Доклады Академии наук СССР 1960. Том 131, № 3

МАТЕМАТИКА

В. М. МИЛЛИОНЩИКОВ

К ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ $\frac{dx}{dt} = f(x,t)$ В ЛОКАЛЬНО ВЫПУКЛЫХ ПРОСТРАНСТВАХ

(Представлено академиком С. Л. Соболевым 23 XI 1959)

В этой работе обобщаются на случай полных локально выпуклых пространств некоторые теоремы, известные для уравнения dx/dt = f(x,t) в банаховых пространствах $\binom{1}{t}$.

Пусть E — полное локально выпуклое пространство и $\{p(x)\}$ — достаточное множество полунорм в E (²). Пусть $\mathfrak{F}(S,E)$ — множество отображений измеримого множества $S \subseteq E^n$ (mes $S \le \infty$) в E ($E^n - n$ — мерное эвклидово пространство).

Функция $x(a) \in \mathfrak{F}(S,E)$ называется интегрируемой на S, если существует направленная последовательность функций $x_{\beta}(\alpha) \in \mathfrak{F}(S,E)$ (где $\beta \in B$; B — направленное множество) такая, что:

- 1) каждая $x_{\beta}(\alpha)$ счетнозначная функция (³);
- 2) для каждой полунормы $p(x) \in \{p(x)\}$ $Is(x_{\beta}(\alpha)) = \sum_{i=1}^{\infty} p \left[x_{\beta}(\alpha_{i\beta})\right] \times \text{mes } S_{i,\beta} < \infty,$ где $S_{i,\beta}(i=1,...,n,...)$ множества, на которых $x_{\beta}(\alpha)$ постоянна, а $\alpha_{i,\beta} \in S_{i,\beta}$;
- 3) для всякого $\varepsilon > 0$ и $p(x) \in \{p(x)\}$ существует $\beta \in B$ такое, что $Is(x_{\beta'}(\alpha) x_{\beta''}(\alpha)) < \varepsilon$ для всяких $\beta', \beta'' > \beta; \beta', \beta'' \in B$;
- 4) для всякого $\varepsilon>0$ существует $S_{\delta}\subset S$, mes $S_{\varepsilon}<\varepsilon$, такое, что $\left\{x_{\beta}(\alpha)\right\}$ равномерно на $S\backslash S_{\varepsilon}$ сходится к $x(\alpha)$.

Тогда $I = \frac{\lim}{\beta \in B} \sum_{i=1}^{\infty} x_{\beta}(\alpha_{i\beta}) \text{mes} S_{i,\beta}$ существует и не зависит от выбора $\left\{ x_{\beta}(\alpha) \right\}$ со свойствами 1) — 4).

I называем и н т е г р а л о м $\int_{S} x(\alpha) d\alpha$ (более общий интеграл введен в (⁴)).

Введенный интеграл обладает следующими свойствами:

- 1° . I вполне аддитивная функция множеств.
- 2° . I абсолютно непрерывная функция множеств.
- 3° . Если $x(\alpha)$ и $y(\alpha)$ интегрируемы, то

$$\int_{S} \left[\mu x(\alpha) + v y(\alpha) \right] d\alpha = \mu \int_{S} x(\alpha) d\alpha + v \int_{S} y(\alpha) d\alpha$$

4°. Если $x(\alpha)$ интегрируема, то суммируема $p(x(\alpha))$ и

$$p(\int_{S} x(\alpha)d\alpha) \leqslant \int_{S} p(x(\alpha))d\alpha$$

5°. Пусть $x(\alpha)$ определена на компактном $S \subset E^n$ и множество $\mathfrak X$ ее значений ограничено (5). Пусть для всякого $\varepsilon > 0$ существует $S_{\delta} \subset S$, mes $S_{\varepsilon} < \varepsilon$, такое, что $x(\alpha)$

непрерывна на $S \setminus S_{\varepsilon}$. Тогда $x(\alpha)$ интегрируема на $S \cup \int_{\alpha} x(\alpha) d\alpha \in \text{mes} S \cdot [\mathfrak{X}]$, где $[\mathfrak{X}]$ замкнутая выпуклая оболочка множества $\mathfrak X$.

6°. Если $x(\alpha)$ интегрируема на S и непрерывна в $\alpha_0 \in S$ (по отношению к S), то $\lim_{d(\mathcal{Q})\to 0,\alpha_0\in\mathcal{Q}}\frac{1}{\mathrm{mes}Q}\int\limits_{\Omega}x(\alpha)d\alpha \ \ \mathrm{существует}\ \mathrm{u}\ \mathrm{равен}\ x(\alpha_0).$

7°. Система

$$x(t_0) = x_0$$
 , $\frac{dt}{dx} = f(x,t)$, $x(t) \in M \subseteq E$ для $|t - t_0| \leqslant \alpha$,

где f(x,t) непрерывно отображает $M \times E^1$ в E, эквивалентна уравнению

$$x(t) = x_0 + \int_{t_0}^t f(x(\tau), \tau) d\tau.$$

Определение. Оператор $A(A(E)\subseteq E)$ называется сжимающим, если существует $0\leqslant q\le 1$ такое, что для всяких $p(x)\in \big\{p(x)\big\}$, $x,\ y\in E$

$$p(A(x) - A(y)) \leqslant qp(x - y). \tag{1}$$

Теорема 1. Пусть A — сжимающий оператор, $\phi \neq T = \overline{T} \subseteq E$, $A(T) \subseteq T$.

Тогда существует, и притом единственный в E, $x \in T$ такой, что A(x) = x.

Теорема 2 $(^6)$. Пусть T — замкнутое выпуклое множество $\subseteq E$. Пусть на T заданы операторы $A_i(A_i(E) \subseteq E, i-1,2)$, причем: 1) A_1 — сжимающий оператор; 2) $\overline{A_2(T)}$ бикомпактно; 3) A_2 непрерывен; 4): если $x, y \in T$, то $A_1(x) + A_2(y) \in T$.

Тогда существует $x \in T$ такой, что $A_1(x) + A_2(y) = x$.

Доказательство. Пусть $x \in T$. Тогда (условия 1), 4) и теорема 1) существует, и притом единственный, $y \in T$ такой, что $y = A_1(y) + A_2(x)$ т. е. На T определен оператор y = C(x), для которого

$$C(x) = A_1 C(x) + A_2(x), C(T) \subseteq T$$
 (2)

 $C(x) = A_1C(x) + A_2(x), C(I) \subseteq I \tag{2}$ Пусть z, $v \in T$. Тогда из (2) и условия 1) получаем $p(C(z) - C(v)) \leqslant \frac{1}{1-q} p(A_2(z) - A_2(v))$ для всякой полунормы $p(x) \in \{p(x)\}$.

Отсюда, в силу условий 2), 3), C непрерывен и $\overline{C(T)}$ бикомпактно (последнее при помощи $(^{8})$). Рассматривая C лишь на замкнутой выпуклой оболочке множества $\overline{C(T)}$ $(^{7})$ и применяя принцип Тихонова (9), получаем утверждение теоремы.

Пусть \tilde{E}_s — пространство равномерной сходимости на компактах непрерывных отображений множества $S \subseteq E^1$ в E. Тогда \tilde{E}_s — полное локально выпуклое пространство с достаточным множеством полунорм $\left\{ \tilde{p}_{p,B}(\tilde{x}) = \sup_{t \in B} p(x(t)) \right\}, \left| \tilde{x} = x(t) \in \tilde{E}_{S} \right|,$ где p(x) пробегает $\{p(x)\}$, а B пробегает некоторое покрытие S компактами. \tilde{M}_S обозначает множество отображений S в $M \subseteq E$.

 Π емма 1. Пусть f(x,t) непрерывно отображает $M \times S$ в E, где $M \subseteq E$, $S = \begin{bmatrix} t_0 - h, t_0 + h \end{bmatrix} \subset E^1$. Пусть $K(t) \geqslant 0$ — действительная функция такая, что

$$\left|(L)\int\limits_{t_0}^t K(\tau)d\tau\right|\leqslant q<1\ (t\in S)\ u\ npu\ всяких\ x\ ,\ y\in M\ ,\ p(x)\in\big\{p(x)\big\}$$

$$p(f(x,t)-f(y,t) \leqslant K(t)p(x-y)$$

Тогда $A(\tilde{x}) = x_0 + \int_{t_0}^t f(x(\tau), \tau) d\tau$ — сжимающий оператор, определенный на \tilde{M}_S .

Лемма вытекает из свойств 5°, 2°, 4° интеграла.

Теорема 3. Пусть f(x,t) непрерывно отображает $U \times [t_0 - a, t_0 + a]$ в E, где $U = U(x : p_i(x - x_0) \leqslant \varepsilon$, $p_i(x) \in \{p(x)\}$, (i = 1, ..., n) и пусть $\sup_{x \in U: |i-t_0| \leqslant a} p_i(f(x,t)) < \infty$ (i = 1, ..., n) . Пусть $K(t) \geqslant 0$ суммируема на $[t_0 - a, t_0 + a]$ и для

всяких x, $y \in U$, $p(x) \in \{p(x)\}$

$$p(f(x,t)-f(y,t) \leq K(t)p(x-y)$$
.

Тогда существует h_0 , $0 < h_0 \leqslant a$, такое, что для всякого h, $0 < h \leqslant h_0$ существует, и притом единственное, решение x(t) начальной задачи dx/dt = f(x,t), $x(t_0) = x_0$, определенное на $\begin{bmatrix} t_0 - h, t_0 + h \end{bmatrix}$.

Доказательство. Положим $h_0 = \min(h_1,h_2)$, где таково, h_1 что $\max(\int\limits_{t_0}^{t_0+h_1}K(\tau)d\tau, \int\limits_{t_0-h_1}^{t_0}K(\tau)d\tau)\leqslant q<1$ $h_2=\frac{\varepsilon}{\sup\limits_{x\in U;|t-t_0|\leqslant a,i=1,\dots,n}pi(f(x,t))}$. Пусть $h< h_0$. Тогда, по лемме 1, выбору $h_2>h$ и теореме 1, оператор

Пусть $h < h_0$. Тогда, по лемме 1, выбору $h_2 > h$ и теореме 1, оператор $A(\tilde{x}) = x_0 + \int\limits_{t_0}^t f(x(\tau), \tau) d\tau$ имеет в замкнутом множестве $\tilde{U}_{[t_0 - h, t_0 + h]} \subset \tilde{E}_{[t_0 - h, t_0 + h]}$ единственную неподвижную точку. Так как для всякого решения x(t) системы,

 $dx/dt = f(x,t), x(t_0) = x_0$ существует $\delta > 0$ такое, что $x(t) \in U$ при $|t-t_0| < \delta$, то теорема доказана.

Замечание. Если в условии теоремы 3 заменить U на все E и $\int_{-\infty}^{+\infty} K(\tau) d\tau < 1$, то существует решение, определенное на всей прямой.

 Π емма 2. Пусть f(x,t) непрерывно отображает $M \times S$ в E , где $M \subseteq E$, $S \subseteq E^1$.

Тогда оператор $F(\tilde{x}) = f(x(t),t)$: 1) определен на \tilde{M}_S и действует в \tilde{E}_S ; 2) непрерывен. Доказательства 2) состоит в том, что непрерывный оператор f(x,t) непрерывен равномерно относительно каждого бикомпактного множества $\mathfrak{X} \times B$, где — $B \subset S$ произвольный компакт, а \mathfrak{X} — множество значений произвольной $\tilde{x} \in \tilde{E}_S$ на нем.

Лемма 3. Пусть f(x,t) непрерывно отображает $M \times S$ в E ($M \subseteq E$, $S \subseteq E^1$), причем для каждого компакта $B \subseteq S$ существует бикомпакт $F_B \subset E$ такой, что $f(M \times B) \subseteq F_B$.

Тогда оператор $A(\tilde{x}) = \int_{t_0}^t f(x(\tau), \tau) d\tau$: 1) непрерывен на \tilde{M}_S и действует в \tilde{E}_S ; 2)

Доказательство. 1) следует из леммы 2 и свойства 4° интеграла. 2) следует из свойства 5° интеграла и теоремы Асколи (11).

Теорема 4. Пусть $f(x,t) = f_1(x,t) + f_2(x,t)$, где $f_1(x,t)$, $f_2(x,t)$ непрерывно отображают $U \times [t_0 - a, t_0 + a]$ в $E(U = U(x : p_i(x - x_0) \leqslant \varepsilon, p_i(x) \in \{p(x)\}, (i = 1, ..., n).$

Пусть $\overline{f_2(U \times [t_0 - a, t_0 + a])}$ бикомпактно, удовлетворяет $f_1(x,t)$ условиям теоремы 3.

Тогда найдется h>0 такое, что существует решение начальной задачи $x(t_0)=x_0$, dx/dt=f(x,t), определенное на t_0-a,t_0+a .

Теорема 5 (12). Пусть f(x,t) удовлетворяет условиям леммы 3, где M=E $S=\begin{bmatrix}t_0,+\infty\end{bmatrix}$, и пусть существует $p_0(x)\in\{p(x)\}$ и непрерывная функция G(r,t), неубывающая по $r(t\geqslant 0,r\geqslant 0)$ такая, что при $x\in E,t\in S$

$$p_0(f(x,t)) \leqslant G(p_0(x),t) \tag{3}$$

Пусть для всякого $r_0 > 0$ существует функция g(t), определенная на S, такая, что

$$\frac{dg}{dt} \geqslant G(g(t),t), \ g(t_0) = r_0 \tag{4}$$

Тогда для всякого $x_0 \in E$ существует решение начальной задачи dx/dt = f(x,t), $x(t_0) = x_0$, определенное на всем S.

Доказательство. На замкнутом выпуклом множестве $T=T(\tilde{x}=x(t):p_0(x(t))\leqslant g(t))$

$$(T\subset \tilde{E}_S)$$
 определим оператор $A(\tilde{x})=x_0+\int\limits_{t_0}^tf(x(au), au)d au$. По лемме 3 $\overline{A(T)}$ бикомпакт $\subset \tilde{E}_S$

и A непрерывен на T . Из (3) и (4) выводим $A(T) \subseteq T$. Применяя принцип Тихонова, заканчиваем доказательство.

Аналогично доказываются теоремы 6 и $7(^{12})$.

Теорема 6. Пусть условия теоремы 5 выполнены для всякой $p_0(x) \in \{p(x)\}$, а g(t) ограничена.

Тогда решение x(t) начальной задачи ограничено (т. е. множество значений функции x(t) ограничено (5)).

Теорема 7. Пусть условия теоремы 5 выполнены для всякой $p_0(x) \in \{p(x)\}$, причем (3) может быть выполнено лишь для x в некоторой окрестности нуля, а в (4) — строгое равенство. Пусть f(0,t)=0, G(0,t)=0, причем точка g=0 для уравнения dg/dt=G(g(t),t) устойчива (асимптотически устойчива).

Tогда x=0 устойчивая (соответственно асимптотически устойчивая) точка для уравнения dx/dt=f(x,t).

Выражаю благодарность В. В. Немыцкому за постановку задачи и указания.

Московский государственный университет им. М. В. Ломоносова

Поступило 20 XI 1959

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Красносельский, С. Г. Крейн, Тр. семинара по функциональн. анализу Воронежск. гос. унив., в. 2 (1956). ² М. А. Наймарк, Нормированные кольца, М., 1956, стр. 46—52. ³ Э. Хилл, Функциональный анализ полугруппы, ИЛ, 1951, стр. 54, определение 3.2.2 (3). ⁴ R. S. Phillips, Trans. Am. Math. Soc, 47, № 1, 114 (1940). ⁵ И. М. Гельфанд, Г. Е. Ш и л о в, Обобщенные функции, в. 2, Пространства основных и обобщенных функций, М., 1958, стр. 45. ⁶ М. А. Красносельский, Усп. матем. наук, **10**, в. 1 (63), 123 (1955). ⁷ Н. Бурбаки, Векторные топологические пространства, ИЛ, 1959, гл. II, § 4, п. 1. ⁸ Н. Бурбаки, Общая топология, М., 1958, гл. II, § 4, теорема 3. ⁹А. Тусhonoff. Math. Ann., **111**, 767 (1935). ¹⁰ Н. Бурбаки, Общая топология, М., 1958, гл. I, §4, теорема 1. ¹¹ N. Bourbaki, Тороlogie generate, 1953, Ch. X, § 4, theoreme 1. ¹² A. Stokes, Proc. Nat. Acad. Sci. USA, **45**, № 2, 231 (1959).