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_Abstract. We introduce the notion of a separating time for a pair of measures P and
P on a filtered space. This notion is convenient for describing the mutual arrangement
of P and P from the viewpoint of the absolute continuity and singularity.

Furthermore, we find the explicit form of the separating time for the case, where P
and P are distributions of Lévy processes, solutions of stochastic differential equations,
and distributions of Bessel processes. The obtained results yield, in particular, the criteria
for the local absolute continuity, absolute continuity, and singularity of P and P.
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1 Introduction

Let P and P be probability measures on a filtered space (Q,,’F , (7t)te[0,oo))- We introduce

the notion of a separating time for P and 3 (see Definition 2.4). Informally, the separating
time is a stopping time, before which P and P are equivalent and after which P and P
are singular. The properties such as the local absolute continuity, absolute continuity, and
singularity of P and P are easily expressed in terms of the separating time (see Lemma 2.7).
The notion of the separating time is mostly convenient in the case, where P and P are in a
general position, i.e. they are neither locally equivalent nor singular.

_In Section 3, we find the explicit form of the separating time for the case, where P and
P are distributions of Lévy processes (see Theorem 3.1). The criteria for the local absolute
continuity, absolute continuity, and singularity of P and P are obtained as corollaries of these
results. Such criteria are already known (see [10], [11]; earlier related results can be found
in [9], [16], [17]).

_In Section 4, we find the explicit form of the separating time for the case, where P and
P are distributions of the solutions of stochastic differential equations (abbreviated below
as SDEs); see Theorem 4.7. As a corollary, we obtain the criteria for the local absolute
continuity, absolute continuity and singularity of P and P. Similar results for more general



-~ -~ -~

D E D

Figure 1. Mutual arrangement of a pair
of measures on a measurable space

SDEs can be found in [7; Ch. IV, §4b], where they are obtained using the theory of Hellinger
processes. We consider here a more particular case (only homogeneous SDEs), but in this
case we obtain more complete results.
_In Section 5, we find the explicit form of the separating time for the case, where P and
P are distributions of Bessel processes (see Theorem 5.1). Let us emphasize that the Bessel
process is a solution of a certain SDE, but the results of Section 4 cannot be applied since
this SDE is singular (this notion is introduced in [4]).

The Appendix contains some facts related to the qualitative behaviour of SDE solutions.
This is needed for the proofs of Corollaries 4.8, 4.9, and 4.10, but is not needed to understand
the results of Section 4.

2 Separating Times

2.1. Mutual arrangement of a pair of measures on a measurable space. Let P
and P be probability measures on a measurable space (2, F). The following result is well
known.

_ Proposition 2.1. There exists a decomposition X = EUD I_ID E.D, D € F such that
P ~ P on the set E and P(D D) = P(D) = 0 (here “U” denotes the disjoint union). This
decomposition is unique P,P-a.s.

Remarks. (i) For the above decomposition, we have P ~ P on E and P L P on E° (here
E*¢ denotes the complement to F). Such a decomposition is also unique P,P-a.s.
(ii) The sets E, D, D from Proposition 2.1 can be obtained by the formulas:

~ [ap dP dpP dP dpP dP
D={{— =0.— FE = — D =
{dQ O,dQ>o}, {dQ 0. 0} {dQ 0.4 0},
where Q = P+P.

The result of Proposition 2.1 is illustrated by Figure 1.

2.2. Mutual arrangement of a pair of measures on a filtered space. Let
(€2, F) be a measurable space endowed with a right-continuous filtration (F)cjo,00), i-€-
Fi = o> Ftte- Recall that the o-field 7, (7 is a stopping time) is defined by

Fr={AeF: An{r <t} e F forany te[0,0)}. (2.1)

(In particular, Foo = F.) N

Let P and P be probability measures on F. As usually, P, (resp: P,) denotes the
restriction of P (resp: P) to F.

Let us add a point ¢ to [0, 00] in such a way that § > oco.



Definition 2.2. An eztended stopping time is a map T : Q — [0,00] U {d} such that
{T <t} € F; for any t € [0, 00].

The following theorem is an analog of Proposition 2.1 for a filtered space. A similar
statement is proved in [8; Lemma 5.2].

Theorem 2.3. (i) There exists an extended stopping time S such that for any stopping
time T,

P, ~ P, on the set {r < S}, (2.2)
P, L P, on the set {T > S}. (2.3)

(ii) If S’ is another extended stopping time with these properties, then S’ =S P, P-a.s.

Proof. (i) Set Q = PQE. Let (Zt)efo,00) and (Z)EE[U’OO] denote the density processes of
P and P with respect to Q (we set Zo, = dpP

0q 2 Loo = %). Let (F;) denote the Q-completion
of the filtration (). Then the (7, Q)-martingales Z and Z have the modifications, whose

all trajectories are right-continuous and have left limits. The time
S =inf{t € [0,00] : Z, =0 or Z;, = 0}

(inf is the same as inf except that inf@ = §) is an extended (F;)-stopping time. According
to [7; Ch. I, Lemma 1.19], there exists an extended (F;)-stopping time S such that S = S
Q-a.s. It follows from [7; Ch. ITI, Lemma 3.6] that Z;Z; = 0 on the stochastic interval [S, oo]
Q-a.s. Consequently, for any (F;)-stopping time 7, we have Z;Z, =0 Q-a.s. on {7 > S}.
The equality

dP,

dQ-

dP
and the analogous equality for Zg: complete the proof.
(ii) Proposition 2.1 implies that for any stopping time 7, the sets {T > S} and {7 >
S’} coincide P,P-a.s. This yields the desired statement (one needs to consider only the
deterministic 7). O

Definition 2.4. A separating time for P and P is an extended stopping time that sat-
isfies (2.2) and (2.3) for all stopping times 7.

Remark. It is seen from the proof of Theorem 2.3 (ii) that in defining the separating time
one may use only the deterministic 7.

Corollary 2.5. (i) There exists an extended stopping time S such that for any stopping
time T,

P, < P, on the set {r < S}, (2.4)
P, L P, on the set {T > S}. (2.5)

(ii) If S’ is another extended stopping time with these properties, then S’ =S P-a.s.

Definition 2.6. A time separating 3 from P is an extended stopping time that satis-
fies (2.4) and (2.5) for any stopping time 7.
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Figure 2. Mutual arrangement of a pair of
measures on a filtered space (here S(w;) =0,
S(ws) = 00, S(wi) = 4)

Clearly, a separating time for P and 3 is also a time separating P from P. The reverse is
not true since the former time is unique P, P-a.s., while the latter time is unique only P-a.s.

Informally, Theorem 2.3 states that the measures P and P are equivalent up to a random
time S and become singular at a time S. The equality S = § means that P and P never
become singular, i.e. they are equivalent up to infinity. Thus, the knowledge of the separating
time yields the knowledge of the mutual arrangement of P and P. This is illustrated by the
following result. Its proof is straightforward.

Lemma 2.7. Let S be a separating time for P and P. Then

~ loc

(i) PKP «—= S>x ﬁ—a.s.;

(i) PP «— S>o0c P,Pas;

(iii) P<P < S=4§ P-as.;

(iv) P~P <= S=§ P,P-as;

(v) PLP <= S<oo P,P-as <= S<oo P-as.

Remark. Other types of the mutual arrangement of P and P are also easily expressed in
terms of the separating time. For example, for any ¢ € [0, oo,

P, LP, «— S<tP,Pas < S<t P-as.

The mutual arrangement of P and P is illustrated by Figure 2. In this figure, the
measure P “lies above” curve 1; the measure P “lies below” curve 2. The decomposition
Q = E, U D; U D, of Proposition 2.1 for the measurable space (Q, F;), is obtained by drawing
a vertical line corresponding to the time ¢. Figure 2 shows three decompositions of this type:
for t =0, for t = u € (0,00), and for ¢ = 0.

The separating time for P and P is illustrated as follows. If w € Dy L lN)g, then S(w) =0
(see w = w; in Figure 2). If w € Ey, then S(w) is the time, at which the horizontal line



drawn through the point w crosses curves 1 or 2 (see w = wy in Figure 2). If this line crosses
neither curve 1 nor curve 2, then S = 0o in the case w € Do L Do (see w = ws in Figure 2)
and S =J in the case w € Eo (see w = wy in Figure 2).

3 Separating Times for Lévy Processes

Let D([0,00),R?) denote the space of the cadlag functions [0,00) — R¢. Let X denote the
canonical process on this space, i.e X;(w) = w(t). Consider the filtration F; = (.., 0(Xs; s €
[0, 4 €]) and set F = V(g o) F¢- In what follows, (-,-) denotes the scalar product in R?
and || - || denotes the Euclidean norm.

_ Let P and P be the distributions of Lévy processes with the characteristics (b, c,v) and
(b,¢, 7). This means that for any ¢ € [0,00) and A € R?,

Epci¥) = exp{t|i(,0) - %(A,c)\)
+ [ @9 — 1= i) (lal < 1) wtde)] .

where b € R%, ¢ is a symmetric positively definite d X d matrix, and v is a measure on
B(R?) such that v({0}) =0 and [g4([|z||* A1) v(dz) < co. For further information on Lévy
processes, see [1], [14], [18; Ch. III, § 1b]. N

The following theorem yields an explicit form of the separating time for P and P. It
easily follows from the results of [15].

Theorem 3.1. The separating time S for P and P has the following form.
(i) If P=P, then S =6 P,P-a.s.
(ii) If P#P and

c=¢ (3.1)

dv dv 2 N
/Rd (\/d(v +7) \/d(u +7) ) dv +7) < oo, (3.2)
b—b— zd(v—v N(c), 3.3
/{||m|<1} ( ) €N (3.3)

where N(c) = {cx: x € R}, then
S =inf{t €[0,00): AX; #0,AX, ¢ E} P,P-a.s.

(we set inf @ = oo), where E € B(R?Y) is a set such that U ~ v on E and U L v on the
complement to FE. B
(iii) If any of conditions (3.1)—(3.3) is violated, then S =0 P,P-a.s.

Remark. If (3.2) is true, then f{|\$|l<1} llz|| d||v — V|| < oo, where ||v—7|| is the total vari-
ance of the signed measure v —v (see [14; Remark 33.3] or [15; Lemma 2.18]). Consequently,
the integral in (3.3) is well defined if condition (3.2) is true.

Theorem 3.1, combined with Lemma 2.7, yields the following corollary. This result is
known (see [10], [11]).

Corollary 3.2. (i) Either P=P or P L P.

~ 1
(i) We have P <P if and only if conditions (3.1)—(3.3) and the condition U < v are
satisfied. B
(iii) We have Py L Pq if and only if any of conditions (3.1)-(3.3) is violated.



4 Separating Times for Solutions of SDEs

4.1. Basic definitions. We will consider one-dimensional SDEs of the form
dX; = b(Xt)dt + O(Xt)dBt, Xy = xg, (41)
where b and o are Borel functions R — R and zy € R.

Definition 4.1. A solution of (4.1) is a pair (Y, B) of continuous adapted processes on
a filtered probability space (Q, G, (Gt)tefo,00)> Q) such that

i) B is a (G, Q)-Brownian motion;

ii) for any t € [0, 00),

/Ut(|b(Ys)| +o2(V.))ds < 00 Quas:;

iii) for any ¢ € [0, 00),

t t
Y: = xg +/ b(Ys)ds +/ o(Y;)dBs Q-a.s.
0 0

Remark. A solution in the sense of Definition 4.1 is sometimes called a weak solution.

In what follows, it will be convenient for us to treat a solution as a measure on the
space C([0,00)) of continuous functions. Let X denote the canonical process on C([0,00)).
Consider the filtration 73 =, 0(Xs; s € [0,¢ +¢]) and set F = V(g o) Ft-

Definition 4.2. A solution of (4.1) is a probability measure P on F such that
i) P(Xo =1z9) = 1;
ii) for any t € [0, 00),

t
/ (|b(Xs)] 4+ 0%(X,))ds < 0o P-a.s.;
0
iii) the process
t
Mt = Xt - / b(Xs)dS, te [0, OO)
0

is an (F, P)-local martingale with the quadratic variation
t
()= [ Fxds, tefo.co)
0

The following statement (see [4; Theorem 1.24]) shows the relationship between Defini-
tions 4.1 and 4.2.

Proposition 4.3. (i) Let (Y,B) be a solution of (4.1) in the sense of Definition 4.1.
Set P =Law(Yy; t € [0,00)). Then P is a solution of (4.1) in the sense of Definition 4.2.

(ii) Let P be a solution of (4.1) in the sense of Definition 4.2. Then there ezist a filtered
probability space (Q,g, (gt)te[o,oo),Q) and a pair of processes (Y, B) on this space such that
(Y, B) is a solution of (4.1) in the sense of Definition 4.1 and Law(Yy; t € [0,00)) = P.



4.2. Exploding solutions.  Definitions 4.1 and 4.2 do not include the exploding
solutions. However, we will need to consider them. Let us introduce some notations.

Let us add a point A to the real line and let Ca([0,00)) denote the space of functions
f :[0,00) - RU{A} with the property: there exists a time ((f) € [0,00] such that f is
continuous on [0,¢(f)), f = A on [((f),00)), and if 0 < ((f) < oo, then limy¢(s) f(t) = 00
or limyc(y) f(t) = —oc. The time ((f) is called the ezplosion time of f. Below in this
section, X will denote the canonical process on Ca([0,00)). Consider the filtration F; =
Neso (X5 s € (0,8 +¢]) and set F =V o) Fi. Let ¢ denote the explosion time of the
process X .

The next definition is a generalization of Definition 4.2 to the case of exploding solutions.

Definition 4.4. A solution of (4.1) is a probability measure P on F such that
1) P(X[) = IL‘[)) = ]_;
ii) for any t € [0,00) and n € N such that n > |z,

ATy,
/ (|b(X)| + 0%(X,))ds < o0 P-ass.,
0

where T, = inf{t € [0,00): X; =n or X; = —n} (we set inf & = 00);
iii) for any n € N such that n > |zg|, the process

tAT,
MP = Xynp, — / b(X,)ds, ¢ € [0,00)
0
is an (F, P)-local martingale with the quadratic variation
ATy,
oy = [ o )ds. te 0.00).
0

Clearly, if P is a solution of (4.1) in the sense of Definition 4.4 and { = oo P-a.s., then the
restriction of P to C([0,00)) is a solution of (4.1) in the sense of Definition 4.2. Conversely,
if P is a solution of (4.1) in the sense of Definition 4.2, then there exists a unique extension
of the measure P to Ca([0,00)) that is a solution of (4.1) in the sense of Definition 4.4.

Definition 4.5. A Borel function f : R — [0,00) is locally integrable at a point a €
[—00, 00] if there exists a neighborhood U of a such that [, f(z)dz < oc. (A neighborhood
of oo is a ray of the form (z,00).) Notation: f € L] (a).

A function f is locally integrable on a set A C [—o0,00] if f is locally integrable at each
point of this set. Notation: f € L{. (A).

Below we will use the following result (see [6]).

Proposition 4.6 (Engelbert, Schmidt). Suppose that the coefficients b and o of (4.1)
satisfy the conditions:

o(z) #0Vr € R, (4.2)
L yb' € L. (R). (4.3)

Then, for any starting point xo € R, there exists a unique solution of (4.1) in the sense of
Definition 4.4.



4.3. Explicit form of the separating time. We will use the notations F, F;, X,
and ¢ introduced in Subsection 4.2.
Consider the SDEs

dX; = b(Xt)dt + O(Xt)dBt, Xy = xg, (44)
dX, = b(X;)dt + 5(X,)dB;, Xo = ¢ (4.5)

with the same starting point zo. Let us assume that conditions (4.2), (4.3) and the similar
conditions for b, o are satisfied.

Set
p(z) = exp{— /U ' jf;g)) dy}, z€R, (4.6)

s = [ oy 2 e, @)
s(o0) = mhﬁrgo s(z), (4.8)
s(—o0) = mli)r_noos(m). (4.9)

Similarly, we define p, 3§, 5(c0), and §(—oc) through b and G. Let puy, denote the Lebesgue
measure on B(R).

We will say that a point € R is good if there exists a neighborhood U of z such that
02 =52 pp-ae. on U and (b—b)%/o* € L] .(z). We will say that the point oo is good if all
the points belonging to [zg,00) are good and

s(o0) < o0, (4.10)
72
(s(00) — s)(prf) € Lhye(00). (4.11)

We will say that the point —oc is good if all the points belonging to (—oo, zg] are good and

s(—00) > —o0, (4.12)
AY
(s — s(—oo))(prf) € L1 (—o0). (4.13)

Let A denote the complement to the set of good points in [—oo, 0c]. Clearly, A is closed in
[—o00, 00]. We will use the notation

A® ={z € [-00,0]: p(z,A) < €},

where p(z,y) = |arctgxz — arctgy|, =,y € [—o0, 0] (we set @° = &).
The main result of this subsection is the following theorem. We do not give its proof since
it is rather long. The proof will be given in another paper by the same authors.

Theorem 4.7. Suppose that b, o, g, o satisfy conditions (4.2) and (4.3). Let P and 3
denote the solutions of (4.4) and (4.5) in the sense of Definition 4.4. Then the separating
time S for P and P has the following form.

(i) If P=P, then S=46 P,P-a.s.

(ii) If P # P, then

S = supinf{t € [0,00): X; € Al/"} P, ﬁ—a.s.,
n

where inf is the same as inf except that inf@ = 4.



Remarks. (i) Let us explain the structure of S in case (ii). Let « denote the “bad” point
that is closest to xp from the right side, i.e.

_Jinf{z : z € [g,00] N A} if [zg,00]N A # @,
1A if [z9,00]NA=g.

Let us consider the “hitting time of a”:

(6 if a=A,
§ if & =o00and limX; < oo,
U= t<¢
¢ if @ =o00and limX; = oo,
t<¢

(T, if a < oo,

where T, = inf{t € [0,00) : X; = a}. Similarly, let 8 denote the “bad” point that is closest
to xo from the left side and let V' denote the “hitting time of 37. Then S=UAV P,P-as.

(ii) It is clear from Theorem 4.7 and the symmetry between P and P that, under the
condition [zrp,00) C [—00,00] \ A, the pair of conditions (4.10), (4.11) is equivalent to the
pair

§(00) < 00, (4.14)
. b— )
Goe) -9 € o). (4.15)
A similar remark is true for (4.12), (4.13). O

Theorem 4.7, combined with Lemma 2.7 and Propositions A.1, A.2, yields several corol-
laries concerning the mutual arrangement of P and P. In order to formulate them, let us
introduce the conditions:

$(00) = o0, (4.16)

5(00) < 00 and ,Sv(opfi,)(;;g ¢ Li.(c0), (4.17)
72

5(o0) < 00 and (5(o0) — 3) (bﬁgi) € L}, (c0). (4.18)

Condition (4.16) means that the paths of the canonical process X under the measure P do
not tend to oo as t — oo. Condition (4.17) means that the paths of the canonical process
X with the positive P-probability tend to oo as ¢ — oo, but do not explode into oo (i.e.
the explosion time for them is oo). Condition (4.18) is the pair (4.14), (4.15). Similarly, we
introduce the conditions at —oo:

$(—o0) = —oc, (4.19)

a—m)>—m;mdf:§%?9¢1¢4—m% (4.20)
AV

3(—00) > —00 and (§—§(—oo))(bﬁgg) € Ll (—o0). (4.21)

Corollary 4.8. Under the assumptions of Theorem 4.7, we have P 12<c P if and only if
the conditions B
(b—1b)?
4

02 =52 pup-a.e. and

€ Ll (R), (4.22)

g



at least one of conditions (4.16)-(4.18), and at least one of conditions (4.19)-(4.21) are
satisfied.

Corollary 4.9. Under the assumptions of Theorem 4.7, we have P<P if and only if
either P = P; or (4.16), (4.21), (4.22) are satisfied; or (4.18), (4.19), (4.22) are satisfied;
or (4.18), (4.21), (4.22) are satisfied.

_ Corollary 4.10. Under the assumptions of Theorem 4.7, we have PLP if and only if
P#P and —o0,00 € A.

5 Separating Times for Bessel Processes

Counsider the SDE
dXt:’}/dt+2\/|Xt|dBt, Xo = x¢

with v > 0, zg > 0. It is known that this SDE has a unique solution Q in the sense of
Definition 4.2. Moreover, the measure Q is concentrated on positive functions. A process
(Zt)1ejo,00) With the distribution Q is called the square of a y-dimensional Bessel process

started at /zo. The process V'Z is called a 7y-dimensional Bessel process started at VZo-
For more information on Bessel processes, see [2], [3], [5], [12], [13; Ch. XI].

Let X denote the canonical process on C([0,00)). Consider the filtration F; =
Neso (X555 € 0,1 +¢]) and set F =V, pg o) Fr-

Theorem 5.1. Let P (resp: P) be the distribution of a ~-dimensional (resp: -
dimensional) Bessel process started at xy. Then the separating time S for P and P has
the following form. B

(i) If P=P, then S =6 P,P-a.s.

(ii) If P # P, then N

S =inf{t € [0,00): X; =0} P,P-a.s.

(we set inf @ = 00).

Proof. We should prove only (ii). Set Ty = inf{t € [0,00): X; = 0}. It follows from [2;
Theorem 4.1] and the strong Markov property of Bessel processes that S < Ty P,P-a.s.

Let us prove that S > T P,P-a.s. For 2y = 0, this is obvious, so we assume that zo > 0.
Fix ¢ € (0,20/2) and consider the stopping time T, = inf{t € [0,00) : X; = ¢}. Define the
map F. : C([0,00)) — C([0,00)) by Fe(w)(t) = w(t A T:(w)) and let P denote the image of
P under this map. Using [t6’s formula, one can check that P¢ is a solution of the SDE

1
T 1 < To)dt + I(t < To)dBy,  Xo = 0.

dX; =
79X,

Let (€', F',P’) be a probability space with a Brownian motion (W;)cjo,o0)- Consider the
space (C([0,00)) x ', F x F',P* x P') and let Q° be the distribution of the process

t
Zy = Xy +/ I(s > T.)dWs, te€]0,00).
0

Then Q° is a solution of the SDE

1
T 14 < T.)dt +dBy,  Xo = 0.

dX, =
L7 ox,

10



Similarly, using the measure F’, we define the measure Q° that is a solution of the SDE

51

dX, =
T ox,

I(t < TE)dt + dBt, X(] = Xy.

Since the drift coefficients %I (t <T:) and Z—;&I (t < T:) are bounded, we get by Girsanov’s

theorem that (55 loc Qf. The obvious equalities P¢ = Q¢ o F;l and P° = (55 o F;l yield
that P* ' P¢. One can verify that P?|Fp, = P|Fp, and P¢|Fp,_ = P|Fp, . Consequently,
P|Firr,. ~ P|Firr,. for any t € [0,00). Since ¢ € [0,00) and e € (0,2(/2) are arbitrary, we

get the desired inequality S > Ty P, P-a.s. The proof is completed. O

It is known that if 0 < v < 2, then a y-dimensional Bessel process started at a strictly
positive point hits zero with the probability one; if v > 2, then a y-dimensional Bessel process
started at a strictly positive point never hits zero with the probability one. Theorem 5.1,
combined with Lemma 2.7 and these properties, yields

Corollary 5.2. (i) Either P= P or PLP.
(ii) If P # P and xzy =0, then Py L Py.

~ ~ |
(iii) Let P #P and 7> 0. Then P < P <= 7 > 2.

This corollary generalizes the result of [2; Theorem 4.1].

Appendix

Here we describe the behaviour of SDE solutions. We will use the notations F, F;, X, and ¢
introduced in Subsection 4.2.

Consider SDE (4.1) and assume that conditions (4.2) and (4.3) are satisfied. According to
Proposition 4.6, this equation has a unique solution P in the sense of Definition 4.4. Consider
the sets

A:{C:OO, th:OO, li_th:—OO},
t—o0 t—o0

By :{C:oo, lim X, :oo},

t—o0

C_|_ :{ C < 00, ltlTI?Xt = OO},

B_ ={( =00, lim X; = —oc},

t—o0
C_={(<o0, limX; =—00f.
(¢ < oo, lim X, = —oc)
Define p, s, s(oc0), s(—o0) by formulas (4.6)—(4.9).

The statements below follow from [4; Ch. 4].
Proposition A.1. FEither P(A) =1 or P(BLt UB_UCLUC_) =1.
Proposition A.2. (i) If s(co) = oo, then P(B;) =P(Cy) =0.
(ii) If s(00) < 0o and (s(o0) — s)/pa? ¢ L (o0), then P(B4) >0, P(Cy) =0.

(iii) If s(o0) < oo and (s(c0) — s)/po? € L} (00), then P(B4) =0, P(Cy) > 0.

Clearly, Proposition A.2 has its analog for the behaviour at —oo.

Acknowledgement. The authors are grateful to A.N. Shiryaev for important remarks and
suggestions.
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