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Abstract. We prove that the uniqueness in law for a SDE
m
dX] =bj(X)dt+ > o (X)dB], Xj=2' (i=1,...,n) (%)
=1

implies the uniqueness of the joint distribution of a pair (X, B).

Moreover, we prove that the uniqueness in law for (x), together with the
strong existence, guarantees the pathwise uniqueness. This result is somehow
”dual” to the theorem of Yamada and Watanabe.
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1 Introduction

Let C(R.,R™) be the space of continuous functions R, — R". Recall that the coor-
dinate process Y = (Y;);>o on this space is defined by

V;: C(R.,R") >y — y(t) € R".

The filtration H; = (.. 0(Y;: s < t+¢) is called the canonical filtration on C(Ry,R").
The predictable o-field on C(Ry,R™) is the o-field generated by the left-continuous
(H:)-adapted processes on C(R;,R").

In this paper, we will deal with the multidimensional stochastic differential equa-
tions (abbreviated below as SDEs) of the form

dX] =b)(X)dt+Y o/ (X)dB], Xj=2' (i=1,....n), (1.1)
j=1

where n € N, m € N, z € R", and b, o are predictable processes on C(R,,R")
taking values in R" and R"*™ , respectively.

Remark. We fix a starting point = together with b and o. In our terminology,
SDEs with the same b and ¢ and with different starting points are different SDEs. O
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Definition 1.1. A solution of (1.1) is a pair (X, B) of adapted processes on a
filtered probability space (€2, F, (F;):>0, P) such that

i) B is an (F;,P)-BM™(0), i.e. B is an m-dimensional Brownian motion started
at zero and is an (F, P)-martingale;

ii) for any t > 0,

/olt (g ()] + ii(oiﬁ(}of) ds < oo P-as.;

i=1 j=1

iii) forany t >0, i=1,...,n,
X =o'+ / B(X)ds+ > / o¥(X)dB! P-as. (1.2)
0 =10

Remark. In what follows, we will use the vector form of the notation. If b is an
n-dimensional process, then by fot bs ds we will mean the n-dimensional process whose

t-th component equals fot b. ds. If M is an m-dimensional local martingale and o is a
predictable R™*™ -valued process, then by fot o, dM, we will mean the n-dimensional

process whose i-th component equals 7", fot o dMJ. With this form of notation,
equality (1.2) can be rewritten as

t t
X, =a+ / bo(X) ds + / o(X)dB, P-as. -
0 0

Definition 1.2. A solution (X, B) is called a strong solution if X is adapted to
(?f), i.e. to the completed natural filtration of B.

Remark. Solutions in the sense of Definition 1.1 are sometimes called weak solutions.
Here we simply call them solutions. However, the existence of a solution will be denoted
by the term weak existence in order to stress its difference from the strong existence,
i.e. the existence of a strong solution. O

Definition 1.3. There is uniqueness in law for (1.1) if for any solutions (X, B)
and (X, B) (that may be defined on different filtered probability spaces), one has
Law(Xy; t > 0) = Law(Xy; ¢t > 0).

Definition 1.4. There is pathwise uniqueness for (1.1) if for any solutions (X, B)
and (X, B) (thﬁt are defined on the same filtered probability space), one has

Remarks. (i) If there exists no solution of (1.1), then there is both uniqueness in
law and pathwise uniqueness.

(ii) An overview of sufficient conditions for various types of existence and various
types of uniqueness can be found in [7; Ch. 4, §4], [8; Ch. IX], [10], and [12]. O

The following two propositions clarify the advantages of the strong solutions and
of the pathwise uniqueness.



Proposition 1.5. Let (X, B) be a strong solution of (1.1). Then
(i) there exists a measurable map

¢: (C(R:,R™),B) — (C(R;:,R"), B)

(here B denotes the Borel o-field) such that X(w) = ®(B(w)) for P-a.e. w;

(i) if B is an (F,P)-BM™(0) and X (@) := ®(B(@)), then (X,B) is a strong

solution of (1.1) on (ﬁ,]?, (F)), P).

For the proof, see, for example, [1].

Proposition 1.6 (Yamada, Watanabe). Suppose that the pathwise uniqueness
holds for (1.1). Then

(i) the uniqueness in law holds for (1.1);

(ii) there exists a measurable map

®: (C(Ry,R™),B) — (C(Ry,R"),B)

such that, for any solution (X, B) of (1.1), we have X (w) = ®(B(w)) for P-a.e. w.
For the proof, see [11] or [8; Ch. IX, (1.7)].

weak < strong weak strong
existence existence existence existence
uniqueness < pathwise uniqueness pathwise
in law uniqueness in law uniqueness

Diagram 1. The obvious implications and the implications
given by the theorem of Yamada and Watanabe

The situation with the solutions of SDEs may now be described as follows.

It may happen that there exists no solution of (1.1) on any filtered probability space
(see Example 2.1). It may also happen that on some filtered probability spaces there
exists a solution (or even several solutions with the same Brownian motion), while on
some other filtered probability spaces there exists no solution (see Example 2.2).

If there exists a strong solution of (1.1) on some filtered probability space, then
there exists a strong solution on any other filtered probability space with any Brownian
motion on this space (see Proposition 1.5). However, it may happen in this case that
there exist several solutions with the same Brownian motion (see Example 2.3).



If the pathwise uniqueness holds for (1.1) and there exists a solution on some filtered
probability space, then on any other filtered probability space with any Brownian mo-
tion there exists exactly one solution, and this solution is strong (see Proposition 1.6).
This is the best possible situation.

Thus, the theorem of Yamada and Watanabe shows that the pathwise uniqueness,
together with the existence of a solution, guarantees that the situation is the best
possible.

In this paper, we prove that the situation is the best possible provided that there
is the uniqueness in law and the strong existence. Namely, we show that these two
properties imply the pathwise uniqueness (Theorem 3.2). The proof of this result is
based on a statement that is of interest in itself: if there is uniqueness in law for (1.1),
then the joint distribution Law(Xy, By; ¢ > 0) is the same for all solutions (X, B)
(Theorem 3.1).

weak
existence

N\

strong
existence

\u

pathwise
uniqueness

uniqueness
in law

Diagram 2. The implications given by Theorem 3.2

Remarks. (i) One may consider SDEs of a more general form than (1.1), i.e. the
SDEs, in which a Brownian motion B is replaced by a semimartingale Z. For such
SDEs, the uniqueness in law is sometimes defined as the uniqueness of the joint dis-
tribution of (X, Z) (see [4], [5]). Theorem 3.1 shows that, for SDEs of the form (1.1),
this strengthened version of the uniqueness in law is equivalent to Definition 1.3.

(ii) H.-J. Engelbert proved in [2] that the uniqueness of the joint distribution
Law(Xy, By; t > 0), together with the strong existence, guarantees the pathwise unique-
ness. Moreover, it is proved in [2], under certain additional assumptions, that the
uniqueness in law for (1.1) implies the uniqueness of the joint distribution of (X, B).
Theorem 3.1 in the present paper shows that this result is true with no additional
assumptions. O

The paper is arranged as follows. Section 2 contains several examples of SDEs.
These examples illustrate various possible situations with the existence and the unique-
ness of solutions. Examples 2.2 and 2.3 are well known. The main results of the paper
are given in Section 3. Section 4 contains an interpretation of Theorem 3.1 in terms of
the martingale problems. We also present in Section 4 a table that shows which com-



binations of existence and uniqueness are possible and which of them are impossible
(see Table 3).

2 Examples

Example 2.1 (no solution). For the SDE

1
2X,

there exists no solution.

Proof. Suppose that (X, B) is a solution of (2.1). Then

t
1
X, = — — I (X, #0)d B, t>0.
! /02X5( #0)ds+ B, 1z

By It6’s formula,

t 1 t t
Xf:—/ 2X5—I(X57é(])ds+/ 2X5dB5+/ 1ds
0 2XS 0 0

t t
:/I(XS:O)ds+/2XSdBS, £ 0.
0 0

The process X is a continuous semimartingale with (X); = ¢. Hence, by the occupation
times formula (see [8; Ch. VI, (1.6)]),

t
/I(Xs:0)ds:/l(x:0)Lf(X)dz:0, £ 0,
0 R

where L7(X) denotes the local time spent by the process X at the point x by the
time ¢. As a result, X? is a local martingale. Since X2 > 0 and X2 = 0, we conclude
that X? =0 a.s. This means that (X, B) is not a solution of (2.1). O

Example 2.2 (no strong solution and no pathwise uniqueness; Tanaka). For
the SDE

dXt = sgn Xt dBt, X(] = 0, (22)
where
1 if £ >0,
sgnx = )
-1 if 2 <0,

there exists a solution and there is uniqueness in law, while there exists no strong
solution and there is no pathwise uniqueness.

Proof. Let W be a Brownian motion on (€, F,P). Set
t
X, =W, B,= / sen Wy dW,, t>0
0

and take F, = FP. Then (X, B) is a solution of (2.2) on (€, F, (F,),P).



If (X, B) is a solution of (2.2) on a filtered probability space (Q, F.(F), P), then
X is a continuous (F;, P)-local martingale with (X), = ¢t. It follows from P. Lévy’s
characterization theorem that X is a Brownian motion. This implies the uniqueness
in law.

If (X, B) is a solution of (2.2), then

t
Bt:/ sgn X, dX,, t>0.
0

This implies that FZ = 7~ (see [8; Ch. VI, (2.2)]). Hence, there exists no strong
solution.

If (X, B) is a solution of (2.2), then (=X, B) is also a solution. Thus, there is no
pathwise uniqueness. O

Remark. Let B be a Brownian motion on (Q,F,P). Set F, = FP. Then there
exists no solution of (2.2) on (Q,F, (F;),P) with the Brownian motion B. Indeed, if
(X, B) is a solution, then X is (F;)-adapted, and hence, (X, B) is a strong solution.
On the other hand, (2.2) possesses no strong solution. O

Example 2.3 (no uniqueness). For the SDE
dXt = I(Xt 7& 0) dBt, X(] = 0, (23)

there exists a strong solution, while there is no uniqueness in law and there is no
pathwise uniqueness.

Proof. It is sufficient to note that (B, B) and (0, B) are solutions of (2.3) whenever
B is a Brownian motion on a filtered probability space (Q, F,(F), P). O

Remark. Let B be a Brownian motion and & be a r.v. independent of B with

P{¢=1} =P{¢ = —1} = 1/2. Set

) Bw) if E(w) =1,
Xilw) = {0 it £(w) = 1

and take F; = F7X. Then (X, B) is a solution of (2.3) that is not strong. Indeed, for
each t > 0, ¢ is o(X;)-measurable, while ¢ is not F-measurable. O

Example 2.4 (no strong solution and no uniqueness). For the SDE
dXt = I(Xt §£ 1) Sgn Xt dBt, X() = O, (24)

there exists a solution, while there exists no strong solution, there is no uniqueness in
law, and there is no pathwise uniqueness.

Proof. If W is a Brownian motion, then the pair
t
Xt = Wt7 Bt = / Sgn WS dWs, t 2 0 (25)
0

is a solution of (2.4).



Let (X, B) be the solution given by (2.5). Set 7 = inf{t > 0: X, = 1}, X; = X,
Then ()?, B) is another solution. Thus, there is no uniqueness in law and there is no
pathwise uniqueness.

Suppose that (X, B) is a strong solution of (2.4). Set 7 = inf{t > 0: X; = 1},
X7 = Xinr, Bf = By, Therv. 7 =inf{t > 0: X; = 1/2} is an (F;%)-stopping
time. Since X is (?f) -adapted, 7’ is also an (.Tf) -stopping time. Hence, there exists
an (FP)-stopping time 7" such that 7/ = 7" a.s. (see [6; Ch. I, (1.19)]). Tt follows
from Galmarino’s test (see [3; §3.2]) that 7" is also an (F")-stopping time. On the
other hand,

t
BZ:/ sgn Xy dX/, t>0.
0

In view of the theory of local times for continuous semimartingales, this equality yields
that FP" C FX (see [8; Ch. VI, §1]). But obviously, 7/, 7 are not stopping times
with respect to (leTl). Hence, there exists no strong solution. O

3 The Main Results

Theorem 3.1. Suppose that the uniqueness in law holds for (1.1). Then, for
any solutions (X, B) and (X, B) (that may be defined on different filtered probabil-
ity spaces), one has Law(Xy, By; t > 0) = Law(Xy, By; t > 0).

Theorem 3.2. Suppose that the uniqueness in law holds for (1.1) and there ezists
a strong solution. Then the pathwise uniqueness holds for (1.1).

Remark. Consider a one-dimensional SDE of the form (1.1) such that oy(x) # 0 for
any t > 0, x € C(R.,R). In this case, Theorem 3.1 is almost trivial. Indeed, B is
expressed as a measurable functional of X:

tq
Btz/ M, 130,
0

5(X)
where .
Mt:Xt_/ bS(X)dS, tZO
0
However, if ¢ vanishes at some points, this reasoning does not work. O

In order to prove Theorems 3.1 and 3.2, we will need several auxiliary lemmas.

Lemma 3.3. If B is an (F;, P)-BM™(0), then, for any 0 < s <t, the r.v. B;— B;
is independent of F.

Proof. By Ito’s formula, the process exp{i()\, B+ %t} is an (Fy, P)-local mar-
tingale for any A € R™. Being bounded, it is a martingale. Hence, for any 0 < s <'t,
AeF,, € R", we have

Elexp{i(\, B, — By)} I4] = exp{—(t —3) H);” } P(A).

This leads to the desired result. O



Lemma 3.4. Let t >0 and f € L*([0,t]). For k € N, set

0 if SE[O,%},
f(k)(s): ko . it (1)t .
?/@f(r)dr 1fse(%,(4;)]’(221,”_7]9_1)'

k

2
Then f® 200 ¢

k—00

Proof. We have

i

k—1

t(k 2
k)12 o
1 ¥ 22 0.0 = Z g({ [i_km f(r) dr)
it
k

=1
k—1
< ;ﬁil)t f2(7“) dr (31)

=%

. k
S/O fA(r)dr = ”f”%?([o,t})‘

Fix £ > 0. Then there exists ¢ € C([0,¢]) such that ||¢ — f||r2o) < &. Let ¢® be
constructed by ¢ in the same way as f*) is constructed by f. Then, in view of (3.1),

||<10(k) — f(k)HL?([O,t]) < ||90 - f||L2([0,t]) <¢

for any k£ € N. Furthermore, as ¢ is continuous, there exists K € N such that, for
any k> K, [|¢®) — ¢||120,9) < £. This leads to the desired result. O

We will recall the following fact from the measure theory. Let & : 2 — E be a
random element on (€2, F,P) taking values in a Polish space (F,B(F)). Let G C F.
Then there exists a conditional distribution of £ with respect to G, i.e. afamily (Qu)uecn
of probability measures on (F,B(E)) such that

i) for any A € B(E), the map w — Q,(A) is G-measurable;

ii) for any A € B(E), D € G,

P(DN{€ € A}) = /D Qu(A) P(dw).

The conditional distribution is unique in the following sense: if (Qu)weq is another
family with the stated properties, then Q, = Q,, for P-a.e. w.

Remark. Properties i), ii) mean that, for any bounded B(E)-measurable function h,
the r.v. n(w) := Eq,[h] is a version of Ep[h(£)|G]. Note also that if A € B(F) is such
that P{{ € A} =1, then Q,(A) =1 for P-a.e. w. O

Lemma 3.5. Let (X,B) be a solution of (1.1) on a filtered probability space
(Q,F,(F),P). Let (Qu)wen be a conditional distribution of (X, B) with respect to Fo
(we consider (X, B) as a C(Ry,R*™™)-valued random element). Let Y denote the pro-
cess that consists of the first n components of the coordinate process on C(R,,R*"*™),
and let Z denote the process that consists of the last m components. Let (H;) be the
canonical filtration on C'(Ry,R"™™) and H = \/,»,Hi. Then, for P-a.e. w, the pair
(Y, Z) is a solution of (1.1) on (C(Ry,R™™), H, (H,),Qu)-
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Proof. Let us check conditions i)—iii) of Definition 1.1.
i) Forany 0 <s<t, DeH,, N\e R", A€ Fy, we have

Ep [exp{i()\, B, — B)} I((X, B) € D) L]

= exp{—(t - s)@} Ep[I((X,B) € D) 14].

Hence, for any 0 < s <t, D € Hs, A € R", we have

Al
2

Eq.lexp{i(\, Z: — Z,)} Ip] = exp{—(t =)

}Qw(ID)

for P-a.e. w. Taking a countable collection {sg,tx, Dy, A\ k.1 € N} such that the
sequence (sg,t;) runs through all pairs of positive rational numbers (s, < t;), the
collection {Dy; | € N} generates Hs, , and the set {Ag; [ € N} is dense in R™, we

deduce that, for P-a.e. w, the process Z is an (H,;, Q,)-BM™(0).
ii) For any ¢t > 0,

t n n m
/ (Z LX)+ Z(agj(X))2> ds < oo P-as.
0 \j=1 i=1 j=1
Hence, for any t > 0,
t n n m
[ (1 X 3o Jas <o Qs
0 Ni=1 i=1 j=1

for P-a.e. w.
iii) Fix ¢ > 0. For k € N, define a process

AL R, x C(R.,R") > (s,y) — a(k)(y) e R™™

S

0 if s€0,£],

it

Gi—1)t k

k

Then, by Lemma 3.4,

t
/ 0®)(X) — o, () Pds 2255 o,
0

k—oo

Consequently,

t t
/ c®(X)dB, —/— [ o,(X)dB,,
0

s
k—o00 0

which means that

k) — k - . .
s (y) _/k o, (y) dr ifse(%7(z+1)t}’ (t=1,....k—1).

(3.2)

(3.3)



(we use here the vector form of notation). There exists a subsequence (k(1)) such that,
along this subsequence, the convergence in (3.3) holds P-a.s. Therefore,

t
ZU(#(I))(Y)( it — 2= 1)t) Qs y, —w— [ by(Y)ds (3.4)
o 30} k(1) k() l—o0 0

for P-a.e. w. On the other hand, in view of (3.2),
! (k) 2 Qu-a.s.
Has (V) —O'S(Y)H ds —== 0
0

for P-a.e. w, and hence,

k—oo 0

for P-a.e. w. Combining (3.4) and (3.5), we get

t t
Y,— 2 — / by(Y) ds = / o (Y)dZ, Qu-as.
0 0

for P-a.e. w. This completes the proof. O

Proof of Theorem 3.1. Let (X, B) be a solution of (1.1) on a filtered probability
space (Q, F, (F),P). Let (W) and (W,);59 be two independent (F/, P')-BM™(0).
Set

(Qafa (ft)a P) = (Q,.’F, (:Ft)a P) X (Qlafla (:Ftl)’ PI)
The processes X, B, W, W can be defined on € in an obvious way. The pair (X, B)
is a solution of (1.1) on (Q,F,(F),P) and W, W are independent (F, P)-BM™(0).

For any t > 0, y € C(R,,R"), the matrix o4(y) corresponds to a linear operator
R™ — R". Let ¢;(y) denote the m xm-matrix of the operator of orthogonal projection
onto (kero;(y))*t; let v4(y) denote the m x m-matrix of the operator of orthogonal

projection onto ker o;(y). Then the processes ¢ = ¢;(y) and ¢ = vy (y) are predictable
R™*™ _valued processes on C(R;,R").

Set
t t
Uy = / 0s(X)dBs + | 9s(X)dW, t>0, (3.6)
0 0
¢ t
vt:/ 0s(X) dWSJr/ s(X)dBs, t>0. (3.7)
0 0
The 2m-dimensional process (U, V) is a continuous (F;, P)-local martingale. More-
over, for any i,j7 = 1,...,m, in view of the symmetry of matrices ¢;(y), ¥:(y), we
have

o, UJw/(Z%O +Z’Wk X )
- /Ot((gosmez,@s( Jer) + (1 (X)es 0 (X)) ) ds
— /Ot(gps(X)ei+1/15(X)€i7905(X)€j+7/’S(X)€j) ds
:/t(ei,ej)ds:(sijt, t>0,
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where (e;)™, is the standard basis in R™. Similarly,

t
(U, V), = / (0(X)es, 0y(X)e;) ds =0, >0,
0
<VZ, Vj>t = (5”'15, t 2 0.

By the multidimensional version of P. Lévy’s characterization theorem (see [8; Ch. IV,

(3.6)]), we deduce that the process (U, V) is an (F;, P)-BM?™(0).
For any ¢t > 0, we have

/Otas(X) dB; = /Ot(as(X)ws(X))st = /Otas(X)d</Os or(X) dBT)

:/UtaxX)d(/os%(X)dUr) =/0tas<X>dUs,

where o3(X)ps(X) denotes the product of matrices. Consequently, (X, U) is a solution
of (1.1) on (0, F, (F),P).
Let us now consider the filtration

Go=FNo(Vt>0)=F,Va(V,—Vyt>s), s>0.

It follows from Lemma 3.3 that, for any s > 0, the o-fields .7N-"S and o(U, — Ug; t > s)V

(Vi — Vi, t > s) are independent. Hence, for any 0 < s < ¢, i=1,...,m, A € F;,
Deo(V,— Vs t>s), we have

Es[(Uj — UY) Ip I4] = Es[(U; — U?) Ip] P(A) = E5|U; — UI]P(D) P(A) = 0.

Thus, U is a (G, P)-BM™(0). As the stochastic integral fot 0s(X) dUys is the same for
both filtrations (F;) and (G,), the pair (X, U) is a solution of (1.1) on (62,.7?, (Gy), ﬁ)

Let (Qz)zes be a conditional distribution of (X,U) with respect to Go. By
Lemma 3.5, the pair (Y, Z) is a solution of (1.1) on (C(Ry,R*"™™),H, (H:),Qz) for
P-a.e. @. As the uniqueness in law holds for (1.1), the distribution Law(Y; £ > 0| Qg)
(which is the conditional distribution of X with respect to Gy) is the same for P-a.c.
w. This means that the process X is independent of Gy. In particular, X and V are
independent.

For any t > 0, y € C(R,,R"), the restriction of the operator o;(y) to (keroy(y))*
is a bijection from (kero;(y))t C R™ onto Imoy(y) € R™. Let us define the operator
x:(y) : R* — R™ as follows: x;(y) maps Imo;(y) onto (kero;(y))* as the inverse of
ai(y); x:(y) vanishes on (Imoy(y))+. Obviously, x = x(y) is a predictable R™*"-
valued process on C(Ry,R"). We have x;(y)o:(y) = ¢¢(y). Therefore,

/Otws(X) dB, = /Ot(Xs(X)as(X))st = /OtXS(X) dM,, >0,

where . ,
M, :/ 0, (X)dB, = X, — —/ b(X)ds, > 0.
0 0
Keeping (3.7) in mind, we get

Bt:/Utgos(X)st+/0t1/)S(X)st:/OtXS(X)dMSJr/Ut@Z)s(X)dVS. (3.8)
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The process M is a measurable functional of X, while V' is independent of X . Thus,
(3.8) shows that the distribution Law(Xy, B;; ¢ > 0) is the same for all solutions
(X, B). O
Proof of Theorem 3.2. Let (X, B) be astrong solution of (1.1) on (Q, F, (F,),P).
Let (Qu)wen denote a conditional distribution of X with respect to o(By; ¢ > 0). Then
there exists a collection of measures (R,)yccr, rm) such that Q, = Rp(,) for P-a.e. w.
Informally, this can be written as R, = Law(X | B = y). By Proposition 1.6, there
exists a measurable map
such that X (w) = ®(B(w)) for P-a.e. w. This means that R, = dg(,) for a.e. y with
respect to the Wiener measure on C(R,R™).
Now, let (X, B) be a solution of (1.1) on (Q, F, (F,),P). Set R, = Law(X | B=1y).
It follows from Theorem 3.1 that Law(X, B) = Law (X, B). Hence, R, = R, for a.e. y.

Therefore, ﬁy = dg(y) for a.e. y, which means that X(w) = ®(B(w)) for P-a.e. w.
This yields the pathwise uniqueness. O

4 Applications of the Obtained Results

We will first describe the interpretation of Theorem 3.1 in terms of the martingale
problems. Let x € R". Let b be a predictable process on C(R,,R") taking values
in R”. Let a be a predictable process on C(R,,R") taking values in the space of
symmetric nonnegative n X n-matrices.

Definition 4.1. A solution of the n-dimensional martingale problem (x,b,a) is a
measure Q on C'(R;,R") such that

i) Q{Yo =2} =1 (here Y denotes the coordinate process on C(R,,R"));

ii) for any t > 0,

/Ut (i B (V)] + ia“‘(ﬂ) ds < 0o Qas;

iii) for any i = 1,...,n, the process
t
M;’:Yj—/ Vi(Y)ds, t>0
0

is an (H;, Q)-local martingale (here (#;) denotes the canonical filtration on C(R;,R")),
and, for any 7,5 =1,...,n,

t
(Mi,Mj)t:/ (V) ds, > 0.
0

For more information on martingale problems, see [9].

Let us turn back to SDE (1.1). Set a;(y) = oy(y)o;(y). If (X, B) is a solution
of (1.1), then Q := Law(X;; ¢ > 0) is a solution of the martingale problem (z,b,a).
Conversely, if Q is a solution of the martingale problem (z,b,a), then there exists a
solution (X, B) of (1.1) such that Law(X; ¢ > 0) = Q. The uniqueness in law for (1.1)
is equivalent to the uniqueness of a solution of the martingale problem (z,b,a).

Now, Theorem 3.1 can be refomulated as follows.

12



Theorem 4.2. Let (z,b,a) be an n-dimensional martingale problem. Let o be a
predictable R"*™ -valued process on C(Ry,R™) such that oy(y)o;(y) = ai(y). Then the
uniqueness of a solution of the martingale problem (z,b,a) implies the uniqueness of
a solution of the (n + m)-dimensional martingale problem

(G)(0)(+ 9)

Let us now mention one more application of the above results. For SDE (1.1), each
of the following properties:

existence of a solution;

existence of a strong solution;

uniqueness in law;

pathwise uniqueness
may hold or may not hold. Thus, there are 16(= 2%) feasible combinations. Some of
these combinations are impossible (for instance, if there is pathwise uniqueness, then
there must be uniqueness in law). Using Examples 2.1-2.4 as well as Proposition 1.6
and Theorem 3.2, one can, for each of these combinations, either provide an example
of the corresponding SDE or prove that this combination is impossible. It turns out
that there are only 5 possible combinations (see Table 3).

Acknowledgement. This paper was written during the author’s visit to the Uni-
versity of Minnesota. It is a pleasure to thank N.V. Krylov and N.C. Jain for many
interesting discussions and hospitality. [ am thankful to D.W. Stroock for having
pointed out the relation between Theorem 3.1 and the martingale problems. I am
grateful to A.N. Shiryaev for many valuable remarks and important suggestions.
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e;;setael;ce eitiz::r%ce uniir?lllae;ess urr)n?(tlti:’rinseess possible/impossible
_ — — — impossible, obviously
_ — — + impossible, obviously
_ — + — impossible, obviously
_ - + + possible, Example 2.1
_ + — — impossible, obviously
_ + — + impossible, obviously
_ + + — impossible, obviously
_ + + + impossible, obviously
+ — - — possible, Example 2.4
+ — — + impossible, Diagram 1
4 — + — possible, Example 2.2
4 — + + impossible, Diagram 1
4 + — — possible, Example 2.3
4 + — + impossible, Diagram 1
+ + + — impossible, Diagram 2
+ + + + possible, obviously

Table 3. Combinations of various types of existence and of various types
of uniqueness. For example, the combination ” + — +—"
sponds to an SDE, for which there exists a solution, there exists no strong
solution, there is uniqueness in law, and there is no pathwise uniqueness.
The table shows that such an SDE is provided by Example 2.2.

in line 11 corre-
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