Доклады Академии наук СССР 1968. Том 179, № 1

УДК 517.941.92 <u>МАТЕМАТИКА</u>

В. М. МИЛЛИОНЩИКОВ

МЕТРИЧЕСКАЯ ТЕОРИЯ ЛИНЕЙНЫХ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

(Представлено академиком А. Н. Колмогоровым 12 VI 1967)

В настоящей работе строится теория линейных систем дифференциальных уравнений, адекватная метрической теории динамических систем. Как известно, доведение траекторий динамической системы Δ , заданной гладким векторным полем на n- мерном многообразии класса C^2 (которое мы будем предполагать компактным), вблизи данной траектории $x_0(t)$ описывается системой в вариациях

$$d\delta x / dt = D_x f(x_0(t)) \, \delta x. \tag{1}$$

Если траектория $x_0(t)$ фиксирована, то мы имеем дело с фиксированной линейной системой

$$\dot{x} = A(t) x. \tag{2}$$

(Результаты, полученные для таких систем до 1965 г., изложены в $\binom{1}{3}$.)

Однако с точки зрения метрической теории динамических систем (см. (2), гл. VI) существенно поведение не отдельной траектории системы Δ , а совокупностей траекторий, множество начальных точек которых имеет положительную инвариантную меру. По теореме Крылова — Боголюбова (см. $(^2)$, стр. 514, теорема 24) на системе Δ существует нормированная инвариантная мера. В соответствии с этим нас будут интересовать не отдельные системы (2), а некоторые их совокупности. Предположим теперь, что многообразие вложено в эвклидово пространство и векторное поле определено в его окрестности. Легко видеть, что если $x_k(t)$ — траектории системы Δ , то $\tilde{x}(t) = \lim_{k \to \infty} x_k(t_k + t)$ (предел равномерный на отрезках) — также траектория системы Δ , и что если система в вариациях вдоль траектории $x_k(t)$ есть $d\delta x/dt = A_k(t)\delta x$, то система в вариациях вдоль траектории $\tilde{x}(t)$ есть $d\delta x/dt = \tilde{A}(t)\delta x$, где $\tilde{A}(t) = \lim_{k \to \infty} A_k(t_k + t)$ (предел равномерный на отрезках). Мы получаем, таким образом, естественное непрерывное отображение динамической системы Δ в динамическую систему D сдвигов матричных функций A(t) (эта система описана на стр. 533—535 в (2), правда, для числовых функций, но различие несущественно). Нам будет удобнее, фиксировав любую траекторию $x_0(t)$ системы Δ , рассматривать подсистему $\Delta_{x_0(t)}$ системы Δ , определенную на замыкании траектории $x_0(t)$. Первый основной шаг состоит в том, чтобы отвлечься от этой динамической системы и рассматривать динамическую систему $D_{\scriptscriptstyle A}$ сдвигов матричной функции $A(t) \equiv D_x f(x_0(t))$ (подсистему системы D), которая является непрерывным образом системы $\Delta_{x_0(t)}$. (Заметим, что, например, из строгой эргодичности динамической системы Δ вытекает строгая эргодичность динамической системы $D_{_A}$ и т. п.).

Итак, пусть дана матричная функция A(t), ограниченная и равномерно непрерывная на прямой. Будем изучать систему (2). (Система (2) уже может не быть системой в вариациях ни для какой динамической системы Δ , поэтому эта задача общее предыдущей.)

Одним из основных орудий при изучении системы (2) является приведение ее к треугольному виду

$$\dot{u} = P(t)u; \quad P(t) = \begin{pmatrix} p_{11}(t), & \dots, & p_{1n}(t) \\ \vdots & \ddots & \vdots \\ 0 & \vdots & p_{nn}(t) \end{pmatrix}$$
(3)

перроновским преобразованием x = U(t)u (см. (¹), стр. 261—272). Зафиксируем такое преобразование и рассмотрим динамическую систему D_p сдвигов матричной функции P(t).

Сначала наша цель — изучение связей между динамическими системами D_A и \bar{D}_P (их пространства обозначим соответственно R_A и R_P). Следующее легкое рассуждение объяснит, для чего это нужно. Функции $\phi_i(\tilde{P}) \equiv \tilde{p}_{ii}(0)$, где $\tilde{P}(t) \in R_P$, непрерывны на R_P . Поэтому, согласно эргодической теореме Биркгофа (см. (²), стр. 480—490), для почти всех $\tilde{P} \in R_P$ (в смысле любой инвариантной меры на D_P) существуют средние

$$\overline{\lim_{t\to+\infty}} \frac{1}{t} \int_{0}^{t} \varphi_{i}(\tilde{P}(\tau)) d\tau = \overline{\lim_{t\to+\infty}} \frac{1}{t} \int_{0}^{t} \tilde{p}_{ii}(\tau) d\tau,$$

а значит, система $\dot{u}=\tilde{P}(t)u$ правильная (см. (¹), стр. 141, теорема Ляпунова). Спрашивается, будут ли в D_A почти все (в смысле любой инвариантной меры на D_A) $\tilde{A}(t)\in R_A$ таковы, что система $\dot{x}=\tilde{A}(t)\,x$ — правильная? (Из теоремы 2 вытекает, в частности, положительное решение этого вопроса.)

Определим отображение F системы $D_{\scriptscriptstyle A}$ на систему $D_{\scriptscriptstyle P}$ так:

$$F\left(\tilde{A}\left(t\right) \equiv \lim_{k \to \infty} A\left(t_k + t\right)\right) = \tilde{P}\left(t\right) \equiv \lim_{k \to \infty} P\left(t_k + t\right)$$

(знак lim здесь означает не предел, а любую из предельных точек последовательности, так что это отображение — многозначное в обе стороны).

Фундаментальная роль отображения F основана на следующем предложении, доказательство которого см. в $\binom{6}{2}$.

Лемма 1. Если $F(\tilde{A}) = \tilde{P}$, то существует перроновское преобразование $x = \tilde{U}(t)u$, приводящее систему $\dot{x} \neq \tilde{A}(t)x$ к треугольному виду $\dot{u} = \tilde{P}(t)u$.

Используя то обстоятельство, что F и F^{-1} переводят замкнутые множества в замкнутые, удается оценивать инвариантные меры множеств в D_A через инвариантные меры их образов в D_P , и наоборот, и это дает возможность доказать следующую лемму. (В дальнейшем инвариантная мера всегда предполагается нормированной регулярной мерой Каратеодори — Лебега (см. $(^2)$, стр. 461, аксиома V).)

 Π е м м а 2. Для всякой инвариантной меры μ на D_A для всякого множества $M \subseteq R_A$ такого, что $\mu(M) > 0$ (соответственно =1), существует инвариантная мера ν на D_P такая, что $\nu(F(M) > 0$ (соответственно =1).

Обратно, для всякой инвариантной меры ν на D_P и всякого множества $N \subseteq R_P$ такого, что $\nu(N) > 0$ (соответственно =1), существует инвариантная мера μ на D_A такая, что $\mu(F^{-1}(N) > 0$ (соответственно =1).

Определение 1 (см. $(^6)$). Назовем λ вероятным показателем системы (2), если некоторое перроновское преобразование x = U(t)u приводит систему (2) к треугольному виду (3) такому, что для некоторого i на динамической системе D_p найдется инвариантная мера ν такая, что

$$\overline{\lim}_{t\to\infty}\frac{1}{t}\int_{0}^{t}\tilde{p}_{ii}(\tau)\,d\tau=\lambda$$

для почти всякой (в смысле меры \mathbf{v}) $\tilde{P}(t) \in R_{\scriptscriptstyle P}$.

Из леммы 2 вытекает, что определение 1 эквивалентно следующему определению.

Определение 2. Назовем λ вероятным показателем системы (2), если на динамической системе D_A существует инвариантная мера μ такая, что для почти всех (в смысле меры μ) $\tilde{A}(t) \in R_A$ система $\dot{x} = \tilde{A}(t)x$ имеет λ одним из своих характеристических показателей.

Множество вероятных показателей системы (2) будем обозначать Λ_P или $\Lambda_P(A)$ и называть вероятным спектром системы (2).

Теорем а 1. Для всякого обобщенного решения системы (2) $\tilde{x}(t) = \lim_{k \to \infty} x_k(t_k + t)$ (т. е. обычного, сдвига обычного или предельного решения, см. (4)) числа

$$\overline{\lambda} = \overline{\lim_{t \to \tau \to +\infty}} \frac{1}{t - \tau} \ln \frac{\parallel \tilde{x}(t) \parallel}{\parallel \tilde{x}(\tau) \parallel}, \quad \underline{\lambda} = \underline{\lim_{t \to \tau \to +\infty}} \frac{1}{t - \tau} \ln \frac{\parallel \tilde{x}(t) \parallel}{\parallel \tilde{x}(\tau) \parallel}$$

принадлежат $\Lambda_{P}(A)$.

Особые показатели Ω^0 и ω^0 системы (2) (см., например, (1), стр. 191) также принадлежат $\Lambda_P(A)$. Теорема вытекает из (6) и леммы 2.

Теорема 2. В смысле любой инвариантной меры на динамической системе D_A почти все $\tilde{A}(t) \in R_A$ таковы, что система $\dot{x} = \tilde{A}(t)x$ статистически правильная (см. (5)).

Теорема вытекает из $\binom{6}{}$ и леммы 2.

Справедлива также (см. $(^6)$, теорема 4).

Теорема 3. Если система (2) статистически правильная, то ее наибольший характеристический показатель прочен вверх, а наименьший прочен вниз (объяснение этих терминов, см. в $(^1)$, стр. 162, определение 13.1.1).

Определение 3. Назовем систему (2) бирегулярной, если существует перроновское преобразование x = U(t)u, приводящее ее к треугольному виду (3), такому, что существуют пределы

$$\lambda_i = \lim_{t \to \pm \infty} \frac{1}{t} \int_0^t p_{ii}(\tau) d\tau \quad (i = 1, 2, ..., n).$$

Теорема 4. В смысле любой транзитивной инвариантной меры на D_A почти все $\tilde{A}(t) \in R_A$ таковы, что система $\dot{x} = \tilde{A}(t) x$ бирегулярна, и ее характеристические показатели одни и те же для почти всех (в смысле этой меры) $\tilde{A}(t) \in R_A$.

Смысл введения бирегулярных систем (очевидно, это подкласс правильных систем) состоит в том, что для них, наряду с теоремой 4, имеет место следующая

Теорема 5. Пусть система (2) перроновскими преобразованиями x = U(t)u и x = V(t)v приводится к треугольному виду соответственно $\dot{u} = P(t)u$, $\dot{v} = Q(t)v$, причем

$$\lim_{t \to \pm \infty} \frac{1}{t} \int_{0}^{t} p_{ii}(\tau) d\tau = \lim_{t \to \pm \infty} \frac{1}{t} \int_{0}^{t} q_{ii}(\tau) d\tau = \lambda_{i}$$

$$(i = 1, 2, ..., n).$$
(4)

Пусть λ_i все различны. Тогда Q(t) = P(t).

Из теоремы 4 и 5 вытекает

T е o p е m a 6. Пусть μ — транзитивная инвариантная мера на D_{A} , и пусть почти

все (в смысле меры μ) $\tilde{A}(t) \in R_A$ таковы, что система $\dot{x} = \tilde{A}(t)x$ не имеет кратных характеристических показателей. Тогда отображение F, определенное выше, почти всюду (в смысле меры μ) конечнозначно.

Рассмотрим теперь важный частный случай системы (2), а именно, предположим, что динамическая система D_A строго эргодическая. (Так будет, например, если матрица A(t) почти периодическая по t.)

Из леммы 2 и теоремы 4 вытекает

Теорем а 7. Пусть динамическая система D_A строго эргодическая. Тогда для почти каждой $\tilde{A}(t) \in R_A$ (в смысле той единственной инвариантной меры, которая есть на D_A) всякая $P(t) = F(\tilde{A}(t))$ (отображение F может быть не однозначно!) имеет одни и те же (но только, может быть, занумерованные в разном порядке!)

$$\lambda_i = \lim_{t \to \pm \infty} \frac{1}{t} \int_0^t p_{ii}(\tau) d\tau \quad (i = 1, 2, ..., n),$$

и набор этих λ_i совпадает с вероятным спектром $\Lambda_P(A)$.

Следствие 1. Если динамическая система D_A строго эргодическая, то мощность вероятного спектра $\Lambda_P(A)$ системы (2) не превосходит n (порядка системы (2)).

Следствие 2. Если динамическая система D_A строго эргодическая, и $\Lambda_P(A)$ состоит из n различных чисел, то отображение F почти всюду на D_A (в смысле инвариантной меры на D_A) конечнозначно (число значений $\leqslant n$!).

Следствие 3^* . Если динамическая система $D_{\scriptscriptstyle A}$ строго эргодическая, то для почти всякой $\tilde{A}(t) \in R_{\scriptscriptstyle A}$ (в смысле инвариантной меры на $D_{\scriptscriptstyle A}$) наибольший характеристический показатель системы $\dot{x} = \tilde{A}(t) \, x$ равен Ω^0 , а наименьший равен ω^0 .

Примечание при корректуре. Нам стало известно, что в статье Оселедца $(^{7})$ имеются утверждения, близкие к лемме 2 и теореме 4.

Московский государственный университет им. М. В. Ломоносова

Поступило 12 VI 1967

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Ф. Былов, Р. Э. Виноград и др., Теория показателей Ляпунова, «Наука», 1966. ² В. В. Немыцкий, В. В. Степанов, Качественная теория дифференциальных уравнений, 2-е изд., М. — Л., 1949. ³ З. П. Еругин, Линейные системы обыкновенных дифференциальных уравнений, Минск, 1963. ⁴ В. М. Миллионщиков, ДАН, **161**, № 1, 43 (1965). ⁵ В. М. Миллионщиков, Матем. заметки, **2**, в. 3, 315 (1967). ⁶ В. М. Миллионщиков, Матем. сборн., **75 (117)**, в. 1, 154 (1968). ⁷ В. И. Оселедец, Тр. Моск. матем. общ., **19** (1968).

^{*} Вытекает из теорем 1 и 7.