ЗАВИСИМОСТЬ УСЛОВНОЙ ЭКСПОНЕНЦИАЛЬНОЙ УСТОЙЧИВОСТИ ОТ ПАРАМЕТРА

Миллионщиков В.М. (Москва)

Пусть система $\dot{x}=f(x,t)$ такова, что f и f_x' непрерывны в области G пространства ${\bf R}^{n+1}$ (x-n-мерный вектор, t — число). Пусть M — открытое или замкнутое множество в ${\bf R}^m$. Пусть $\mu\mapsto x_\mu$ — гладкое отображение M в ${\bf R}^n$ и пусть (x_μ , t_0) $\in G$ при всяком $\mu\in M$, здесь t_0 — некоторое число. Пусть при всяком $\mu\in M$ решение $x_\mu(\cdot)$ системы $\dot{x}=f(x,t)$, принимающее в точке t_0 значение x_μ , определено при всех $t\geqslant t_0$.

Для всякой точки λ расширенной числовой прямой $\overline{\bf R}$ обозначим через $E_{\lambda}(\mu)$ множество значений в точке t_0 тех решений линеаризованной вдоль $x_{\mu}(\cdot)$ системы, т.е. системы $\dot{z}=f_x'(x_{\mu}(t),\,t)\,z$, которые имеют показатель Ляпунова [1] меньше λ . Множество $E_{\lambda}(\mu)$ при $\lambda=-\infty$ пусто, а при других λ является векторным подпространством в ${\bf R}^n$.

Теорема. В пространстве M имеется всюду плотное множество типа G_{δ} , в каждой точке которого при всяком $\lambda \in \mathbf{\bar{R}}$ отображение $\mu \mapsto E_{\lambda}(\mu)$ пространства M полунепрерывно снизу.

Всюду плотное множество, о котором идет речь в теореме, может не совпадать с M, как показывает пример О.Перрона [2].

Литература.

- 1. Ляпунов А.М. Собрание сочинений. Т. 2. М.–Л.: Изд-во АН СССР, 1956. 472 с.
- 2. Perron O. Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen // Math. Zeitschrift. 1928. Bd. 29. S.129–160.