найдется всюду плотное множество C типа G_δ такое, что при всяком $i \in \{1, ..., n\}$ функция $\lambda_i(\cdot): S \times V^n \to \mathbf{R}$ полунепрерывна сверху в каждой точке $(F, x) \in C$.

Для всякого $J \in S$ через S_J обозначается подмножество множества S , состоящее из векторных полей, удовлетворяющих условию $\sup_{x \in I'^n} |F(x) - J(x)| < +\infty$ (если V^n компактно

 $^{^{*)}}$ Предполагается, что многообразие V^n принадлежит классу C^2 , риманова метрика — классу C^1 .

^{**)} Через $\nabla F(x)$ обозначается ковариантный дифференциал векторного поля F в точке x. Через $\|\cdot\|$ обозначается норма линейного отображения касательного пространства в касательное пространство, определяемая стандартным образом через нормы в касательных пространствах, индуцированные римановой метрикой.

 $^{^{***}}$ Многие авторы вместо λ_{n-k+1} пишут λ_k .

^{****)} Через $\lambda_i|_D(\cdot)$ обозначается сужение функции $\lambda_i(\cdot)$ на множество D .

(т. е. — замкнутое многообразие), то $S_J = S$ для всякого $J \in S$).

Через $d_1(\cdot, \cdot)$ обозначается расстояние в S_J , определяемое формулой

$$d_1(F, G) = \sup_{\det x \in V^n} |F(x) - G(x)| + \sup_{x \in V^n} ||\nabla (F - G)(x)||.$$

Через $S_J \times V^n$ обозначается произведение топологического пространства S_J (с топологией, индуцированной метрикой $d_1(\cdot\,,\,\cdot)$) и топологического пространства V^n .

Для всякого $J \in S$ для всяких $F \in S_J$, $x \in V^n$, $k \in \{1, ..., n\}$ показатель Ляпунова $\lambda_{n-k+1}((F, x))$ определяется формулой (1).

Для всякого $J \in S$ имеют место следующие три теоремы.

Теорема 1_J . При всяком $i \in \{1, ..., n\}$ функция $\lambda_i(\cdot): S_J \times V^n \to \mathbf{R}$ есть бэровская функция второго класса.

Теорема 2_J . В пространстве $S_J \times V^n$ найдется всюду плотное множество D_J типа G_δ такое, что при всяком $i \in \{1, ..., n\}$ функция $\lambda_i|_{D_I}(\cdot): D_J \to \mathbf{R}$ непрерывна.

Теорема 3_J . В пространстве $S_J \times V^n$ найдется всюду плотное множество C_J типа G_δ такое, что при всяком $i \in \{1, ..., n\}$ функция $\lambda_i(\cdot): S_J \times V^n \to \mathbf{R}$ полунепрерывна сверху в каждой точке $(F, x) \in C_J$.

ГЛАВА 2

Пусть V^n — связное полное n- мерное риманово многообразие^{*)}. Пусть на $\mathfrak{B} \times V^n$, где \mathfrak{B} — некоторое полное метрическое пространство, задана некоторая динамическая система g^t (т. е. непрерывное действие группы \mathbf{R}), удовлетворяющая тождеству

$$pr_2g^t(\beta, x) = x \quad (\forall t \in \mathbf{R}, \ \forall \beta \in \mathfrak{B}, \ \forall x \in V^n)$$

(где pr_2 — проекция произведения $\mathfrak{B} \times V^n n$ на второй сомножитель).

Множество S всех отображений $F(\cdot)$ пространства $\mathfrak B$ (в множество векторных полей F на V^n) таких, что

- 1) отображения**) $\phi_F : \mathfrak{B} \times V^n \to TV^n$, $\psi_F : \mathfrak{B} \times V^n \to T_1^1 V^n$, определенные формулами***) $\phi_F(\beta, x) = F(\beta)(x)$, $\psi_F(\beta, x) = \nabla F(\beta)(x)$ непрерывны;
 - 2) $\sup_{x \in V^n \atop B \in \mathfrak{B}} \|\nabla F(\beta)(x)\| < +\infty$, наделим структурой метрического пространства,

зафиксировав произвольную точку $x_0 \in V^n$ и определив расстояние формулой

$$d_{1}(F(\cdot), G(\cdot)) = \sup_{\substack{\text{def } \beta \in \mathfrak{B}}} |F(\beta)(x_{0}) - G(\beta)(x_{0})| + \sup_{\substack{x \in V^{n} \\ \beta \in \mathfrak{B}}} ||\nabla F(\beta)(x) - \nabla G(\beta)(x)||.$$

Обозначим через $f(\theta, \tau, F(\cdot); \beta)$ оператор Коши дифференциального уравнения $\dot{x} = F(pr_1g^t(\beta, x))(x)$, где pr_1 — проекция произведения $\mathfrak{B} \times V^n$ на первый сомножитель (напомним, что оператор Коши $f(\theta, \tau)$ дифференциального уравнения $\dot{x} = F(t)(x)$)

 $^{^{*)}}$ Предполагается, что многообразие V^n принадлежит классу C^2 , риманова метрика — классу C^1 .

^{**)} Через $T_1^1 V^n$ обозначаем тензорное расслоение (пучок) типа (1.1) над многообразием V^n (1 раз ковариантный, 1 раз контравариантный тензор в пространстве \mathbf{R}^n стандартным образом отождествляется с линейным отображением $\mathbf{R}^n \to \mathbf{R}^n$).

^{***)} Через $F(\beta)(x)$ обозначается значение векторного поля $F(\beta)$ в точке $x \in V^n$, через $\nabla F(\beta)(x)$ — ковариантный дифференциал векторного поля $F(\beta)$ в точке $x \in V^n$.

определяется формулой $f(\theta, \tau) x(\tau) = x(\theta)$, где $x(\cdot)$ пробегает множество всех решений уравнения $\dot{x} = F(t)(x)$.

Для всяких $F(\cdot) \in S$, $\beta \in \mathfrak{B}$, $x \in V^n$, $k \in \{1, ..., n\}$ определяется показатель Ляпунова $\lambda_{n-k+1}(F(\cdot), \ \beta, \ x) = 0$

$$= \min_{\det \mathbf{R}^k \in G_k(T_xV^n)} \max_{\mathbf{x} \in \mathbf{R}^k_*} \frac{\overline{\lim_{\theta \to +\infty}}}{\theta \to \infty} \frac{1}{\theta} \ln |df(\theta, 0; F(\cdot); \beta) \mathbf{x}|,$$

где $G_k(T_xV^n)$ — множество всех k-мерных векторных подпространств касательного пространства T_xV^n многообразия V^n в точке x , $\mathbf{R}_*^k = \mathbf{R}^k \setminus \{0\}$.

Через $S \times \mathfrak{B} \times V^n$ обозначается произведение топологического пространства S (с топологией, индуцированной метрикой $d(\cdot, \cdot)$), \mathfrak{B} и V^n (как топологических пространств).

Теорема 1. При всяком $i \in \{1, ..., n\}$ функция $\lambda_i(\cdot): S \times \mathfrak{B} \times V^n \to \mathbf{R}$ есть бэровская функция второго класса:

Теорема 2. В пространстве $S \times \mathfrak{B} \times V^n$ найдется всюду плотное множество D типа G_δ такое, что при всяком $i \in \{1, ..., n\}$ функция $\lambda_i|_D(\cdot): D \to \mathbf{R}$ непрерывна.

Теорема 3. В пространстве $S \times \mathfrak{B} \times V^n$ найдется всюду плотное множество C типа G_{δ} такое, что при всяком $i \in \{1, ..., n\}$ функция $\lambda_i(\cdot): S \times \mathfrak{B} \times V^n \to \mathbf{R}$ полунепрерывна сверху в каждой точке $(F(\cdot), \beta, x) \in C$.

В рассмотренной в этой главе ситуации имеют место также аналоги (обобщения) теорем 1, -3, главы 1.

ГЛАВА 3

§ 1. Пусть V^n — связное полное n-мерное риманово многообразие*). Через S обозначается множество всех диффеоморфизмов $f:V^n\to V^n$ класса C^1 , отображающих V^n на V^n и удовлетворяющих условию**)

$$\sup_{x \in V^n} \max \{ \| df_x \|, \| (df_x)^{-1} \| \} < +\infty.$$

В множестве S определяется расстояние

$$\tilde{d}(f, g) = \sup_{\det_{x \in V^n}} \inf_{u \in G(fx, gx)} \{ \min \{ s(u); [1 + \rho(x, x_0)]^{-1} + || \varphi_u dg_x - df_x || \}; \}$$

здесь: x_0 — некоторая фиксированная точка многообразия V^n ; G(y,z) — множество всех кусочно-гладких кривых (путей) u, идущих в многообразии V^n из точки z в точку y; s(u) —длина кривой (пути) u; $\rho(\cdot,\cdot)$ — расстояние между точками многообразия V^n ; ϕ_u — преобразование, состоящее в параллельном перенесении касательных векторов вдоль кривой (пути) u.

Замечание 1. Если V^n компактно (т. е. V^n — замкнутое многообразие), то метрика $\tilde{d}(\cdot,\cdot)$ индуцирует на S ту же топологию, что и метрика $\tilde{d}_1(\cdot,\cdot)$, определяемая формулой

$$\tilde{d}_{1}(f, g) = \sup_{\det_{x \in V^{n}}} \inf_{u \in G(fx, gx)} \{s(u) + || \varphi_{u} dg_{x} - df_{x} || \}.$$

 $^{^{*)}}$ Предполагается, что многообразие \boldsymbol{V}^n принадлежит классу \boldsymbol{C}^2 , риманова метрика — классу \boldsymbol{C}^1 .

^{**)} Через df_x обозначается производная отображения f в точке x. Через $\|\cdot\|$ обозначается норма линейного отображения касательного пространства в касательное пространство, определяемая стандартным образом через нормы в касательных пространствах, индуцированные римановой метрикой.

Замечание 2. Пусть $V^n = E^n$ (*n*-мерное евклидово пространство). Тогда метрика $\tilde{d}(\cdot,\cdot)$ индуцирует на S ту же топологию, что и метрика $\tilde{d}_1(\cdot,\cdot)$, определяемая формулой ****):

$$\tilde{\tilde{d}}(f, g) = |fx_0 - gx_0| + \sup_{x \in F^n} ||df_x - dg_x||.$$

Для всяких $f \in S$, $x \in V^n$, $k \in \{1, ..., n\}$ определяется показатель Ляпунова:

$$\lambda_{n-k+1}(f,x) = \min_{\det R^k \in G_k(T_xV^n)} \max_{\mathfrak{X} \in R^k_*} \overline{\lim_{\substack{m \to +\infty \\ (m \in N)}}} \frac{1}{m} \ln \left| df^m \mathfrak{X} \right|, \tag{2}$$

где $G_k(T_xV^n)$ — м но жество всех k-мерных векторных подпространств касательного пространства T_*V^n многообразия V^n в точке x, $R_*^k = R^k \setminus \{0\}$.

Через $S \times V^n$ обозначается произведение топологического пространства S (с топологией, индуцированной метрикой $\tilde{d}(\cdot,\cdot)$) и топологического пространства V^n .

Теорема 1. При всяком $i \in \{1,...,n\}$ функция $\lambda_i(\cdot): S \times V^n \to R$ есть бэровская функция второго класса.

Теорема 2. В пространстве $S \times V^n$ найдется всюду плотное множество D типа G_δ такое, что при всяком $i \in \{1,...,n\}$ функция * $\lambda_i |_D(\cdot): D \to R$ непрерывна.

Теорема 3. В пространстве $S \times V^n$ найдется всюду плотное множество C типа G_δ такое, что при всяком $i \in \{1,...,n\}$ функция $\lambda_i \mid_D (\cdot) : S \times V^n \to R$ полунепрерывна сверху в каждой точке $(f,x) \in C$.

Для всякого $j \in S$ через S_j обозначается подмножество множества S, состоящее из диффеоморфизмов f, удовлетворяющих условию $\sup_{x \in V^n} \rho(fx, jx) < +\infty$ (если V^n компактно (т. е. замкнутое многообразие), то $S_j = S$ для всякого $j \in S$).

Через $\tilde{d}(\cdot,\cdot)$ обозначается расстояние в S_{j} , определяемое формулой

$$\widetilde{d}_{1}(f,g) = \sup_{\det_{x \in V^{n}}} \inf_{u \in G(f_{x},g_{x})} \{s(u) + \|\varphi_{u}dg_{x} - df_{x}\|\}.$$

(Если
$$V^n = E^n$$
, то $\tilde{d}_1(f,g) = \sup_{\det_{x \in E^n}} (|fx - gx| + ||df_x - dg_x||)$).

Через $S \times V^n$ обозначается произведение топологического пространства S_j (с топологией, индуцированной метрикой $\tilde{d}(\cdot,\cdot)$ и топологического пространства V^n .

Для всякого $j \in S$ для всяких $f \in S_j$, $x \in V^n$, $k \in \{1,...,n\}$ показатель Ляпунова $\lambda_{n-k+1}((f,x))$ определяется формулой (2).

Для всякого $j \in S$ имеют место следующие три теоремы.

Теорема 1_j . При всяком $i \in \{1,...,n\}$ функция $\lambda_i(\cdot): S_j \times V^n \to R$ есть бэровская функция второго класса.

T е o p e м a 2_j . B пространстве $S_j \times V^n$ найдется всюду плотное множество D_j типа G_δ такое, что при всяком $i \in \{1,...,n\}$ функция $\lambda_i \Big|_{D_i}(\cdot): D_j \to R$ непрерывна.

^{****)} В случае $V^n = E^n$ касательные пространства стандартным образом отождествляются с E^n ; после этого отождествления разность $df_x - dg_x$ (и норма этой разности) приобретает смысл.

 $^{^{*)}}$ Через $\left. \lambda_i \right|_D(\cdot)$ обозначается сужение функции $\left. \lambda_i(\cdot) \right.$ на множество D.

 $T\ e\ o\ p\ e\ M\ a\ 3_{
m j}.\ B\ npocmpahcmbe\ S_{_j} imes V^{^n}\ haйдется\ всюду\ nлотное\ множество\ C_{_j}$ типа $G_{_\delta}$ такое, что при всяком $i\in\{1,...,n\}$ функция $\lambda_i(\cdot):S_{_j} imes V^{^n} o R$ полунепрерывна сверху в каждой точке $(f,x)\in C_{_j}$.

§ 2. Увеличим на 1 класс гладкости риманова многообразия V^n , т. е. потребуем, чтобы многообразие V^n принадлежало классу C^3 , а риманова метрика — классу C^2 .

Теорема 4. В пространстве $S_j \times V^n$ найдется всюду плотное множество M типа G_δ такое, что для всяких $(f,x) \in M$, $k \in \{1,...,n-1\}$ имеет место альтернатива:

либо $\lambda_{n-k}(f,x) = \lambda_{n-k+1}(f,x)$,

либо подпространство

$$l^{k}(f,x) = \left\{ \mathfrak{X} \in T_{x}V^{n} : \overline{\lim_{\substack{m \to +\infty \\ (m \in N)}}} \frac{1}{m} \ln \left| df^{m} \mathfrak{X} \right| \leq \lambda_{n-k+1}(f,x) \right\}$$

экспоненциально отделено от своего алгебраического дополнения l^{n-k} е пространстве $T_x \times V^n$, т. е. существуют числа $\alpha > 0, \beta > 0$ такие, что для всяких $\mathfrak{x} \in l^{n-k}$, $\mathfrak{y} \in l^k(f,x)$ и всяких целых чисел $t \geqslant s \geqslant 0$ выполнено неравенство

$$|df^t\mathfrak{x}|\cdot|df^s\mathfrak{y}|\geqslant \alpha|df^s\mathfrak{x}|\cdot|df^t\mathfrak{y}|\exp(\beta(t-s)).$$

Для всякого $j \in S$ имеет место следующая

Теорема 4_{j} . В пространстве $S_{j} \times V^{n}$ найдется всюду плотное множество M_{j} типа G_{δ} такое, что для всяких $(f,x) \in M$, $k \in \{1,...,n-1\}$ имеет место альтернатива:

либо $\lambda_{n-k}(f,x) = \lambda_{n-k+1}(f,x)$

либо подпространство

$$l^{k}(f,x) = \left\{ \mathfrak{X} \in T_{x}V^{n} \div \overline{\lim_{\substack{m \to +\infty \\ (m \in N)}}} \frac{1}{m} \ln \left| df^{m} \mathfrak{X} \right| \leqslant \lambda_{n-k+1}(f,x) \right\}$$

экспоненциально отделено от своего алгебраического дополнения l^{n-k} в пространстве $T_x \times V^n$, т. е. существуют числа $\alpha > 0, \beta > 0$ такие, что для всяких $\mathfrak{x} \in l^{n-k}$, $\mathfrak{y} \in l^k(f,x)$ и всяких целых чисел $t \geqslant s \geqslant 0$ выполнено неравенство

$$|df^t \mathfrak{p}| \cdot |df^s \mathfrak{n}| \geqslant \alpha |df^s \mathfrak{p}| \cdot |df^t \mathfrak{n}| \exp(\beta(t-s)).$$

ГЛАВА 4

§ 1. Пусть на полном метрическом пространстве $\mathfrak B$ задана динамическая система (т. е. непрерывное действие группы $\mathbf R$) f^t . Фиксируем в пространстве $\mathbf R^n$ какую-нибудь евклидову структуру. Рассмотрим непрерывное отображение $A(\cdot):\mathfrak B \to \operatorname{Hom}(\mathbf R^n,\mathbf R^n)$, удовлетворяющее условию $\sup_{x\in\mathfrak B} \|A(x)\| < +\infty$. Множество всех таких отображений $A(\cdot)$ (вместо $A(\cdot)$ пишем также A) наделим структурой метрического пространства, определив расстояние формулой

$$d(A_1, A_2) = \sup_{\text{def } x \in \mathfrak{B}} ||A_1(x) - A_2(x)||.$$

 $^{^{*)}}$ Если ${\mathfrak B}$ –компакт, то это условие выполняется автоматически.

Так определенное полное метрическое пространство обозначим через S. При всяких $A \in S$, $x \in \mathfrak{B}$ рассмотрим линейную систему дифференциальных уравнений

$$\dot{\mathfrak{X}} = A(f'x)\mathfrak{X} \quad (\mathfrak{X} \in \mathbb{R}^n). \tag{3}$$

Обозначим через $\lambda_1(A,x) \geqslant ... \geqslant \lambda_n(A,x)$ показатели Ляпунова этой системы.

Теорема 1. При всяком $i \in \{1,...,n\}$ функция $\lambda_i(\cdot): S \times \mathfrak{B} \to R$ есть бэровская функция второго класса.

Теорема 2. В пространстве $S \in \mathfrak{B}$ найдется всюду плотное множество D типа G_{δ} такое, что при всяком $i \in \{1,...,n\}$ функция $\lambda_i|_D(\cdot): D \to R$ непрерывна.

Теорема 3. В пространстве $S\in\mathfrak{B}$ найдется всюду плотное множество C типа G_{δ} такое, что при всяком $i\in\{1,...,n\}$ функция $\lambda_i(\cdot):S\times\mathfrak{B}\to R$ полунепрерывна сверху в каждой точке $(A,x)\in C$.

§ 2 . Теорема 4. В пространстве $S \in \mathfrak{B}$ найдется всюду плотное множество M типа G_{δ} такое, что для всяких $(A,x) \in M$, $k \in \{1,...,n-1\}$ имеет место альтернатива:

либо
$$\lambda_{n-k}(A,x) = \lambda_{n-k+1}(A,x)$$
,

либо подпространство $L^k(A,x)$ векторного пространства L(A,x) всех решений системы (3), состоящее из решений, показатели Ляпунова которых $\leqslant \lambda_{n-k+1}(A,x)$, экспоненциально отделено от всякого своего алгебраического дополнения (в векторном пространстве L(A,x)), т. е. для всякого алгебраического дополнения L^{n-k} подпространства $L^k(A,x)$ (в векторном пространстве L(A,x)) существуют числа $\alpha>0,\beta>0$ такие, что для всяких решений $\mathfrak{x}(\cdot)\in L^{n-k},\mathfrak{y}(\cdot)\in L^k(A,x)$ для всяких вещественных чисел $t\geqslant s\geqslant 0$ имеет место неравенство

$$|\mathfrak{x}(t)| \cdot |\mathfrak{y}(s)| \ge \alpha |\mathfrak{x}(s)| \cdot |\mathfrak{y}(t)| \exp(\beta(t-s)).$$

Литература

- 1. Миллионщиков В. М.— Дифференц. уравнения, 1980, т. 16, № 8, с. 1408-1416.
- 2. Миллионщиков В. М.— Дифференц. уравнения, 1980, т. 16, № 9, с. 1587-1598.
- 3. Миллионщиков В. М.— Дифференц. уравнения, 1980, т. 16, № 10, 1766—1785.
- 4. Миллионщиков В. М.— Дифференц. уравнения, 1981, т. 17, № 3, 431—468.
- 5. Миллионщиков В. М.— Дифференц. уравнения, 1981, т.-17, № 8, с. 1394-1410.
- 6. Миллионщиков В. М.— Дифференц. уравнения, 1982, т. 18, № 5, с. 804-821.
- 7. Миллионщиков В. М.— Дифференц. уравнения, 1982, т. 18, Лз 6, с. 957-978.
- 8. Миллионщиков В. М.— Дифференц. уравнения, 1982, т. 18, № 8, 1330—1345.
- 9. Миллионщиков В. М.— Дифференц. уравнения, 1982, т, 18, № 9, 1507—1548.
- 10. Миллионщиков В. М.—Дифференц. уравнения, 1982, т. 18, №12, с. 2132-2148.
- 11. Миллионщиков В. М.— Дифференц. уравнения, 1983, т. 19, № 2, с. 196-214.

Московский государственный университет им. М. В. Ломоносова

Поступила в редакцию 2 июля 1982 г.