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Abstract. We consider a one-dimensional homogeneous stochastic differen-
tial equation of the form

dXt = b(Xt)dt + O'(Xt)dBt, X() =,

where b and o are supposed to be measurable functions and o # 0. No assump-
tions of boundedness (or boundedness away from zero) are imposed.

We introduce a class of points called isolated singular points and investigate
the weak existence as well as the uniqueness in law of the solution in the neigh-
bourhood of such a point. A complete qualitative classification of these points
is presented. There are 63 different types. The constructed classification allows
us to find out whether a solution can reach an isolated singular point, whether
it can leave this point, and so on.

It has been found that, for 59 types, there exists a unique solution in the
neighbourhood of the corresponding isolated singular point. (This solution is
defined up to the moment it leaves some interval). Moreover, the solution is a
strong Markov process.

The remaining 4 types of isolated singular points (we call them branch types)
disturb the uniqueness. One can construct various "bad” solutions in the neigh-
bourhood of a branch point. In particular, there exist non-Markov solutions.

As the application of the obtained results, we consider equations of the form

dXt = ,U,|Xt|adt + I/|Xt|’3dBt, X() =,

and present the classification for this case.

Key words and phrases. Stochastic differential equations, singular coeffi-
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characteristics of a diffusion, speed measure, scale function.



1 Introduction

1. The basis of the theory of diffusion processes was formed by Kolmogorov in [16] (the
Chapman-Kolmogorov equation, forward and backward partial differential equations).
This theory was further developed in a series of papers by Feller (see, for example, [9],
[10]). In particular, Feller described the boundary behaviour of a diffusion process.

[to6 [11], [12] proposed an alternative approach to constructing diffusions. He in-
troduced the notion of a stochastic differential equation (abbreviated below as SDE).
Stroock and Varadhan [22] introduced the concept of a martingale problem which is
closely connected with the notion of a SDE.

It6, McKean [13] and Dynkin [4] proposed another approach to the diffusion pro-
cesses. They proved that a one-dimensional continuous strong Markov process that
satisfies an additional regularity condition can be obtained from a Brownian motion by
the following three operations: random time-change, transformation of the phase space
and killing at a random time.

The relationship between continuous strong Markov processes and martingale or
semimartingale solutions of SDEs is still an interesting problem to be studied. Engel-
bert and Schmidt proved in [8] that any continuous strong Markov local martingale
can be obtained from a solution of a SDE without drift through a special form of time
delay. Cinlar, Jacod, Protter and Sharpe presented in [3] conditions for a regular con-
tinuous strong Markov process to be a semimartingale. Schmidt [21] gave a criterion
for a regular continuous strong Markov process to be a solution of a SDE. Similar
problems for continuous strong Markov processes with no regularity assumptions were
treated by Assing and Schmidt in [1].

2. In this paper, we investigate one-dimensional homogeneous SDEs of the form
dXt = b(Xt) dt+0'(Xt) dBt, X() =T, (11)

where (By);>o is a standard linear Brownian motion and z is a real number.

We will study the following main problems:

I. Does there exist a solution of (1.1) and is it unique?

I1. Does it have the strong Markov property?

ITI. What is the qualitative behaviour of the solution?

Let us first describe the known results related to the existence and uniqueness of
solutions of such equations. Most of these results are connected with more general
multidimensional inhomogeneous SDEs, i.e., equations of the form

dX] =b(t,X,)dt+ Y o"(t,X,)dB], Xj=a" (i=1,...,n). (1.2)

J=1

The first sufficient condition for the existence and the uniqueness of a solution
of (1.2) was obtained by It6 [12]. This condition requires that the coefficients b and o
are locally Lipschitzian.

Stroock and Varadhan [22] proved that there exists a unique solution of (1.2) under
the assumption that b is measurable and bounded, while ¢ is continuous and strictly
elliptic. They also proved the following statement. If the coefficients b and o do not
depend on ¢ and, for any z, there exists a unique solution of (1.2), then this solution
is a strong Markov process.



Krylov [17], [18] considered multidimensional homogeneous SDEs and proved the
existence and the uniqueness for the case where b is measurable and bounded, while o
is measurable and strictly elliptic (no continuity assumption on o was imposed). For
the case n > 2, an additional assumption was made to guarantee the uniqueness.

The conditions imposed on b and o in the papers of Stroock, Varadhan, Krylov
were much weaker than [t6’s condition. Ershov and Shiryaev introduced the notions of
weak and strong solutions (the definitions can be found, for example, in the book [19]
by Liptser and Shiryaev). According to this terminology, the solution constructed by
[t6 is a strong solution while the solutions constructed in the later papers (under much
weaker assumptions) are weak solutions. The relationship between weak and strong
solutions was investigated in the paper [23] by Zvonkin and Krylov.

For the special case of one-dimensional homogeneous SDEs (i.e., SDEs of the
form (1.1)), there exist much better sufficient conditions for the weak existence and
the uniqueness of a solution. This was shown by Engelbert and Schmidt in [5]-[8] (for
the case b =0, they gave necessary and sufficient conditions). Engelbert and Schmidt
proved that if o(z) # 0 for any x € R and

L e ), (1.3)
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o

then, for any x € R, there exists a unique (weak) solution of (1.1).

3. The main goal of this paper is to investigate one-dimensional homogeneous SDEs
for which condition (1.3) is violated, i.e., SDEs with singular coefficients. The only
assumption we make from the outset is that o(x) # 0 for any = € R. We will only
deal with weak solutions and study the above mentioned Problems I, II, III.

The importance of the stochastic differential equations with singular coefficients
both for the theory and for the practical applications can be shown by the following
arguments.

There are many examples of SDEs that arise naturally in the stochastic analysis
and do not satisfy condition (1.3). Such are, for example, the equations for Bessel
processes and for the squares of Bessel processes.

SDEs with singular coefficients are essential for various applications of the stochastic
analysis. Indeed, suppose that we model some process as a solution of SDE (1.1).
Assume that this process is positive by its nature (for example, it is the price of a
stock on the securities market or the size of a population). Then the SDE used to
model such a process should have singular coefficients. The reason is as follows. If
condition (1.3) is satisfied, then, for any > 0 and any a < 0, the solution started at
x reaches the level a with positive probability (see Theorem 7.1 in Section 7).

In order to investigate SDEs with singular coefficients, we introduce the following
definition. A point d € R is called a singular point for SDE (1.1) if

1+ b
0-2

¢ Lioe(d)

(see Definition 4.1 for the notation L[ .(d)). According to this definition, any point
d € R is either a singular point or a regular one. It turns out that there exists a
qualitative difference between these two classes of points. This difference is expressed
in terms of the behaviour of a solution in the neighbourhood of the corresponding point

(see Section 4).



Using the above terminology, we can say that a SDE has singular coefficients if and
only if the set of its singular points is nonempty. It is worth noting that in practice one
often comes across SDEs that have only one singular point (usually, it is zero). Thus,
the most important class of singular points is formed by the isolated singular points.
(We call d € R an isolated singular point if d is singular and there exists a deleted
neighbourhood of d that consists of regular points).

In this paper, we present a complete qualitative classification of isolated singular
points. This classification allows us to make conclusions about the qualitative be-
haviour of a solution in the neighbourhood of the corresponding point. In particular,
the classification allows us to find out whether a solution can reach an isolated singular
point and whether it can leave this point. This is done through the coefficients b and
.

In order to perform this classification, we investigate the behaviour of a solution
first in the right-hand neighbourhood of an isolated singular point and then in the
left-hand neighbourhood. It has been found that there exist 8 qualitative types of the
behaviour of a solution in the one-sided neighbourhood of a point. Therefore, there
exist 63(= 8 — 1) qualitative types of isolated singular points (see Section 7).

4. This paper is arranged as follows.

Section 2 contains some definitions related to SDEs.

In Section 3, we cite some definitions and statements related to regular continuous
strong Markov processes. The behaviour of such a process in the right-hand (left-
hand) neighbourhood of a point d may be described by 4 parameters ey, ..., es. These
parameters were introduced by Feller [9], It6 and McKean [13]. The parameters show
whether the process may leave the point d in the right (left) direction, whether it may
reach d from the right (left) side, and so on.

In Section 4, we give the definition of a singular point. We prove several statements
which show that there exists a qualitative difference between the singular points and the
regular ones. This confirms that the given definition of a singular point is reasonable.

In Section 5, we present two examples of a SDE with a singular point. These
examples show how a solution may behave in the neighbourhood of such a point. In
particular, we investigate the existence and the uniqueness of a solution for SDEs
governing Bessel processes.

In Section 6, we define a solution up to a random time. This notion is necessary for
several reasons (in particular, for treating the explosions). Solutions up to a random
time were also considered in [7], [8], [15; Ch. 5, (5.1)].

The most important part of this paper is Section 7. In this section, we investigate
the behaviour of a solution in the right-hand neighbourhood of an isolated singular
point. We prove that, for any = out of this neighbourhood, there exists a solution
defined up to a random time of a special form. Moreover, this solution is a strong
Markov process. The local characteristics eq, ..., e4 of this process as well as its speed
measure and scale function are expressed by b and o. This leads to the qualitative
classification of right types of isolated singular points. It has been found that there are
8 different types. Furthermore, we show that an isolated singular point can have one of
63 possible types. The one-sided classification of isolated singular points is illustrated
diagrammatically in Figure 1.

In Section 8, the above classification is applied to the power equations, i.e., equa-



tions of the form
dX; = p|X,|*dt + v|X,|PdB,, X, =x.

The right types of zero for this SDE can easily be expressed by u, v, a and f (see
Figure 2).

2 Stochastic Differential Equations

Definition 2.1. A solution of SDE (1.1) is a pair (Y, B) of adapted processes on
a filtered probability space (Q, G, (Gy), Q) such that

i) B is a (G;, Q)-Brownian motion (i.e., it is a Brownian motion and a (G, Q)-
martingale);

ii) for any ¢t > 0,

t
/ (B(Y,)| + 02(Y)) ds < o0 Q-as.;
0
iii) for any ¢ > 0,

t t
Yt:aH—/ b(Ys)ds+/ o(V.)dB, Qas.
0 0

Definition 2.2. A solution (Y, B) is called a strong solution if the process Y is

adapted to the filtration (?f), i.e., the completed natural filtration of B.
A solution in the sense of Definition 2.1 is called a weak solution.

Definition 2.3. There is uniqueness in law for (1.1) if whenever (Y, B) and (Y, B)
are two solutions (which may be defined on different probability spaces) with the same
starting point, then the laws of Y and Y are equal.

Definition 2.4. There is pathwise uniqueness for (1.1) if whenever (Y, B) and
(Y, B) are two solutions on the same filtered probability space with the same starting
point, then Y and Y are indistinguishable.

From here on, it will be more convenient for us to use another definition of a solution
(which is equivalent to Definition 2.1). In order to give this definition, we need some
notation.

Let C'(R;) be the space of continuous functions Ry — R, where Ry = [0, 00). Let
X = (X})i>0 denote the coordinate process on C(Ry), i.e., X is defined by

X :CRy)dwr—w(t) eR (2.1)

Let (F;) be the canonical filtration on C(R,), i.e., F; = 0(X;; s < t), and F be the
Borel o-field on C(R;). Note that F =\, F;.



Definition 2.5. A solution of SDE (1.1) is a measure P on F such that
i) P{X, =z} =1;
ii) for any ¢t > 0,

/0 (|b(X8)| + UZ(Xs)) ds < oo P-as;

iii) the process
¢
M, = X, —/ b(X,) ds (2.2)
0

is a (Fi, P)-local martingale;
iv) the process

M} — /t o*(X,) ds (2.3)

is a (F;, P)-local martingale.
In what follows, we will call P a solution started at x.

Remarks. (i) If one accepts Definition 2.5, then the uniqueness of a solution does
not need a special definition.

(ii) Definitions 2.1 and 2.5 do not cover the case of ezploding solutions. In Section 6,
we give the definition of a solution up to a random time. This makes it possible to
consider explosions. O

The following statement relates Definition 2.1 and Definition 2.5.
Theorem 2.6. Suppose that o(x) # 0 for all z € R.
(i) Let (Y, B) be a solution of (1.1) in the sense of Definition 2.1. Then the measure

P = Law(Yy; t > 0) is a solution of (1.1) in the sense of Definition 2.5.
(i) Let P be a solution of (1.1) in the sense of Definition 2.5. Then the pair (Y, B)

defined by
| " h(X,)
V=X, B = dX, — d 2.4
=X B [ orges [ 2y

is a solution of (1.1) on the filtered probability space (C(Ry),F, (F;),P) in the sense
of Definition 2.1.

The proof is straightforward.

3 Continuous Strong Markov Processes

We will add an isolated point {A} to the real line and consider the functions taking
values in RU {A}.

Definition 3.1. The space C(R,) consists of the functions f : R, — RU {A}
with the following property: there exists a time £(f) € [0, oo] such that f is continuous
on [0,£(f)) and f = A on [£(f),00). The time &(f) is called the killing time of f.



Throughout this section, X = (X;);>o denotes the coordinate process on C(R;),
ie.,
X;:CRy) 32w w(t) e RU{AY; (3.1)
(F;) will be the canonical filtration on C(R,), i.e., F; = o(X,; s < t); F will stand
for the o-field \/,., F = 0(X,; s > 0). Note that (F;) is not right-continuous. We
therefore introduce the filtration F;" = (..o Fige (¢t >0).

Remark. The space C(R, ) may be endowed with a metric that turns it into a Polish
space. Moreover, the corresponding Borel o-field coincides with F. The space C (Ry)
is a closed subset of C'(R;) in this metric. O

In the following reasoning, we will use the notations:

T, =inf{t > 0: X; = a}, (3.2)

T, = sup, inf{t > 0:|X; —a|] < 1/n}, (3.3)
T,y =T, AT, (3.4)
Top=ToNTy. (3.5)

Here, a,b € R. On the set {X, = A}, we have T, = T, = co. Note that T, # T,
because the process X may be killed just before it reaches a.

Definition 3.2. Let I C R be an interval which may be closed, open or semi-open.
A continuous strong Markov process on I is a family (P,),e; of probability measures
on F such that

i) for any z € I,

P{Xo=2} =1, P, {vt>0, X, e TU{A}} =1;

ii) for any A € F, the map x — P,(A) is Borel-measurable;
i) for any (F;")-stopping time 7', any F-measurable nonnegative function ¥ and
any r € I,
EPm [\I’ o @T|f;] = EPXT [\I’] Pm—a.s.

on the set { X7 # A}. Here, Or is the shift on C(R,) defined as follows:

Xpr if T<oo
OroX), = ’
(Or o X {A if T = .

(Obviously, O is F|F-measurable).

Definition 3.3. A regular continuous strong Markov process on [ is a family
(P.)zer that satisfies properties i)—iii) of Definition 3.2 as well as the following condi-
tions:

iv) for any z € I, we have on the set {{ < oo}: limyue X, exists and does not
belong to I P,-a.s. (here, £ =inf{t > 0: X; = A}). In other words, X can be killed
only at the endpoints of I that do not belong to I;

v) for any z el (IO denotes the interior of 1) and any y € I, we have P,{3t > 0:



From here on, we will call regular continuous strong Markov processes simply reqular
processes.

Proposition 3.4. Suppose that (P;)zer is a reqular process. There exists a contin-
uous strictly increasing function s :I— R such that s(XTe®) is a Py -local martingale

forany a <z < b in Io (here, Xt 4s the process X stopped at T,y, where T,y is
defined in (3.4)). Furthermore, the function s is determined uniquely up to an affine
transformation, and it satisfies the following property: for any a < x <b in I,

_ 5(z) — s(a)
Px{Tb < Ta} = 78(1)) — S(a) .
For the proof, see [20; Ch. VII, (3.2)] or [14; (20.7)].

Definition 3.5. A function s with the properties stated in Proposition 3.4 is called
the scale function of the process (Py)zer-

We now turn to another characteristic of a regular process. For a < b in I, set

(s(@) A s(y) — s(a) (s(b) — s(2) V 5(y))

s(b) — s(a) - wy€led)

Ga,b (:Ea y) =

where s is a variant of the scale function.

Proposition 3.6. For a reqular process (Py)zcr, there exists a unique measure m
on I such that, for any nonnegative function f and any a <x <b in I,

T,

e, | bﬂXQ%}zQL%%A@@f@MM@A (3.7)

0
For the proof, see [20; Ch. VII, (3.6)] or [14; (20.10)].

Definition 3.7. The measure m given by Proposition 3.6 is called the speed mea-
sure of the process (Pg)zer-

Remarks. (i) Some authors use the term speed measure for 2m instead of m.

(ii) The measure m is unique for a fixed choice of the scale function. If another
variant of the scale function is taken, then one gets a different G and, as a result, a
new m. O

Let (P)zer be a continuous strong Markov process and d € I\ {r}, where r
denotes the right endpoint of I. The behaviour of the process (P,) in the right-hand
neighbourhood of d may be described by the following parameters:

e = liLrjl P{T, <6},
ey = lylEil l{;gil P.{T, <0},
€3 = l:g(rjl P.{T,; < 0},

€4 = lmlgil Pm{Td < 9},
where Ty, T4 are defined in (3.2), (3.3) and @ > 0 is an arbitrary constant.

8



Proposition 3.8. The values ey, ...,eq do not depend on the choice of 8 > 0.
Moreover, they can form only the following combinations:

€1 | €2 | €3] €y

olo|lo|—|~
—lo|lo|~|~
ook |o|
olo|l—|o|~

Here, p may take any value from [0,1].

For the proof, see [13; §3.3].

Remark. The value p € (0,1) corresponds to the case where the process is killed
with probability 1 — p just before it reaches d. O

4 Isolated Singular Points: The Reasoning

Throughout this section, we assume that o(z) # 0 for all z € R. By X we denote the
coordinate process on C'(R;) (see (2.1)).

Definition 4.1. A measurable function f : R — R is locally integrable at a point
d € R if there exists ¢ > 0 such that

d+é
/ |f(z)]dx < oc.
d—5

We will use the notation: f € Li (d).

loc

Definition 4.2. A measurable function f is locally integrable on a set D C R if f
is locally integrable at each point d € D. Notation: f € L{..(D).

Proposition 4.3. Suppose that, for SDE (1.1),

1+ b

2 € Lioe(®).

o
Then, for any x € R, there exists a unique solution of (1.1).
For the proof, see [7] or [8].
Remark. The solution constructed in Proposition 4.3 may explode at a finite time. O

Section 7 contains the following local analog of Proposition 4.3 (see Theorem 7.1).
If the function (1+ |b|)/o? is locally integrable at a point d, then there exists a unique
solution of (1.1) ”in the neighbourhood of d”. Therefore, such a point should be called
"regular”.



Definition 4.4. A point d € R is called a singular point for SDE (1.1) if

1+
2

loc

A point that is not singular will be called regular.

Definition 4.5. A point d € R is called an isolated singular point for (1.1) if d is
singular and there exists a deleted neighbourhood of d that consists of regular points.

The next four statements are intended to show that the singular points in the sense
of Definition 4.4 are indeed ”singular”.

Proposition 4.6. Suppose that |b|/o? € L} .(R) and 1/0* ¢ Li..(d). Then there
exists no solution of (1.1) started at d.

For the proof, see [7] or [8].

Theorem 4.7. Let I be an open interval. Suppose that |b|/o* & L .(x) for any
x € I. Then, for any x € 1, there exists no solution of (1.1) started at x.

Proof. Suppose that P is a solution started at x € I. By the occupation times
formula (see [20; Ch. VI, (1.6)]) and by the definition of a solution, we have

t N ey [ B0 e e
/0|b(Xs)|ds_ o= [ Bl d <o Pas @

Here, L{(X) denotes the local time of X spent in y up to ¢. As L}(X) is right-
continuous in y (see [20; Ch. VI, (1.7)]), we deduce that

P{Vt>0,Vyel, L{(X)=0}=1.

Therefore, for the stopping time T'=1Ainf{¢t > 0: X; ¢ I}, one has

7= /OT | ds = /OT o~2(X,) d(X),

_ /R o2 (y) LL(X) dy — /1 o~2(y) LL.(X) dy = 0.

We used the fact that L%.(X) = 0 for y ¢ I; see [20; Ch. VI, (1.3)]). This leads to a
T
contradiction since T > 0. O

Theorem 4.8. Suppose that d is a singular point for (1.1) and P is a solution
started at a point x. Then

LYA{X)=L"(X)=0 P-as.

forall t > 0.

10



Proof. Since d is a singular point, we have

d+e 1 |b({17)|
v — "Vl dr = 4.2
5>(],/d 2(2) dr = o0 (4.2)
" ‘ |b(x)]
14 |b(z
Ve > 0, /d25 2(2) dzr = oo. (4.3)

If (4.2) is satisfied, then (4.1), together with the right-continuity of L{(X) in y, guaran-
tees that V¢ > 0, L¢(X) = 0 P-a.s. If (4.3) is satisfied, then V¢ > 0, L{~(X) = 0 P-a.s.
Let B be the process defined in (2.4). Then

/ 'I(X, = d) dx, = / I, = ) (X ds + / 'I(X, = d)o(X.) dB.
_ /tI(XS — d)b(X,)ds + M,

where M is a (F;, P)-local martingale (here, (F;) is the canonical filtration on C(R,)).
By the occupation times formula (see [20; Ch. VI, (1.6)]),

/tI(Xs — d)b(X,) ds = /t UGl I)’(Xs) d(x),

0 o (Xs
:AI(x;f;)b(x) L*(X)dz =0 P-as.
Similarly,
(M), = / IX, = d)o?(X)ds =0 Poas.
Therefore, 0

t
/ I(X, =d)dX, = 0.
0

This equality, combined with the properties of the local times (see [20; Ch. VI, (1.7)]),
guarantees that

vVt >0, LYX) =L (X) P-as. (4.4)
We have already proved that L4(X) = 0 or L{~(X) = 0. This, together with (4.4),
leads to the desired statement. O

Theorem 4.9. Suppose that d is a reqular point for SDE (1.1) and P is a solution
started at a point x. Suppose moreover that P{Ty; < oo} > 0 (Ty is defined in (3.2)).
Then, on the set {t > T}, we have

LYX)>0, LT(X)>0 P-as.
This theorem can be derived from Theorem 7.1 in Section 7.
Theorem 4.10. Suppose that

1+ b
0-2

1+ b
2

€ Lio(R\ {0}), ¢ Lioc(0).

11



Then there are only 4 possibilities:
1. There is no solution started at zero.
2. There exists a unique solution started at zero, and it is nonnegative
(i.e., P{Vt >0, X; >0} =1).
3. There exists a unique solution started at zero, and it is nonpositive.
4. There exist a nonnegative solution as well as a nonpositive solution
started at zero. In this case, alternating solutions may also exist.

This theorem follows from the results of Section 7.

Proposition 4.3 and Theorem 4.10 illustrate the qualitative difference between the
singular points and the regular ones. If the conditions of Proposition 4.3 are satisfied
(in this case, zero is a regular point), then there exists a unique solution P started at
zero. Moreover, this solution has alternating signs, i.e.,

P{Ve>03t<e:X;>0}=1, P{Ve>03t<e:X,<0}=1.
These properties follow from the construction of the solution (see [7], [8]). On the other
hand, if the conditions of Theorem 4.10 are satisfied (in this case, zero is an isolated
singular point), then the above situation is impossible.
5 Isolated Singular Points: Examples

Throughout this section, X denotes the coordinate process on C'(R,).

Example 5.1. For the SDE
1
t

there exists no solution started at zero.

Proof. Suppose that P is a solution started at zero. Let B be the process defined
in (2.4). By It6’s formula,

t t
Xf:—/ I(Xs;éo)ds+2/ X,dBs +t
0 0

t t
:/ I(sto)ds+2/ X, dB,.
0 0

By the occupation times formula (see [20; Ch. VI, (1.6)]),

/OtI(Xs:O)ds:/UtI(XS:0)d<X>s:/R[(zzo)Lf(X)dx:O.

Thus, X? is a local martingale with X2 = 0. Consequently, X? = 0 P-a.s. On the
other hand, the measure concentrated on X = 0 is not a solution. O

Remark. If x # 0, then (5.1) possesses no solution in the sense of Definition 2.5.
However, (5.1) has a solution defined up to the moment Ty = inf{¢ > 0 : X; = 0} in
the sense of Definition 6.1. Moreover, this solution is unique. O

In the following example, we investigate SDEs for Bessel processes.

12



Example 5.2. Let us consider the SDE

0—1
t

with 6 > 1, x € R.
(i) If x #0 and § > 2, then (5.2) has a unique solution.
(i) If t =0 or 1 <0 < 2, then (5.2) possesses different solutions.

Proof. (i) With no loss of generality, we may assume that > 0. Let P be the
distribution of a d-dimensional Bessel process started at z. It is well known (see, for
example, [20; Ch. XI, §1]) that P is a solution of (5.2) (in the sense of Definition 2.5).
Let P’ be another solution. Set

Q =Law(X% t>0|P), Q =Law(X?t>0|P).
By Ito’s formula, both Q and Q" are solutions of SDE
dXt = odt + 2\/ |Xt| dBt, X() = 5172. (53)

For this equation, the drift b is constant and the diffusion coefficient ¢ is Holder con-
tinuous of order 1/2. Therefore, there is even strong existence and strong uniqueness
for (5.3) (see [20; Ch. IX, (3.5)]). By the theorem of Yamada and Watanabe (see [20;
Ch. IX, (1.7)]), there is weak uniqueness for (5.3), i.e., Q' = Q. Hence,

Law(|X,|; > 0|P) = Law(|X,|: £ > 0| P". (5.4)

Furthermore, the properties of the Bessel processes guarantee that, for 6 > 2, P{V¢ >
0, Xy > 0} = 1 (see [20; Ch. XI, §1]). This, together with (5.4), implies that
P{Vvt >0, X; # 0} = 1. Since the paths of X are continuous and P'{X, = = >
0} =1, we get P/{Vt >0, X; >0} =1. Using (5.4) once again, we obtain P = P’.

(ii) We will first suppose that © = 0. Let P be defined as above and P’ be the
image of P under the map

CRy) Ewr— —we C(Ry).

It is easy to verify that P’ is also a solution of (5.2) started at zero. The solutions P
and P’ are different since

P{Vt>0, X, >0} =1, P{vt>0, X,<0}=1.

Moreover, for any « € (0, 1), the measure P* = aP + (1 — a)P’ is also a solution.

Suppose now that x > 0. Let P denote the distribution of a J-dimensional Bessel
process started at x. Since 1 < ¢ < 2, we have: P{3t > 0: X; = 0} =1 (see [20;
Ch. XI, §1]). Let P’ be the image of P under the map

CRy)d>wr—uw € C(Ry),
() = w(t) if t <Ty(w),
—w(t) if t > Ty(w).
where Tj is defined in (3.2). Then P’ is also a solution of (5.2). O

Remark. If x =0 or 1 < ¢ < 2, then SDE (5.2) possesses different strong solutions
as well as solutions that are not strong (see [2]). However, strong solutions are not
investigated in this paper. O
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6 Solutions up to a Random Time

Throughout this section, X denotes the coordinate process on C(R,) (see (3.1)) and
(F;) denotes the canonical filtration.

In what follows, we will need two different definitions: a solution up to 7" and a
solution up to 1'—.

Definition 6.1. Let T be a stopping time on C(R,). A solution of (1.1) up to T
(or a solution defined up to T') is a measure P on Fp such that

i) P{Xo =2} =1;

i) [ (|b(X,)] +0%(X,)) ds < oo P-as.;

iii) T < 0o P-a.s.;

iv) the process

tAT
Mt = Xt/\T - / b(XS) ds
0

is a (F, P)-local martingale;
v) the process

AT
M} — / o?(X,)ds
0

is a (F4, P)-local martingale.
In what follows, we will often say that (P,T) is a solution of (1.1) started at x.

Remarks. (i) The properties i)-v) imply that 7' < £ P-a.s., where £ = inf{t > 0 :

Xt == A} .
(ii) The measure P is defined on Fr and not on F since otherwise it would not be
unique. O

We remind that T is called a predictable stopping time if there exists an increasing
sequence (7,)%°, of stopping times such that T,, < T', lim, T, = T'. Such a sequence
is called a predicting sequence for T'.

Definition 6.2. Let T be a predictable stopping time on C'(R,.) with a predicting
sequence (T,,). A solution of (1.1) up to T— (or a solution defined up to T—) is a
measure P on Fp_ such that, for any n, the restriction of P to Fr, is a solution up
to 1,,.

In what follows, we will often say that (P,7—) is a solution of (1.1) started at x.

Remarks. (i) Obviously, this definition does not depend on the choice of a predicting
sequence for T'.
(ii) Definition 6.2 implies that 7' < £ P-a.s. O

Let us now clarify the relationship between the definitions of a solution up to a
random time and the standard Definition 2.5.

Theorem 6.3. (i) Suppose that (P,T—) is a solution of (1.1) in the sense of Def-
inition 6.2 and T = oo P-a.s. Then P admits a unique extension P to F. Let Q be
the measure on C(Ry) defined as the restriction of P to the set {& = oco}. (We use
here the obvious property C(R, ) N{& =00} = C(Ry)). Then Q is a solution of (1.1)
in the sense of Definition 2.5.
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(i) Let Q be a solution of (1.1) in the sense of Definition 2.5. Let P be the measure
on C(Ry) defined as P(A) = QAN {{ = oo}). Then (P,00—) is a solution of (1.1)
in the sense of Definition 6.2.

Proof. (i) The existence and the uniqueness of P follow from the
equality
FHT = oo} = Fr_|{T = oo}.

The latter part of the statement as well as (ii) are obvious. O

7 The Classification of Isolated Singular Points

We will first investigate the behaviour of a solution of (1.1) in the right-hand neighbour-
hood of an isolated singular point which is supposed to be equal to zero. A complete
qualitative classification in terms of the parameters ey, ..., e, defined in (3.8) is pre-
sented.

Throughout this section, we suppose that o(z) # 0 for all = € R.

As zero is an isolated singular point, there exists a > 0 such that

141b
P e L0, (7.1)
o
We note that the integral
“1
[,
€

may converge if zero is an isolated singular point. In this case, the corresponding
integral diverges in the left-hand neighbourhood of zero.
A solution P defined up to T will be called nonnegative if

We will use the functions

p(z) = exp{/: igg; dy}, x € (0,al, (7.2)

/Ux p(y)dy if /Uap(y) dy < oo,

s(z) = . . (7.3)
—/ p(y)dy if / p(y) dy = oo
T 0
and the measure 10
m(dr) = 10220 (7.4)
p(x) o*(x)
For a stopping time 7', we will consider the map
Or:CRy) Swr—w' € C(RY) (7.5)
defined as w’(t) = w(t A T(w)) and the map
o :CR)>wr— ' € C(RY) (7.6)

15



defined as
T (t) = w(t) if t <T(w),
A it t > T(w).

Throughout this section, ey, ..., e; mean the values defined in (3.8).

Theorem 7.1. Suppose that

/“de@o
0

o*(x)

(i) For any x € [0,a], there exists a unique solution P, of (1.1) defined up to Ty,
(cf. (3.4)). i

(ii) Set P, =P, o0 @iﬁa (cf. (7.5)). Then (P1)acjo,q s a regular process whose scale
function and speed measure are given by (7.3) and (7.4). Moreover, for this process,

6120, 6220, 63:1, 64:1.

If the conditions of Theorem 7.1 are satisfied, we will say that zero has right type 0.
Remark. Condition iii) of Definition 6.1 guarantees that Ty, is P,-a.s. finite.
Moreover, it follows from (3.7) that Ep, Tj, < 0. O

Theorem 7.2. Suppose that

/ p(z) dx < oo, /1+|b < 00, / dx—

(i) For any = € [0,a], there exists a nonnegative solution P, defined up to T,.
Moreover, it is unique in the class of nonnegative solutions.

(i) Set P, =P, o @i}. Then (Pm)me[g’a] s a reqular process whose scale function
and speed measure are given by (7.3) and (7.4). Moreover, for this process,

61:1, 62:1, 63:1, 64:1.

If the conditions of Theorem 7.2 are satisfied, we will say that zero has right type 2.

Remark. Under the conditions of Theorem 7.2, we have Ep T, < oo. This can
be derived from a formula similar to (3.7) that is related to regular processes with a
reflecting point (see [20; Ch. VII, (3.10)]). O

Theorem 7.3. Suppose that

/ p(z) dx < oo, /1+|b T = 00, /Oa%s(x)dx<oo.

(i) For any solution (P,T), we have P{Vt € [T;,T], X, <0} = 1.

(ii) For any x € [0,a], there exists a unique solution P, defined up to Ty,.

(iil) Set ﬁm =P,o @;01@. Then (ﬁm)me[o,a} s a reqular process whose scale function
and speed measure are given by (7.3) and (7.4). Moreover, for this process,

6120, 6220, 63:1, 64:1.
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If the conditions of Theorem 7.3 are satisfied, we will say that zero has right type 1.
Remark. Statement (i) implies that any solution (P,T) started at x < 0 is nonpos-
itive. O

Theorem 7.4. Suppose that

a a b a
/p(x)dx<oo, / de:oo, / Lxgdx<oo.
0 o plx)o?(x) o plx)o*(x)
(i) If (P,T) is a solution started at © > 0, then T < Ty P-a.s.

(ii) If (P, T) is a solution started at x <0, then P{Vt <T, X, <0} =1.

(iii) For any = € (0,a), there erists a unique solution P, defined up to Tg,—
(¢f (3.5)).

(iv) Set P, = P, o 6%3@ (¢f. (7.6)). Then (Py)ic0a) s a regular process whose
scale function and speed measure are given by (7.3) and (7.4). Let Py be the measure
concentrated on X = 0. Then (Pm)me[g’a) 18 a continuous strong Markov process with

er =0, e=0, e3=0, e =1.

If the conditions of Theorem 7.4 are satisfied, we will say that zero has right type 6.

Theorem 7.5. Suppose that

/Oap(a:)dx<oo, /Oa%dz:oo

i) If (P, T) is a solution started at x > 0, then T < Ty P-a.s.
i) If (P, T) is a solution started at x < (] then P{Vt <T, X, <0} =1.

(
(i
(ili) For any = € (0,a), there exists a unique solution P, defined up to To—.
Moreover, PI{TG =o0and X; — O} > 0.
o . tﬁoo_
(iv) Set P, = Py o @7 . Then (Py)ac(,a) is a reqular process whose scale function

and speed measure_are given by (7.3) and (7.4). Let Py be the measure concentrated
on X =0. Then (P:v)me[o,a) 18 a continuous strong Markov process with

61:0, 62:0, 63:0, 64:0.
If the conditions of Theorem 7.5 are satisfied, we will say that zero has right type 4.

Theorem 7.6. Suppose that

/ o) d = oo, /”'b 1s(2)] dz < oc.

(i) If (P,T) is a solution started at © > 0, then T < Ty P-a.s.

(ii) For any = € (0,a], there exists a unique solution P, defined up to T,. For
x = 0, there exists a nonnegative solution Py defined up to T,, and it is unique in the
class of nonnegative solutions. B

(iii) Set P, =P, 0 <I>;a1. Then (Py)zc(0,a] @5 a regular process whose scale function
and speed measure are given by (7.3) and (7.4). Moreover, (ﬁm)me[g’a] is a continuous
strong Markov process with

er=1, e=1, e3=0, e4=0.
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If the conditions of Theorem 7.6 are satisfied, we will say that zero has right type 3.

Theorem 7.7. Suppose that

/ p(x) dr = oc, / 7“)(33) )l dxr = 0o, / 7|5(:£)| dr < oc.
0 o p(r)o?(z) o p(z)o?(z)

(i) If (P,T) is a solution started at © > 0, then T < Ty P-a.s.

(ii) If (P,T) is a solution started at x <0, then P{Vt <T, X; < O} =1.

(iii) For any x € (0,a], there exists a unique solution P, defined up to T,.

(iv) Set P,=P,o0 (D:;al. Then (ﬁx)me(g’a] is a reqular process whose scale function
and speed measure are given by (7.3) and (7.4). Let Py be the measure concentrated
on X =0. Then (,st)me[o,a} 18 a continuous strong Markov process with

61:0, 62:1, 63:0, 64:0.
If the conditions of Theorem 7.7 are satisfied, we will say that zero has right type 7.

Theorem 7.8. Suppose that

/Oap(x)dx:oo, /Oa%dx:oo

(i) If (P,T) is a solution started at x > 0, then T < Ty P-a.s.

(ii) If (P,T) is a solution started at x <0, then P{Vt <T, X; < O} =1.

(iii) For any x € (0,al, there exists a unique solution P, defined up to T, .

(iv) Set P, = P, 0 ®;'. Then (ﬁm)xe(g’a] is a regular process whose scale function
and speed measure are given by (7.3) and (7.4). Let Py be the measure concentrated
on X =0. Then (ﬁm)me[o,a} 18 a continuous strong Markov process with

e1 =0, e =0, e3=0, e4=0.

If the conditions of Theorem 7.8 are satisfied, we will say that zero has right type 5.

For the sake of brevity, we present here only the statements of the results and give
no proofs. The proofs can be found in the forthcoming paper by the same authors.

Figure 1 represents the one-sided classification of isolated singular points. We note
that the integrability conditions given on Figure 1 do not have the same form as those
given by Theorems 7.1-7.8. Nevertheless, they are equivalent. For example,

“1+b
0

o*(x)

if and only if

/ p(z) dx < oo, / 1+|b r < 00, /OLI)?((x)Jd < 00

(In this case zero has right type 0).

If zero has right type 2 or 3, then there exist positive solutions started at zero.
Thus, types 2 and 3 may be called entrance types. On the other hand, types 1, 4, 5,
6, 7 are non-entrance ones: any solution started at zero is nonpositive.
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Figure 1. One-sided classification of isolated singular points
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If zero has right type 0, 1 or 2, then, for x € (0,a), there exists a solution started
at x that reaches zero with positive probability. Thus, types 0, 1, 2 may be called exit
types. If the right type of zero is one of 3,...,7, then any solution with z > 0 does
not reach zero. So, these types are non-exit ones.

Let us now informally describe how a solution behaves in the right-hand neighbour-
hood of an isolated singular point for each of the types 0,...,7.

If zero has right type 0, then, for any = € [0,a], there exists a unique solution
defined up to Tp,. This solution reaches zero with positive probability. An example
of a SDE for which zero has right type 0 is provided by the equation

dXt = dBt, X() =X.

If zero has right type 1, then, for any = € [0,a], there exists a unique solution
defined up to Tp,. This solution reaches zero with positive probability. Any solution
started at zero (it may be defined up to another stopping time) is nonpositive. In
other words, a solution may leave zero only in the negative direction. The SDE for the
square of a 0-dimensional Bessel process

dXt = 2\/ |Xt| dBt, XU =X

provides an example of a SDE for which zero has right type 1.

If zero has right type 2, then, for any z € [0, a], there exists a unique nonnegative
solution defined up to 7,. This solution reaches zero with positive probability and is
reflected at this point. There may exist other solutions up to T, (these solutions may
take negative values). For the SDE

0—1

dX, = — I(X 0)dt +dB Xy =
t2|Xt|(t7é)+ta 0=21

with 1 < 6 < 2 (this is the SDE for a d-dimensional Bessel process), zero has right
type 2.

If zero has right type 3, then, for any = € (0, a], there exists a unique solution
defined up to 7T,. This solution never reaches zero. There exists a unique nonnegative
solution started at = 0 and defined up to T, (for x = 0, there may exist other
solutions that take negative values and are defined up to T;). For the SDE

0—1
dX; = ——— I[(X; #0)dt +dB;, Xo==x
2[X|
with § > 2, zero has right type 3.

If zero has right type 4, then, for any x € (0,a), there exists a unique solution
defined up to T,—. This solution never reaches zero. There exists no solution up to
T, for the following reason. The above mentioned solution tends to zero with positive
probability as ¢ — oo. So, this solution never reaches the point a with positive
probability. On the other hand, if (P,T,) is a solution, then 7, should be P-a.s. finite.
For type 4 as well as for types 5, 6, 7 below, any solution started at zero is nonpositive.
An example of a SDE for which zero has right type 4 is provided by the equation

1
dXt = §|Xt| dt + |Xt| dBt, X() = X.

20



If zero has right type 5, then, for any = € (0,a], there exists a unique solution
defined up to T,. This solution never reaches zero. As opposed to the previous case,
the solution reaches the point a a.s. For the SDE

1
dXt = §|Xt| dt + |Xt| dBt, X() =,

zero has right type 5.
If zero has right type 6, then, for any z € (0,a), there exists a unique solution P,
defined up to Ty ,—. Moreover, T, is finite P,-a.s. However, there exists no solution

up to Ty, because the integral fOTO’“ |b(X;)| ds equals infinity with positive probability.

If zero has right type 7, then the qualitative behaviour of a solution is almost the
same as for right type 5. The only difference is in the value e;. We do not give the
examples of SDEs for which zero has right type 6 or 7 because these examples are
rather complicated.

So far, we have investigated the behaviour of a solution in the right-hand neighbour-
hood of zero (recall that zero is assumed to be an isolated singular point). According
to the classification given above, zero has one of 8 possible right types. If zero has right

type 0, then
“1+1b
da > 0: / Mdm<oo. (7.7)
o 0%z

If the right type of zero is one of 1,...,7, then

Va>0,/ de:oo
0

o*(z)

(this can easily be seen from Figure 1).

In a similar way, one can define left types of zero (there are 8 left types). We will say
that zero has type (i—j) if it has left type i and right type j. Thus, there are 64(= 8x8)
possibilities. If zero has type (0 — 0), then, in view of (7.7), (1 + |b])/0? € LL.(0)
and so, zero is not a singular point. For the other 63 possibilities, this function is not
locally integrable at zero. As a result, an isolated singular point can have one of 63
possible types.

It is easy to see that only 4 of these 63 types can disturb the uniqueness of a
solution. These are types (2—2), (2—3), (3—2) and (3—3). Indeed, if zero has one
of these types, then there exist both nonnegative and nonpositive solutions started at
zero. Therefore, we call these 4 types the branch types while corresponding isolated
singular points are called the branch points. If SDE (1.1) has a branch point, then
one can easily construct non-Markov solutions. We will illustrate this by the following
example.

Example 7.9. Let us consider the SDE

0—1

21X
with 1 < § < 2. Take x > 0 and let P be the nonnegative solution started at x (this is
the distribution of the §-dimensional Bessel process started at x). Let us consider the
map

CRy)d>wr—w e C(Ry)

21



defined as
w(t) if t < Ty(w),
W'(t) = w(t) if ¢ > Ty(w) and w(Th(w)/2) > 1,
—w(t) if t > Ty(w) and w(TH(w)/2) < 1.

Then the image P' of P under this map is a non-Markov solution of (7.8).

8 Application to Power Equations
Let us consider the SDE
dXy = p| X" I(X; £ 0)dt + (v X)P I(X, #0) + nI(X, = 0)) dB;,.  (8.1)

Here, v # 0, n # 0. Obviously, all the properties of (8.1) are the same for any 7 # 0.
We add the term nI(X; # 0) to guarantee that o # 0 at each point.

Theorem 8.1. Set A = u/v*, v = a — 2B. Then right types of zero for (8.1) are
those given in Figure 2.

The proof of this statement easily follows from the classification of the right types
given above.
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Figure 2. One-sided classification for the power equations. Here, A\ =
p/v?, v = a— 28, where a, B, p and v are given by (8.1). One should
first calculate v and select the corresponding graph (out of the three graphs
shown). Then one should plot the point (X, ) on this graph and find the
part of the graph the point lies in. The number @ marked in this part
indicates that, for equation (8.1), zero has right type i. For example, if
v<—=1, A>0 and 8 > (1 —7)/2, then zero has right type 5.
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