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Abstract. In this paper, we present a general approach to arbitrage pricing that
enables us to treat in a simple way the problems that are typically treated in a rather
complicated manner.

The paper has 5 main goals:
1. We present a general arbitrage pricing model. It includes as particular cases

e static as well as dynamic models;

e models with a finite number of assets as well as those with an infinite number
of assets;

e models related to market risk as well as those related to credit risk;

e models with no transaction costs as well as those with transaction costs;

e models with no costs of short selling as well as those with costs of short selling
or with short selling prohibited;

e combinations of various models.

Within the framework of the general arbitrage pricing model, we obtain

o the fundamental theorem of asset pricing;

o the form of fair prices of a contingent claim;

e the form of fair prices of a controlled contingent claim (this notion is introduced
in the paper).

2. The obtained general results are applied to several particular models (one-period
model, multiperiod model, continuous-time model, etc.). The “projection” of general
results on these models leads us, in particular, to the revision of the fundamental theo-
rem of asset pricing in the continuous-time case: the proposed variant of this theorem
states that the absence of the generalized arbitrage is equivalent to the existence of an
equivalent measure, with respect to which the discounted price process is a martingale
(not just a sigma-martingale). In the model with the infinite time horizon, uniformly
integrable martingales come into play.

3. The general approach mentioned above allows us to narrow considerably the
class of equivalent risk-neutral measures (and thus to make the intervals of fair prices
shrink) by taking into consideration the current prices of traded securities (options,
bonds, etc.).

4. Furthermore, the obtained results are extended to models with friction, i.e.
models with

e transaction costs;
e restrictions on short selling;
e costs of short selling.

This leads us, in particular to introduction of a notion of delta-martingale that gener-
alizes the notions of a martingale, submartingale, and supermartingale.

5. Finally, we introduce the possibility approach to arbitrage pricing. When using
this approach, one does not need to know the original probability measure. It is shown
that all the results described above can be transferred to the possibility framework.
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1 Introduction

1.1 Purpose of the Paper

In the fundamental work [HK79], Harrison and Kreps introduced a general model of
pricing by arbitrage. Their paper formed the basis of the martingale approach to arbi-
trage pricing. However, there are some technical problems inherent in their model. The
main one descends from the assumption that the so-called marketed contingent claims
should belong to L? (the model proposed later by Kreps [K81] enables one to relax this
assumption to the LP-integrability with p > 1). This restriction is not natural as shown
by the example below.

Consider the following simple model for an asset’s (discounted) price evolution:
So=1, 51 =&, 5 = &n, where £ and 7n are independent random variables, each
taking on values 1/2 and 3/2 with probability 1/2 (from the financial point of view,
Sy, is the discounted price of some asset at time n). Let (F,),—0,12 be a filtration such
that Fy is trivial, S is an (F,)-martingale, and F; is rich enough, so that there exists
an JFi-measurable random variable H that is not integrable. Then H(S; — S) is a
natural candidate for a marketed contingent claim. However, it does not belong to L!.

Further development of arbitrage pricing theory was mainly concentrated on dynamic
models with a finite number of assets, which may be viewed as particular cases of the
model proposed by Harrison and Kreps. Harrison and Pliska [HP81] introduced the
admissibility condition on the trading strategies as a substitute for the integrability
restrictions described above. The fundamental theorem of asset pricing (FTAP) for a
discrete-time model was established in the papers [HP81] and [DMW90] (alternative
proofs were given in [JS98], [KK94], [KSO01], [R94], [S92], and [S90]). The FTAP for
a continuous-time model was established in the papers [DS94] and [DS98] (another
proof was given in [K97]). In a series of papers [DS98], [FK97], [FK98], and [K96],
the form of upper and lower prices of a contingent claim in a continuous-time model
was established. However, there are some serious problems inherent in the mentioned
approach to continuous-time models (these problems are described in Examples 3.6, 3.7,
3.8, and especially Example 3.9).

In this paper, we propose a general arbitrage pricing model that has the same spirit
as the model of Harrison and Kreps, but avoids the problems described above. This
approach allows us to consider in a simple and unified manner various models of the
arbitrage pricing theory, some of which have so far been investigated separately and
by different techniques (for instance, this concerns the dynamic model with a finite
number of assets considered in Section 3.3 and a static model with an infinite number
of assets considered in Section 3.6). The simplicity of the proposed approach allows
us to investigate in an easy way rather complicated models (like the one described in
Section 3.9) as well as models with friction. Our approach to dynamic models with
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friction described in Section 4.2 is different from an approach developed in a series of
papers [DKV02], [KL02], [KRS02], [KS02], and [S04].

The proposed framework enables us not only to treat in a new way the models
that have already been studied, but also to go further. In particular, we introduce the
possibility approach to arbitrage pricing (its essence is described in Section 5.2). This
approach avoids the use of such a vague object as the original probability measure P.

1.2 General Arbitrage Pricing Model

A general arbitrage pricing model is a quadruple (Q, F,P, A), where (2, F,P) is a
probability space and A (it is called the set of attainable incomes) is a collection of
random variables on (2, F,P) meaning the set of discounted incomes one can obtain
by trading certain assets. For a model (2, F,P,A), we introduce the no generalized
arbitrage (NGA) condition and the notion of an equivalent risk-neutral measure. The
NGA condition might be viewed as a strengthening of the no free lunch condition known
in financial mathematics (the necessity to strengthen the latter one is illustrated by
Example 3.26).

The first basic result of the paper is Theorem 2.12, which may be called the fun-
damental theorem of asset pricing (FTAP) for the general arbitrage pricing model. It
states (under some assumption that is automatically satisfied in the particular models
considered below) that a model satisfies the NGA condition if and only if there exists
an equivalent risk-neutral measure.

We next consider the problem of pricing derivative contracts within the framework
of the general arbitrage pricing model. The financial derivatives can be divided into
three main categories:

e Contracts whose payoff does not depend on the decisions of either party (holder
or issuer). Such are, for example, European options.

e Contracts whose payoff depends on the decisions of one party. Such are, for
example, American and Bermudian options, convertible, puttable, and callable
bonds, extendable and puttable swaps.

e Contracts whose payoff depends on the decisions of both parties. Such are, for
example, some types of swaps.

In this paper, we consider the problem of pricing the contracts of the first type and the
second type. We call then contingent claims and controlled contingent claims, respec-
tively.

A contingent claim is modeled as a random variable F' on (€, F,P) meaning the
discounted payoff of the contract. For a contingent claim F', we define the set I(F') of
fair prices, the set J(F) of fair bid-ask prices (this set consists of pairs (z,y), where
x stands for the bid price and y stands for the ask price), the lower price V,.(F), and
the upper price V*(F). The second basic result of the paper is Theorem 2.19. It states
(under some natural assumptions) that

I(F) ~ [inf EqQF, sup EqF'|, (1.1)
QeER QeR

J(F)%{(m,y):zgy,zgsupEQF, y > inf EQF}, (1.2)
QeR QeR
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V.(F) = inf EqF, (1.3)
QER

V*(F) = sup EqF, (1.4)
QER

where R denotes the set of equivalent risk-neutral measures, and the approximate equal-
ity “~” between two sets means that these sets coincide up to the border (i.e. their
interiors coincide and their closures coincide).

A controlled contingent is modeled as a collection (F))yea of random variables on
(Q, F,P). The set A means the set of controls available to one party and F) means the
discounted payoff this party obtains if he or she chooses the control A (this sum might
be negative, which means that this party pays the money to the opposite one). For a
controlled contingent claim (F))aex, we define the set I(Fy; A € A) of fair prices, the
set J(F\; A € A) of fair bid-ask prices, the lower price V,(Fx;\ € A), and the upper
price V*(Fx; A € A). The third basic result of the paper is Theorem 2.25. Tt states
(under some natural assumptions) that

I(F\; A e ) C [inf sup EqF), sup sup EqF) |, (1.5)
QER AeA QER AeA
J(Fx A e )~ {(a:,y) rx <y, x < supsupEqF), y > inf sup EQF)\}, (1.6)
QER AeA QER AeA

Vi(Fx; A € A) = inf supEqQF), (1.7)
QER AEA

V*(Fx; A € A) = sup sup EqF). (1.8)
QER AEA

The general results described above are presented in Chapter 2, which forms the
kernel of the paper. This kernel is further extended in 3 directions:

1. “Projecting” general results on particular models with no transaction costs, with
short selling, and with no costs of short selling (Chapter 3).

2. Extending the results of Chapter 3 to models with transaction costs, restrictions
on short selling, or costs of short selling (Chapter 4).

3. Introducing the possibility approach to asset pricing and transferring the obtained
results to the possibility framework (Chapter 5).

1.3 Particular Models with No Friction

Various models of arbitrage pricing can be viewed as particular cases of the general model
described above. In order to embed a particular model into this general framework, one
should

1. specify the set A of attainable incomes;

2. find out the structure of the set of equivalent risk-neutral measures (typically, the
risk-neutral measures in a particular model admit a simpler description than the
general definition of a risk-neutral measure).

Once this is done, Theorem 2.12 gives the necessary and sufficient conditions for the
absence of the generalized arbitrage, while formulas (1.1)—(1.8) yield the form of the
sets of fair prices of contingent claims and controlled contingent claims.
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In Chapter 3, we consider 9 particular models with no friction, i.e. the models with

e 1o transaction costs;
e 1o restrictions on short selling;
e no costs of short selling.

The word “particular” reflects the fact that they can be viewed as particular cases of
the general model introduced in Chapter 2, but these models are general in the sense
that neither of them imposes restrictions on the probabilistic structure of the asset price
evolution (like the assumption that the price process is a geometric Brownian motion,
etc.).

In Section 3.1, we consider the one-period model with a finite number of assets
and show that for this model the NGA condition is equivalent to the classical no arbi-
trage (NA) condition, while the class of equivalent risk-neutral measures coincides with
the class of martingale measures. Furthermore, our interval of fair prices I(F') coincides
with the classical interval of fair prices of a contingent claim F'. In other words, the
“projection” of the results of Chapter 2 on this model agrees with the classical results
(they are described in Section 2.1).

In Section 3.2, similar results are obtained for the multiperiod model.

Section 3.3 deals with the continuous-time model with a finite time horizon. Our
approach to this model turns out to be completely different from the traditional ap-
proach. First, we consider only simple (i.e. piecewise constant) trading strategies with
no admissibility condition imposed. Second, our FTAP states that the model satisfies
the NGA condition if and only if there exists an equivalent martingale measure, i.e.
a measure, with respect to which the discounted price process is a martingale. This
is completely different from the traditional FTAP provided by Delbaen and Schacher-
mayer [DS94], [DS98] (another proof was given by Kabanov [K97]), which states that a
model satisfies the no free lunch with vanishing risk (NFLVR) condition (defined through
the general predictable admissible strategies) if and only if there exists an equivalent
stgma-martingale measure, i.e. a measure, with respect to which the discounted price
process is a sigma-martingale (this class of processes has been introduced by Chou [C79]
and Emery [E80]). Third, our definition of the interval of fair prices differs from the
traditional one. We discuss in Section 3.3 the problems of the traditional theory of
arbitrage pricing that arise when one considers admissible strategies, sigma-martingale
(not martingale) measures, and traditional intervals of fair prices. These problems do
not arise in our framework. The proposed FTAP agrees with the result of Yan [Y98]
who proved that some sort of no-arbitrage condition (introduced in [Y98]) is equivalent
to the existence of a martingale measure. It is also shown that the proposed approach
is consistent with the Black—Scholes formula as well as with its extensions to dividend-
paying stocks (Merton’s formula) and to futures (Black’s formula). Furthermore, it
turns out that a change of numéraire preserves the NGA property (see Theorem 3.11).
In contrast, the NFLVR property is not preserved under the change of numéraire (see
Example 3.10, which is borrowed from [DS95]).

Section 3.4 is related to the continuous-time model with the infinite time horizon.
It is proved that the set R coincides with the set of equivalent uniformly integrable
martingale measures, i.e. the measures, with respect to which the discounted price
process is a uniformly integrable martingale. Again, our approach is different from the
traditional one. Our FTAP provides, in particular, an explanation of the paradox of
the “buy and hold” strategies. As an application of the obtained results, we show that
any model with the infinite time horizon, in which the logarithmic price process has
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stationary increments, does not satisfy the NGA condition (even if the price process is
already a martingale with respect to the original measure).

Section 3.5 deals with the model of the term structure of interest rates. A distinctive
feature of this model is that it has an infinite number of assets. As we are dealing
only with the simple strategies, no problems arise in defining the set of attainable
incomes (in the traditional approach, a serious problem is how to define the stochastic
integral of a general predictable strategy with respect to an infinite-dimensional process;
see [BDKR97]). We prove, in particular, that this model satisfies the NGA condition
if and only if there exists an equivalent measure, with respect to which the discounted
price of each risk-free zero-coupon bond is a martingale. This property is typically taken
as the definition of no arbitrage in such a model (see [MR97; Def. 12.1.1]).

The models of Sections 3.6-3.9 are unified by the same methodology. Let us de-
scribe it. Any arbitrage pricing model used in modern financial mathematics works as
follows: its output is the set of fair prices of a contract that is being introduced into
the market; its first input is the measure P that describes the probability structure of
the price evolution; its second input consists of the current market prices of the traded
contracts, including both primary financial instruments (shares, bonds) and secondary
ones (options, swaps, etc.).

Probability structure
of the price evolution

\

Set of fair prices
— of a contract
being introduced

Current prices
of traded contracts

Figure 1. Inputsand output
of an arbitrage pricing model

Typically, the second input is used to evaluate the risk-neutral measure. This can
be done in several ways. In one method, the risk-neutral measures are assumed to
depend on several parameters, and the current prices of traded contracts are used to
evaluate these parameters (for example, the Black-Scholes model is applied in this
way). Another method is to evaluate the risk-neutral measure non-parametrically. This
technique is typically applied to recover the risk-neutral distribution of an asset’s price
at time 7' from the current prices of European options on this asset with maturity 7.
The corresponding model was first considered by Breeden and Litzenberger [BL78]. An
overview of the existing literature on this topic is given in [J99].
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In the present paper, the second input is used to restrict the class of equivalent
risk-neutral measures. This is done within the framework of the general arbitrage pric-
ing model as follows. The set A depends on the amount of traded securities that
we take into account; the set R depends on A; the sets of fair prices depend on R
through (1.1)-(1.8). Diagramatically,

Assets — A — R —— Sets of fair prices.

When the amount of assets taken into consideration is enlarged (i.e. more prices of
traded contracts are taken into account), the set A is enlarged, the set R is reduced,
and the sets of fair prices are reduced. In Sections 3.6-3.9, we show what information
on the structure of R can be extracted from the prices of traded options and bonds.

Section 3.6 deals with the model that takes into account the current prices of traded
European call options on several assets with maturity 7. We show that if options with
all positive strike prices are traded (of course, this is an idealized assumption, but it
is often used in theory), then the set R consists of the equivalent measures with given
marginals, i.e. the measures, with respect to which the vector (Sk, ..., S%) of prices of
these assets at time T has preassigned marginal distributions (these distributions are
extracted from the option prices). To put it another way, by looking at the prices of
the European call options on some asset with a fixed maturity 7" and all positive strike
prices, one can recover the market-estimated distribution of the asset price at time 7.
As a corollary, the fair price of a contingent claim of the form F = f(S%) (such are, for
example, the binary options) is uniquely determined through the NGA considerations
by the prices of the European call options on the i-th asset with maturity 7" and all
positive strike prices. This extends the result of Breeden and Litzenberger [BL78].

Section 3.7 is related to the model, which takes into account the current prices of
traded barrier options. It is shown that by looking at the current prices of the up-and-in
call options on some asset with maturity 7', all positive barriers and all positive strike
prices, one can recover the market-estimated distribution of the pair (S, My). Here Sy
is the price of the underlying asset at time 7', and My is the maximal price of this asset
on the interval [0,7]. As a corollary, the fair price of a contingent claim of the form
F = f(St, M7) (such are, for example, the lookback options) is uniquely determined
through the NGA considerations by the prices of the up-and-in call options on this asset
with maturity 7', all positive barriers, and all positive strike prices.

Section 3.8 deals with a model for assessing credit risk. We show (under some as-
sumptions that might be disputed) that the market-estimated distribution of the default
time of a company is determined by the current prices of (risky) zero-coupon bonds with
all positive maturities issued by this company.

The general approach introduced in Chapter 2 admits an easy procedure of the
combination of models. The aim of this procedure is to narrow the sets of fair prices by
taking into consideration the current prices of a larger amount of traded contracts. Thus,
the models of Section 3.1-3.8 may be viewed as “building blocks” for constructing mixed
models. An example is provided by Section 3.9, in which we consider a mixed static-
dynamic model. The “building blocks” are provided by the models of Sections 3.3 and
3.6. We show that, for the mixed model, the set R consists of the equivalent martingale
measures with given marginals, i.e. the measures, with respect to which the discounted
price process is a martingale with preassigned marginal distributions. Such measures
have recently attracted attention in the literature (see [C04], [CGMY03; Sect. 4.1],
and [MYO02]).
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1.4 Particular Models with Friction

The general approach introduced in Chapter 2 can be applied not only to the idealized
models of Chapter 3, but also to more realistic models with

e transaction costs;
e restrictions on short selling;
e costs of short selling.

In Chapter 4, we consider the “duals” of the models of Chapter 3 that take these
3 effects into account. All 3 effects are included in the models simultaneously. We call
the corresponding extensions models with friction. In order to embed such a model into
the general framework of Chapter 2, one should

1. specify the set A of attainable incomes;
2. find out the structure of equivalent risk-neutral measures.

Once this is done, Theorem 2.12 gives the necessary and sufficient conditions for the
absence of the generalized arbitrage, while formulas (1.1)—(1.8) yield the form of the
sets of fair prices of contingent claims and controlled contingent claims.

In Section 4.2, we consider a continuous-time finite-horizon model with friction. This
is done on three levels of generality. First, we find the structure of risk-neutral measures
for a model with arbitrary transaction costs and arbitrary costs of short-selling. Then
we consider a model with arbitrary transaction costs and no costs of short selling and
prove that in this model a measure Q ~ P is a risk-neutral measure if and only if
there exists a Q-martingale that is (componentwise) between the discounted ask and
bid price processes. Finally, we consider a model with proportional transaction costs
and proportional costs of short selling. We introduce the notion of a delta-martingale
(this generalizes the notions of a martingale, supermartingale, and submartingale) and
prove that for this model the class of equivalent risk-neutral measures coincides with the
class of equivalent delta-martingale measures, i.e. the measures, with respect to which
the discounted ask (equivalently, bid) price process is a delta-martingale.

Our approach to arbitrage pricing in the models with transaction costs appears to
be different from other approaches known in the literature (see, for example, [CK96],
[CPT99], [DKV02], [JK95], [KL02], [KRS02], [KS02], and [S04]). One of the important
differences between our approach and the one developed in the papers [CK96], [CPT99],
[DKV02], [KL02], and [KS02] is as follows. In these papers, a contingent claim is defined
as a d-dimensional random vector (its i-th component means the amount of assets of
the i-th type received by the holder of the contingent claim). The substitute for the
upper (resp., lower) price is the region in R? of the initial endowments (these are random
vectors whose z-th component means the amount of assets of the i-th type in the initial
portfolio), from which the contingent claim can be superreplicated (resp., subreplicated).
In contrast, a contingent claim here is a real-valued random variable, and we deal with
its lower and upper prices, which are real numbers as in the frictionless models. In this
respect, our approach to models with friction is similar to that in [JK95], but there is a
number of other essential differences between the two approaches (see remark following
Key Lemma 4.8). In particular, the above mentioned papers take only the transaction
costs into account, and there is a number of other papers related to restrictions on short
sales, while in our approach these effects as well as the costs of short selling are taken
into account simultaneously.
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1.5 Possibility Approach

When a coin is tossed, everyone agrees that there exists a probability measure on the
set of elementary outcomes, and this measure assigns the mass 1/2 to each of the two
outcomes. When shooting at a target is performed, everyone agrees that there exists a
probability measure on the set of elementary outcomes. The exact form of this measure
cannot be found by pure thought, but can be estimated by repeating the trials. In both
examples, the legitimacy of a probability measure is based on the existence of a fixed
set of conditions that admits an unlimited number of repetitions. The importance of
such a set of conditions has been stressed by Kolmogorov [K33; Ch. I, § 2].

In the problems that finance deals with, such a fixed set of conditions does not seem
to exist at all. Therefore, it is questionable whether there exists a measure P, which
serves as the first input to an arbitrage pricing model (see Figure 1). It is unquestionable
that even if such a measure exists, then no one knows exactly what it is. In other words,
the first input to an arbitrage pricing model displayed in Figure 1 is rather vague. In
contrast, the second input is absolutely solid since the current prices of traded contracts
are observed directly.

We introduce the possibility approach to arbitrage pricing. It requires as the first
input the set of all possible outcomes and does not require the probabilities assigned to
these outcomes. To be more precise, the possibility approach is based on the possibility
space (€2, F) instead of the probability space (2, F,P). We call Q the set of possible
elementary events. Usually it can be defined by pure thought (i.e. without using the
real data) in an unambiguous way. For example, a natural set of possible prices of some
asset is Ry (= (0,00)); a natural set of possible prices of d assets is R%, . Typically,
the set of possible elementary events admits a natural topology, and F is taken as its
Borel o-field.

Set of possible
elementary events

\

Current prices
of traded contracts

Figure 2. Inputsand output of a
possibility arbitrage pricing model

Set of fair prices
— of a contract
being introduced

/

Let us compare the possibility approach to pricing by arbitrage with other pricing
techniques, namely:

e equilibrium pricing,
e optimality pricing,
e arbitrage pricing in the probability setting.
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(For more information on these techniques, see, for example [D01].) Equilibrium pric-
ing requires as the inputs the utility function and the initial capital of each market
participant, the probability structure of the price evolution, and the current prices of
traded contracts. This technique yields as the output the equilibrium price of a new
contract. Optimality pricing requires as the inputs the utility function and the initial
capital of some market participant, the probability structure of the price evolution, and
the current prices of traded contracts. This technique yields as the output the fair price
of a contract for this market participant. Arbitrage pricing in the probability setting
requires as the inputs the probability structure of the price evolution and the current
prices of traded contracts. This technique yields as the output the interval of fair prices
for a new contract. Arbitrage pricing in the possibility setting requires as the input
the current prices of traded contracts. It yields as the output the interval of fair prices
for a new contract, which is wider than the “probability” interval, but is “safer” (see
Figure 3). Thus, arbitrage pricing in the possibility setting appears to be the most
“robust” of pricing techniques.

The equilibrium price

Fair prices for different| market participants

K\ The interval of fair prices provided by the probability arbitrage pricing /

The interval of fair prices provided by the possibility arbitrage pricing

Figure 3. Comparison of various pricing techniques

Let us remark that some examples of arbitrage pricing with no use of probability
measure can be found in financial mathematics and financial practice. One example is
the calculation of exchange rates through the triangular arbitrage. Another example is
the calculation of prices of contingent claims in the one-period model (see Examples 5.1
5.4). More complicated models have been considered in [BL78], [BHRO1], [H98].

The possibility approach is introduced in Chapter 5. It is shown that all the no-
tions and the main results of Chapters 2, 3, and 4 can be transferred to the possibility
framework.

A general arbitrage pricing model in the possibility setting is a triple (Q,F, A),
where (€, F) is a possibility space and A is a collection of real-valued F-measurable
functions. The interpretation of A is the same as in the probability framework. We
define the possibility version of the NGA condition and of a risk-neutral measure.

Theorem 5.17 states (under some assumption) that a model satisfies the NGA condi-
tion if and only if for any D € F\ {0}, there exists a risk-neutral measure Q such that
Q(D) > 0. Thus, in “fair” models the risk-neutral measure should exist even if we do
not assume the existence of the original measure P. We believe that this result agrees
with practice, where the risk-neutral measure arises as the weighted average of the mar-
ket participants’ expectations deformed in accordance with their risk aversion (for more
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details, see [RJ04]). A nice illustration is provided by the bookmaking, where the “true”
distribution on the set of outcomes is completely unclear, while the “market-estimated”
distribution is easily recovered from the bets.

The objects I(F), J(F), Vi.(F), and V*(F) are appropriately redefined in the
possibility framework. Theorem 5.23 states (under some natural assumptions) that
equalities (1.1)—(1.4) remain valid (now, R denotes the set of risk-neutral measures
with the word “equivalent” dropped).

Theorem 5.28 contains a similar result for equalities (1.5)—(1.8).

To sum up, when applying the possibility approach to arbitrage pricing, one should

1. specify the possibility space (€, F);
2. specify the set A of attainable incomes;
3. find out the structure of the set of risk-neutral measures.

Once this is done, Theorem 5.17 gives the necessary and sufficient conditions for the
absence of the generalized arbitrage, while formulas (1.1)—(1.8) yield the form of the
sets of fair prices of contingent claims and controlled contingent claims.
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Probability Possibility
approach approach
Model Model Model Model Model
with no with with no with
friction friction friction friction
General arbitrage pricing model 2.2,23,24 5.3, 5.4, 5.5
One-period model 3.1 4.1 + +
Multiperiod model 3.2 + 5.7 5.7
Continuous-time model with a finite time horizon 3.3 4.2 5.8 5.8
Continuous-time model with the infinite time horizon 3.4 — 5.9 —
Model of the term structure of interest rates 3.5 + + +
Model with European options 3.6 4.3 5.10 5.10
Model with barrier options 3.7 + + +
Model for assessing credit risk 3.8 + + +
Mixed model 3.9 4.4 + +

Table 1. The structure table for the models considered in the paper.
cate the sections, in which the corresponding model is investigated (for example, the gen-
eral arbitrage pricing model in the possibility setting is investigated in Sections 5.3, 5.4, and
5.5). The sign “+” means that the corresponding model is not considered explicitly in the
paper, but it can be analyzed by analogy with some other model considered in the paper.

7

The sign “—

The numbers indi-

means that the investigation of the corresponding model is still an open question.

¢l

U0INPOLIUT
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Results Probability approach Possibility approach
FTAP Under Assumption 2.11, Under Assumption 5.16,
NGA <= R # 0. NGA <—
VD e F\{0},3Q e R: Q(D) > 0.
Pricing of || If Assumption 2.11 and the NGA | If Assumption 5.16 and the NGA
contingent || condition are satisfied, while F' is | condition are satisfied, while F' is
claims bounded below, then bounded below and EqF' < oo for
any Q € R, then
I(F) ~ [inf EqQF, sup EqF'|,
QeR QeRr
J(F) ~ {(m,y) cx <y, v <supEqF, y > inf EQF},
QeR QeRr
V.(F) = inf EQF,
QeRrR
V*(F) = sup EqF.
QeRrR
Pricing of || If Assumption 2.11 and the NGA | If Assumption 5.16 and the NGA
controlled || condition are satisfied, while F), is | condition are satisfied, while F), is
contingent || bounded below for any A € A, then | bounded below for any A € A and
claims supyep EQFy < oo for any Q € R,
then
I(Fy; A e N) C [inf sup EqF), sup sup EqF) |,
QER XeA QER XeA
J(Fx; A € A) = {(fc,y) rx <y, x < supsupEqF)y, y > inf sup EQF/\}a
QER XeA QER XeA
Vi(Fx; A € A) = inf sup EQF),
QER AeA
V*(Fx; A € A) = sup sup EQF).
QER AeA

Table 2. The results obtained for the general arbitrage pricing model in the
probability setting and in the possibility setting. The table shows that for
each model there are 9 main results: FTAP, the form of I(F), J(F), V.(F),
VHE), I(F\;A € A), J(Ex; A € A), Vi(Fa; A € A), and V*(Fy; A € A).
These results are “projected” on particular models described in Table 1. As
there are 36 “solved” models (including the general ones), there are 324 =
9 x 36 “pricing results” presented in the paper (in fact, a few more).



2 General Arbitrage Pricing Model

Section 2.1 may be viewed as a preliminary step before introducing the general arbitrage
pricing model. In this section, we describe the classical approach to arbitrage pricing
in a one-period model with a finite number of assets. This material is well known (for
more details, one may consult, for instance, [FS02; Ch. 1]).

The general arbitrage pricing model introduced in Section 2.2 may be regarded as
the infinite-dimensional version of the model of Section 2.1 (with the definitions of no
arbitrage and the definitions of fair prices appropriately reformulated).

2.1 Ordinary Arbitrage in a One-Period Model

Let (€, F,P) be a probability space. Let Sy € R? and S; be an R?-valued random
vector on (2, F,P). From the financial point of view, S’ is the price of the i-th asset
at time n. This asset might be

e a traded asset (bond, stock, option, commodity, etc.) providing no dividends;
e a dividend-paying stock, stock index, or a foreign currency;
e a futures (in this case S’ is the futures price)

(for financial details, see [H97]). Let r € R, be the risk-free interest rate and ¢* € R,
be the dividend rate on the i-th asset in the case, where this asset is a dividend-paying
stock (the dividend paid at time 1 is ¢*S?), stock index (¢* is then the weighted average
of dividend rates of the stocks in the index), or a foreign currency (¢ is then the risk-free
interest rate on this currency). Define the discounted price of the i-th asset by

( Sfl if the i-th asset is a traded asset
(1+7r)n providing no dividends,
S, =< (L+4¢)" . if the i-th asset is a dividend-paying stock, (2.1)

(14+7)» " stock index, or a foreign currency,

LSZL if the ¢-th asset is a futures.

Consider the set J
A:{Zh’(?ﬁ—?ﬁ) :h"eR}. (2.2)
i=1

From the financial point of view, A is the set of incomes discounted to time 0 that can
be obtained by trading assets 1,...,d at times 0, 1 (and using the bank account to
borrow/lend money). Indeed, if the i-th asset is a traded asset providing no dividends,

then in order to buy one asset at time 0, one should pay the amount S§ = E‘;, while
at time 1 the sum S! is obtained; the latter amount discounted to time 0 is gzl, SO
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the discounted income is S; — S;. If the i-th asset provides dividends, then its owner
obtains at time 1 the amount (14 ¢*)S?, so the discounted income is again S, — Eg.
If the i-th asset is a futures, then a person who takes a long position pays nothing at
time 0 and obtains the amount S} — S§ = S} — S at time 1, so the discounted income
is (1+7r)"" (gzl - §g) . Similar reasoning can be applied to the incomes obtained by the
short selling of the asset or by taking a short futures position. (We consider here the
frictionless model.)

Definition 2.1. A one-period model is a collection (2, F,P, Sy, S1).

Definition 2.2. A model (2, F,P, Sy, S;) satisfies the no arbitrage (NA) condition
if ANLY = {0} (LY denotes the set of R -valued random variables on (Q, F,P)).

Remark. The random variables are considered as the classes of equivalence under the
indistinguishability relation.

Definition 2.3. An equivalent martingale measure is a probability measure Q ~ P
such that Eq|S1| < oo and EqS; = S¢. The set of equivalent martingale measures will
be denoted by M.

Notation. Set C' = convsupp Lawp S;, where “Gonv” denotes the closed convex
hull, “supp” denotes the support, and Lawp S is the distribution of S; under P. Let
C° denote the relative interior of C', i.e. the interior of C' in the relative topology of
the smallest affine subspace of R? containing C'.

Theorem 2.4 (FTAP). For the model (2, F,P,Sy,S1), the following conditions

are equivalent:
(a) NA;
(b) go e C°;

(c) M#0.

Proof. Step 1. Let us prove the implication (a)=>(b). If Sy ¢ C°, then, by the
separation theorem, there exists a vector h € R? such that (h, (z — Sg)) > 0 for any
x € C and (h, (v —Sy)) > 0 for some z € C'. This means that {h, (S; —Sy)) > 0 P-a.s.
and P({h, (S1 — Sg)) > 0) > 0. But this contradicts the NA condition.

Step 2. Let us prove the implication (b)=>(c). The set

E= {Ele : Q ~ P, EQ|§1| < OO}

is convex, and the closure of E contains supp Lawp S;. Consequently, £ D C°.
Step 3. Let us prove the implication (c¢)=-(a). Take Q € M. Then EqX = 0 for
any X € A. This implies the NA condition. O

Now, let F' be a random variable on (€2, F,P). From the financial point of view, F’
is the payoff of some contingent claim discounted to time 0.

Definition 2.5. (i) A real number z is a fair price of F' if the model with d + 1
assets (Q, F, P,x,g(l), . ,gz, F, gi, e ,glli) satisfies the NA condition. The set of fair
prices of F' will be denoted by I(F).

(ii) The lower and upper prices of F' are defined by

Vi(F)=inf{z:z € I(F)},
V(F) =sup{z:x € I(F)}.
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Notation. Set D = convsupp Lawp(F,S;) and let D° denote the relative interior
of D.

Theorem 2.6 (Main theorem for pricing contingent claims). Suppose that
the model (2, F,P, Sy, S1) satisfies the NA condition. Then

I(F)={xz: (2,50 € D°} = {EqF : Q € M}, (2.3)

V.(F) = inf EqF, (2.4)
QeM

V*(F) = sup EqF. (2.5)
QeM

The expectation EQF here is taken in the sense of finite expectations, i.e. we consider
only those Q, for which Eq|F| < occ.

Proof. Equality (2.3) is a straightforward consequence of Theorem 2.4. Equali-

ties (2.4) and (2.5) follow from (2.3). O
R
DO
§U __________ ] |
1)
V.(F) VH(F) R

Figure 4. The joint arrangement
of I(F), V.(F), V*(F), and D°

Remark. Another way to define the lower and upper prices (which is commonly used
in financial mathematics) is as follows:

C.(F) = sup{z : there exists X € A such that z — X < F' P-ass.},
C*(F) = inf{z : there exists X € A such that z + X > F P-a.s.}.

One can easily check that if the model (Q, F,P, S, S;) satisfies the NA condition, then
Ci(F) =Vi(F) and C*(F) = V*(F) (a proof can be found in [FS02; Th. 1.23]).

2.2 Generalized Arbitrage

Let (€2, F,P) be a probability space.

Definition 2.7. An arbitrage pricing model is a quadruple (Q, F,P, A), where A
is a convex cone in L° (L° is the space of real-valued random variables on (Q, F,P)
considered up to indistinguishability). The set A will be called the set of attainable
imcomes.
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From the financial point of view, A is the set of all incomes discounted to the initial
time that can be obtained by trading a certain amount of assets (and using the bank
account to borrow/lend money). An example is provided by (2.2). In the frictionless
models, A is a linear space. In the models with friction, A is a cone.

Notation. (i) Set

B= {Z € LY : there exist (X,)nen € A and a € R
(2.6)
such that X,, > a P-a.s. and Z = lim X, P—a.s.}.

n—oQ
The elements of B might be regarded as generalized attainable incomes bounded below.
(ii) For Z € B, denote 7(Z) = 1 — essinf,cq Z(w) and set
A={X-Y:XeA Yell}

Ay(Z) = {m X € Al},

A3(Z) = As(Z) N L=,
Ay(Z) = closure of A3(Z) in o(L>®, L'(P)).

(2.7)

Here LY is the set of R -valued elements of L°; L* is the space of bounded elements
of L% o(L*®, L'(P)) denotes the weak topology on L* induced by the space L'(P) of
the P-integrable random variables on (Q, F, P).

Definition 2.8. A model (2, F,P, A) satisfies the no generalized arbitrage (NGA)
condition if for any Z € B, we have A4(Z) N L% = {0}.

Remarks. (i) Note that A4(Z) N L% = {0} if and only if A5(Z) N LY = {0}, where
As(Z2)={(Z+v(2)X : X € Ay(2)}. (2.8)

The elements of As(Z) might be regarded as generalized attainable incomes (i.e. one
can approximate the elements of A5(Z) by the elements of A;).

(ii1) The existence of a generalized arbitrage opportunity means that there exist
Z € B, We LY\ {0} and generalized sequences (X))aen € A, (Ya)rea € LY, and
(ax)aea € Ry such that | X, — Y| < ax(Z+7v(Z)), A € A and (X, — Y)) converges
to W in the sense that Eq(X, —Y)) — EqQW for any probability measure Q < P such
that EQZ < 00.

(iii) The NGA condition is similar to the no free lunch (NFL) condition introduced
by Kreps [K81] in a different framework. The NFL condition can be defined in our
framework as: A4(0)NL% = {0}. One can also define the no arbitrage (NA) condition in
our framework as: ANLY = {0}. The NGA condition is the strongest one: NGA=-NFL,
NGA=NA.

Definition 2.9. An equivalent risk-neutral measure is a probability measure Q ~ P
such that EQX~ > EqX™ for any X € A (we use the notation X~ = —X V0,
X* =X V0). The expectations Eq X~ and EqX™ here may take on the value +oc.
The set of equivalent risk-neutral measures will be denoted by R.

Notation. For Z € B, we will denote by R(Z) the set of the probability measures
Q ~ P with the property: for any X € A such that X > —aZ — 8 P-a.s. with some
a, € Ry, we have Eq|X| < o0 and EqX < 0.
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Lemma 2.10. For any Z € B, we have R C R(Z).

Proof. Take Q € R. It follows from the Fatou lemma that Z is Q-integrable.
Thus, if X € A satisfies the inequality X > —aZ — § P-a.s with some «, f € R, then
EqQX~ < oco. By the definition of R, EqX T < EqQX ™. As a result, Eq|X| < oo and
EQX < 0. ([

The following basic assumption is satisfied in all the particular models considered
below.

Assumption 2.11. There exists Zy € B such that R = R(Z,) (in particular, both
sets might be empty).

Theorem 2.12 (FTAP). Suppose that Assumption 2.11 is satisfied. Then the
model (Q, F,P,A) satisfies the NGA condition if and only if there exists an equiva-
lent risk-neutral measure.

The proof is based on a well known result of Kreps [K81] and Yan [Y80] (its proof
can also be found in [S92], [S90], and other papers):

Lemma 2.13 (Kreps, Yan). Let C be a o(L>®, L'(P))-closed conver cone in L™
such that C 2 L (L is the set of negative elements of L) and CNLY = {0}. Then
there exists a probability measure Q ~ P such that EqX < 0 for any X € C.

Proof of Theorem 2.12. Step 1. Let us prove the “only if” implication. Take
Zy € B such that R = R(Z,). Lemma 2.13 applied to the o(L>, L'(P))-closed con-
vex cone A4(Zp) yields a probability measure Qo ~ P such that Eq,X < 0 for any

X € Ay(Zy). By the Fatou lemma, for any X € A such that ﬁ(zo) is bounded below,

< 0 (note that EQO#(Z()) Ac < 0 for any ¢ > 0). Consider

X
Eq, Zo+(Zo)
the probability measure Q = m Qo, where ¢ is the normalizing constant (it exists

since Zy + v7(Zs) > 1). Then Q € R(Zy) = R.
Step 2. Let us prove the “if” implication. Take Q € R and Z € B. It follows from
the Fatou lemma that Z is Q-integrable. Consider the measure Q = ¢(Z + v(2))Q,

where c is the normalizing constant. For any X € A such that %() is bounded below

v(Z

we have

by a constant —a (a € R, ), we have
Eq X" < Eq(aZ +ay(Z)) < oo,

and consequently,

X
Eg—— = cEQX < 0.
Z+y(z) T
Hence, EgX <0 for any X € Ay(Z). As a result, Ay(Z) N LY = {0}. O

It is seen from the above proof that the implication R # ) = NGA is true without
Assumption 2.11. The following example shows that this assumption is essential for the
reverse implication.

Example 2.14. Let (Xt)te[o,l] be a collection of independent Gaussian random vari-
ables with mean 1 and variance 1 defined on some probability space (2, F,P). Let
F =o0(Xyt€][0,1]) and

N
A= {Zhnth:NeN, t, €10,1], hy, GR}.

n=1
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Clearly, the only element of A that is bounded below is 0. This implies that the
model (2, F,P, A) satisfies the NGA condition.

Suppose now that there exists an equivalent risk-neutral measure Q. Set p = %.
Note that F = Uco(Xy;t € C), where the union is taken over all the countable sets
C C [0,1]. Hence, there exists a countable set Cyy C [0, 1] such that p is o(Xy;t € Cp)-
measurable. For any t ¢ Cj, we have

EQXt = Eprt = Epp . EpXt = EpXt =1.

As a result, there exists no equivalent risk-neutral measure. O

We conclude this section with an important notion, which allows one to build com-
plicated models using simple ones.

Definition 2.15. A combination of arbitrage pricing models (Q, F,P,A,), vy €T

is the model (Q,.T, P, Z%F AV), where
N
E:A7 = {ZX" :NeN, X, €A, v, € F}.
vel’ n=1

The financial meaning of this definition is as follows. If A, is interpreted as the set
of discounted incomes that can be obtained by trading assets from some collection A,
then > A, is the set of discounted incomes one can obtain by trading assets from
UyerA, .

2.3 Pricing of Contingent Claims
Let (2, F,P, A) be an arbitrage pricing model.
Definition 2.16. A contingent claim is a random variable F' on (2, F,P).

From the financial point of view, F' is the payoff of the contingent claim discounted
to the initial time.

Definition 2.17. (i) A real number x is a fair price of F if the combination
(Q,F,P,A+ A(x)), where

A(x) = {MF —x): heR},

satisfies the NGA condition. (From the financial point of view, A 4+ A(x) is the set
of discounted incomes that can be obtained by trading the “original” assets as well as
buying or selling the contract F at the price z.) The set of fair prices of F' will be
denoted by I(F).

(ii) A pair of real numbers (x,y) is a fair bid-ask price of F if the combination
(Q,F,P,A+ A(x,y)), where

Az, y) ={9(F —y)+ h(z — F) : g,h € R, },

satisfies the NGA condition. (From the financial point of view, A + A(z,y) is the set
of discounted incomes that can be obtained by trading the “original” assets as well as
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selling the contract F' at the price = or buying it at the price y.) The set of fair bid-ask
prices of F' will be denoted by J(F).
(iii) The lower and upper prices of F' are defined by

Vi(F) =inf{z : x € I(F)},
V*(F) =sup{z:z € I(F)}.

Definition 2.18. Let C' and D be two sets in R¢. We will say that C and D are
approximately equal if their interiors coincide and their closures coincide. This will be
denoted as C'~ D.

For example, if C is a one-point set, then the approximate equality D ~ C' means
that D = C'; if C is an interval on the real line, then the approximate equality D =~ C
means that D is an interval with the same endpoints as C' (so that D and C coincide
up to the endpoints).

Theorem 2.19 (Main theorem for pricing contingent claims). Suppose that
the model (Q2, F,P,A) satisfies Assumption 2.11 and the NGA condition, while F is
bounded below. Then

I(F) = {EQF : Q S R} ~ | inf EQF, sup EQF:|, (29)
QeR QeR
J(F)={(z,y): * <EQF < yfor some Q € R}
, (2.10)
~ 9 (r,y) e <y, x <supEqQF, y> inf EQF ¢,
QeR QeR
V.(F) = inf EqF, (2.11)
QeR
V*(F) = sup EqF. (2.12)
QeR

The expectation EQFE' here is taken in the sense of finite expectations, i.e. we consider
only those Q, for which EQF < oo (in particular, if EQF = oo for any Q € R, then
I(F)=J(F)=0).

Proof. Equalities (2.9), (2.11), and (2.12) follow from (2.10). Furthermore, it is
sufficient to prove only the first equality in (2.10).

Step 1. Let (x,y) € J(F). Take Z; € B such that R = R(Z,). Set Z, =
Zo+ (F —y). Then Z; € B', where B’ is defined by (2.6) with A replaced by

A ={X+g(F—y)+h(zx—F): X €A, gheR}.

Lemma 2.13 applied to the o(L>®, L*(P))-closed convex cone A)(Z;) (A} (Z,) is defined
by (2.7)) yields a probability measure Qq ~ P such that Eq,X < 0 for any X € A)(7;).
By the Fatou lemma, for any X € A’ such that is bounded below, we have

X
Zi+v(Z1)
QO#(ZH < 0. Consider the probability measure Q = ﬁ(zl)QO’ where ¢ is the

normalizing constant (it exists since Z; +(Z;) > 1). Then Q € R(Z;) C R(Zy) = R.
Moreover, Eq(z — F) < 0 and Eq(F — y) < 0 since the random variables —2=2— and

Zr+7(Z1)
ﬁ_(yzl) are bounded below. Thus, z < EqQF < y.

Step 2. Now, let (x,y) be a pair such that x < EqQF < y for some Q € R. Take
Z € B'. Choose an arbitrary Y = X + g(F —y) + h(x — F) € A" (here X € A) such
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that Y is bounded below. It follows from the condition EqF < y that Eq X~ < oo.
As Q € R, we have EQX < 0. This, combined with the condition z < EqF < vy,
implies that EQY < 0. By the Fatou lemma, Z is Q-integrable. Consider the measure
Q = ¢(Z ++(2))Q, where ¢ is the normalizing constant. For any Y = X + g(F — y) +
h(xr — F) € A’ (here X € A) such that #(Z) is bounded below by some constant —a«
(a € R} ), we have
EQY™ <Eq(aZ + ay(Z)) < .

Consequently, Eq X~ < 0o, EqX <0, and EqQY < 0. This means that EQ#(Z) <0.
Hence, for any Y € A}(Z), we have EgY < 0. This implies that A}(Z) N LY = {0}.
As a result, (z,y) € J(F). O

)
V.F)  V(F) =

Figure 5. The joint arrangement
of I(F), J(F), Vi.(F), and V*(F)

Remarks. (i) Theorem 2.19 remains valid if the condition “F is bounded below” is
replaced by the condition “F' is bounded above” (the proof remains the same).
(11) Another way to define the lower and upper prices is through the sub- and
superreplication, i.e.
C,(F) = sup{z : there exists X € A such that x — X < F P-a.s.}, (2.13)
C*(F) = inf{x : there exists X € A such that z + X > F P-a.s.}. (2.14)
Obviously, under the assumptions of Theorem 2.19, we have
C(F) < Vi(F) <V*(F) < C(F).

In some models (for example, the models of Sections 3.1, 3.2), we have C,(F) = V,(F),
C*(F) = V*(F). However, in the general case these equalities might be violated (see
Example 3.27).

2.4 Pricing of Controlled Contingent Claims

Let (2, F,P, A) be an arbitrage pricing model.

Definition 2.20. A controlled contingent claim is a collection (F))yea of random
variables on (2, F,P).
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From the financial point of view, A is the set of controls that are available to one
party and F), is the payoff discounted to the initial time that this party obtains if he or
she chooses the control \.

The examples below show that various financial contracts can be represented as
controlled contingent claims.

Example 2.21 (American and Bermudian options). Let (2, F, (Fy)wer,,P)
be a filtered probability space. Let (C;)icr, be an R, -valued (F;)-adapted process.
From the financial point of view, C; is the amount received by the holder of an
(American or Bermudian) option if the option is exercised at time ¢. Let r € Ry be
the risk-free interest rate (we assume that it is constant).

An American option with maturity T (for the financial description, see [H97;
Sect. 1.3]) can be represented as

A ={X: \isa [0,T]-valued (F;)-stopping time},
F/\ == 671")\0/\.

From the financial point of view, A is the time, at which the option is exercised.
A Bermudian option with possible exercise times Ti,...,Ty (for the financial de-
scription, see [H97; Sect. 6.3]) can be represented as

A={):Nisa {T1,...,T,}-valued (F;)-stopping time},
F)\ = e_”‘C,\.

From the financial point of view, A is the time, at which the option is exercised. O

Example 2.22 (Convertible, puttable, and callable bonds). Let (£, F,
(Fi)tepo,r, P) be a filtered probability space. Let B be an Ry -valued random variable
on (Q,F.P). Let (Si)wcppm and (By)wcpo,ry be Ry -valued (F;)-adapted processes.
From the financial point of view, 7 is the maturity of a zero-coupon (convertible,
puttable, or callable) bond; B is the amount received by a bondholder at time T if the
bond is never converted (this concerns convertible bonds); S; is the price at time ¢ of
a stock, into which the bond can be converted (this concerns convertible bonds); B; is
the amount received by a bondholder if the bond is redeemed at time ¢ (this concerns
puttable and callable bonds). Let 7 € R, be the risk-free interest rate.

A convertible bond (for the financial description, see [HI7; Sect. 6.11]) can be repre-
sented as

A={X:Xisa[0,T]U {oco}-valued (F;)-stopping time},

Fy=e¢ S\ <T)+e "BI(\= ).
From the financial point of view, A is the time, at which the bond is converted into the
stock (the event A = oo means that the bond is never converted).

A puttable bond (for the financial description, see [H97; Sect. 16.2]) can be repre-
sented as

A={X:\isa|0,T]-valued (F;)-stopping time},
F/\ == Gir)\B/\.

From the financial point of view, A is the time, at which the bond is presented for the
redemption by the holder.
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A callable bond (for the financial description, see [H97; Sect. 16.2]) can be represented
as

A={):\is a0, T]-valued (F;)-stopping time},
F/\ = —G_TAB/\.

From the financial point of view, A is the time, at which the bond is redeemed by the
issuer. The sign “—7 reflects the fact that in this case the issuer (not the holder) of the
bond chooses the control, so that F) is the amount “received” by the issuer if he or she
chooses the control A. A fair price of the callable bond would be minus the fair price of

(F/\))\GA- O

Example 2.23 (Extendable and puttable interest-rate swaps). Let (0, F,
(Fn)nez,,P) be a filtered probability space. Let (p,)nez, be an Ry -valued (F,)-
adapted random sequence. From the financial point of view, p, is the instantaneous
risk-free interest rate at time n. Let 7(n), n € Z, be the risk-free interest rate for the
period [0,n], i.e. (1 4+ r(n))~" is the price at time 0 of a risk-free zero-coupon bond
with maturity n and face value 1.

An extendable interest-rate swap with lifetime N and fixed rate p (for the financial
description, see [H97; Sect. 5.6]) can be represented as

A={X:Xisan {N,N +1,... }-valued (F,)-stopping time},
A
Fy=+Y (147(n)"(pn = p)-

n=1

The choice of the sign here depends on whether one or another party has the right to
extend the swap (compare with the previous example). From the financial point of view,
A is the time, up to which the swap is extended.

A puttable interest-rate swap (for the financial description, see [H97; Sect. 5.6]) can
be represented as

A={):Xisa{0,..., N}-valued (F,)-stopping time},

A
Fy=+ (1+47(n)"(on — p).
n=1
From the financial point of view, A is the time, at which the swap is terminated. O

Definition 2.24. (i) A real number z is a fair price of (F)\)xea if there exists
Ao € A such that the combination (2, F,P, A+ A(x, \o)), where

l‘)\g {Zh F)\n —f—ho(:E—F/\O)ZNEN, )\nGA, hnGR_F,h()GR_F},

satisfies the NGA condition. (From the financial point of view, A + A(x, \o) is the set
of discounted incomes that can be obtained by trading the “original” assets, buying the
contract (F)\)xea at the price z and using various controls as well as selling the contract
(F))aen at the price x given that the buyer will choose the control Ag.) The set of fair
prices of (F)\)aea will be denoted by I(Fy; A € A).



24 2 General Arbitrage Pricing Model

(ii) A pair of real numbers (z,y) is a fair bid-ask price of (Fy; A € A) if there exists
Ao € A such that the combination (2, F,P, A+ A(z,y, \g)), where

N
A(fl?,y,)\(]) = {Zhn(FAn_y)+h0(x_FAo):NGN: )\nEA, hn €R+: hU €R+}7
n=1

satisfies the NGA condition. The set of fair bid-ask prices of (F))xea will be denoted
by J(F\; A € A).
(iii) The lower and upper prices of (F))aea are defined by

Vi(Fx; A € A) =inf{y : (z,y) € J(Fx; X € A},
V*(Fx A€ A) =supf{z: (x,y) € J(F\; A € A)}.

Remark. Let us discuss the financial meaning of the definition given above. If x €
I(Fy; A € A), then there exists \g € A with the property: if the buyer of (F))ea chooses
this control, then there is no generalized arbitrage opportunity. So, in that case z is
indeed a “fair” price. Suppose now that = ¢ I(F); A € A). If we assume that the seller
of (F)\)xea knows from the outset the control that the buyer will choose (for example,
if (F\)aea is an American option, then this assumption means that the seller knows the
stopping time A, at which the buyer will exercise the option, and not the value A(w) of
this stopping time), then the seller has a generalized arbitrage opportunity. So, in that
case x is not a “fair” price.

Important remark. Note that under the conditions of Theorem 2.19, we have

inf{x : z € I(F)} =inf{y : (z,y) € J(F)},
sup{z:x € I(F)} =sup{x: (z,y) € J(F)}

(they follow from (2.10)). Therefore, we may equivalently define the lower and upper
prices of a contingent claim through the right-hand sides of these equalities. On the other
hand, such equalities do not hold for a controlled contingent claim (see Example 2.26),
and the reasonable definition of the lower and upper prices is the one given above.

Theorem 2.25 (Main theorem for pricing controlled contingent claims).
Suppose that the model (Q, F,P, A) satisfies Assumption 2.11 and the NGA condition,
while F\ is bounded below for any A € A. Then

I(F; A e N) C [inf sup EqF), sup sup EqF) |, (2.15)
QeR AeA QeR AeA
J(Ex; A€ N) &~ {(:E,y) cx <y, x < supsup EqF)\, y > inf sup EQF,\}, (2.16)
QeR AeA QeR AeA

Vi(Fx; A € A) = inf sup EQF), (2.17)
QeR AeA

V*(Fx; A € A) = sup sup EqF). (2.18)
QER AeA

The supremum supyc, EqF\ is taken here as an R-valued supremum, i.e. we consider
only those Q, for which supycp EqFy < 0o (in particular, if supycp EqF\ = oo for any
Q € R, then I(F/\,)\ € A) = J(F)\,)\ € A) :Q)
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Proof. We will check only (2.16). Inclusion (2.15) is verified similarly, while equali-
ties (2.17) and (2.18) follow from (2.16).
Step 1. Let us prove the inclusion

J(Fy; e N) C {(x,y) cx <y, x < supsupEqF)\, y > inf sup EQF,\}. (2.19)
QER NEA QER NEA

Let (x,y) € J(F\; A € A). Let Ao be an element of A such that the model (2, F,P, A+
A(x,y, Ag)) satisfies the NGA condition. Take Z; € B such that R = R(Zp). Set
Zy = Zy+ (F\, — y). Applying the same reasoning as in the proof of Theorem 2.19
(Step 1), we find a measure Q € R such that Eq(z — F),) < 0 and Eq(F\ —y) <0 for
any A € A. Then
v < EqF), <supEqF) <y,
AEA

which means that (z,y) belongs to the right-hand side of (2.19).
Step 2. Let us prove the inclusion

{(x,y) cx <y, x < supsupEqF)\, y > inf sup EQF)\} C J(F\; A€ N), (2.20)
QER AeA QER AEA

where “o” denotes the interior. Let (z,y) belong to the left-hand side of (2.20), i.e.

x <y, x < sup sup EqF), y > inf sup EqF).
QER AeA QER AEA

We can find measures Q, Q> € R such that

sup Eq, Fy > , sup Eq, )\ <.

AeA AeA
Set Q) = (1—a)Q;+aQq, a € [0, 1]. Since the map a > supyc, Eq(a)F) is continuous
in «, there exists «g € (0,1) such that

r < sup Eq(ag)FA < ¥.
AEA

Note that Q(cap) € R due to the convexity of R. Find Ay € A such that Eqae)Fi, > -
Applying the same reasoning as in the proof of Theorem 2.19 (Step 2), we verify that
the model (Q,F,P, A+ A(x,y,\)) satisfies the NGA condition, which means that
(z,y) € J(F\; A € A). O

The following example shows that for controlled contingent claims it could be more
reasonable to define the set of fair prices of (F)\)xea not as I(Fy; A € A), but rather as
the interval with the endpoints infq.r EQF) and supger EQF).

Example 2.26. Let (2, F,P, A) be an arbitrage pricing model that satisfies As-
sumption 2.11 and the NGA condition. Consider the controlled contingent claim defined
by A=(0,1), F\ = A. Then I(F\; A € A) = 0. On the other hand, by Theorem 2.25,

J(FsAdeN) = {(z,y): <y, <1, y>1},
K(F/\a)‘EA):la
VA(FyAeA) =1,

These values agree with the common sense as in this model it is reasonable to consider 1
as the “fair” price of (F))xea - O



3 Particular Models
with No Friction

In this chapter, the general approach introduced above is “projected” on various partic-
ular models with no friction. Each section is organized as follows. First, we describe a
particular model and show how it can be embedded into the framework of the general ar-
bitrage pricing model. In order to do this, we should only specify the set A of attainable
incomes. Next, we provide a simple description of the set R of risk-neutral measures
and prove that Assumption 2.11 is satisfied (we call the corresponding statement the
Key Lemma of the section). Then

e Theorem 2.12 yields the necessary and sufficient conditions for the absence of the
generalized arbitrage;

e Theorem 2.19 yields the form of fair prices of a contingent claim (that is bounded
below);

e Theorem 2.25 yields the form of fair prices of a controlled contingent claim (that
satisfies the conditions of this theorem).

3.1 Omne-Period Model

Let (Q, F,P) be a probability space. Let Sy € R‘i and S; be an R‘i -valued random
vector on (€2, F,P) (note the difference as compared with Section 2.1, where we assumed
that S; € R and S; :  — R?). From the financial point of view, S! is the price of the
i-th asset at time n (assets 1,...,d are the same as in Section 2.1). Define S by (2.1).
Define the set of attainable incomes by

d . .
A= {Zhi(gﬁ —S,) 1 B! GR}.
i=1

Notation. Set M = {Q ~ P :EqS; = S¢}.
Key Lemma 3.1. For the model (2, F,P,A), we have
d . .
R = R(Z(§§ - §3)> =M.
i=1
This statement is clear (take Lemma 2.10 into account).

Remarks. (i) It follows from Theorem 2.4, Theorem 2.12, and Key Lemma 3.1 that
in this model the NGA condition is equivalent to the NA condition.
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(ii) Let F € LY be bounded below. It follows from the previous remark that the
objects I(F), V.(F), and V*(F) introduced in Definition 2.17 coincide in this model
with the objects I(F), Vi.(F), and V*(F) introduced in Definition 2.5.

3.2 Multiperiod Model

Let (2, F,(Fn)n=o...n,P) be a filtered probability space. We assume that Fy is P-
trivial. Let (S,)n=o,..~ be an RZ-valued (F,)-adapted random sequence. From the
financial point of view, S! is the price of the i-th asset at time n (assets 1,...,d are
the same as in Section 2.1). Define S by (2.1) (we assume that the risk-free interest
rate r and the dividend rates ¢° are constant). Define the set of attainable incomes by

N d . .
A= {Z ZH’ZL (§; - §;_1) H is fnl—measurable}. (3.1)

n=1 i=1

Important remark. Note that A can equivalently be defined as

M d
A= {ZZH&(gzm —gim) : M eN, u, <wv, are

m=1 i=1

(F,)-stopping times, H! is fum—measurable}.

Notation. Set M = {Q ~ P: S is an (F,, Q)-martingale}.

Key Lemma 3.2. For the model (2, F,P,A), we have

N d

R=R(YD(5,-5)) - M

n=1 =1

The proof employs the following statement (see [JS98] or [S99; Ch. II, § 1c]):

Lemma 3.3. Let (X,,)n=0

..... N be an (F,)-local martingale such that E|Xy| < oo
and EpXy < oo. Then X is an (F,)-martingale.

Proof of Key Lemma 3.2. Denote SV Zle(gz —?f)) by Zj.

Step 1. The inclusion R C R(Z,) follows from Lemma 2.10.

Step 2. Let us prove the inclusion R(Zy) C M. Take Q € R(Zy). Fixi e {1,...,d},
ne{l,...,N}. For any D € F,_1, we have

In(S, =5, 1) > -5, > ~Zy+a,
Ip(-5,+5, 1) > -5,>~Z +a
with some o € R,. By the definition of R(Z), EQID‘Ef1 - ngl‘ < oo and

Eqlp (§; — g;_l) = 0. This means that Q € M.
Step 3. Let us prove the inclusion M C R. Take Q € M. Fix

N d . .
X=> Y H(S, -85, ,) €A

n=1 =1
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The sequence
n

d
X,=> Y H,(S,-5,,), n=0,....N
m=1 i=1
is an (F,, Q)-local martingale. It follows from Lemma 3.3 that EQ X~ > EqQX™*. As a
result, Q € R. O

Set C,(w) = conv supp Lawp (Spy1 | Fp)(w), n=0,..., N —1 and let C2(w) denote
the relative interior of C),(w). Then the FTAP in the discrete-time case (see [JS98] or
[S99; Ch. V, § 2¢]), Theorem 2.12, and Key Lemma 3.2 yield

Corollary 3.4 (FTAP). For the model (2, F,P,A), the following conditions are
equivalent:
(a) NGA;
(b) NA (i.e. ANLY ={0});
(c) Sn(w) € Co(w) for any n=0,...,N —1 and P-a.e. w;
(d) M #£0.

Remark. Let F' € LY be bounded below. It follows from the well-known results
of financial mathematics (see [S99; Ch. VI, § 1c]) and Theorem 2.19 that if the model
under consideration satisfies conditions (a)—(d) of Corollary 3.4, then V,(F) = C.(F)
and V*(F) = C*(F), where C,(F) and C*(F') are defined by (2.13) and (2.14). In other
words, our lower and upper prices coincide in this model with the traditional lower and
upper prices.

3.3 Continuous-Time Model
with a Finite Time Horizon

Let (2, F, (Fi)icjo.r), P) be a filtered probability space. We assume that Fj is P-trivial.
Let (S¢)icpo,r] be an ]R‘i -valued (F;)-adapted cadlag process. From the financial point
of view, S! is the price of the i-th asset at time ¢ (assets 1,...,d are the same as in
Section 2.1). Let r € R, be the continuously compounded risk-free interest rate and
¢' € R, be the continuously compounded dividend rate on the i-th asset in the case,
where this asset is a dividend-paying stock, stock index, or a foreign currency. Define
the discounted price of the i-th asset by

re‘”Si if the i-th asset is a traded asset
t providing no dividends,
gi — e("i’”tSf if the -z'—th asset is a dividend—paying stock, (3.2)
stock index, or a foreign currency,
L S; if the i-th asset is a futures.

Define the set of attainable incomes by

N d ‘ ‘
A= {ZZH;(E:M —gzm) :NeN, u, <wv, are
n=1 i=1 (3.3)

(F;)-stopping times, H' is fun—measurable}.
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From the financial point of view, A is the set of incomes discounted to time 0 that can
be obtained by trading assets 1,...,d on the interval [0,7] (and using the bank account
to borrow/lend money).

Notation. Set M = {Q ~ P: S is an (F;, Q)-martingale}.

Key Lemma 3.5. For the model (2, F,P,A), we have

R :72(5;(?; _Eg)) M.

Z' p—

Proof. Denote Y7, (Sp— Sé) by Z,.

Step 1. The inclusion R C R(Z,) follows from Lemma 2.10.

Step 2. Let us prove the inclusion R(Z;) € M. Take Q € R(Z). Fixi € {1,...,d}.
For any u € [0,T], the random variable EL — ?3 is bounded below, and therefore,
Eq(S, —Sp) < 0. In particular, S, is Q-integrable. For any u < v € [0,7] and
any D € F, such that gz is bounded on D, the random variable Ip (gz — gi) is

bounded below, and hence, Eqlp (g; — EL) < 0. This proves that S is an (F,Q)-
supermartingale. It follows from the definition of R(Z,) that Eq (ng - §g) = 0. This
implies that Q € M.

Step 3. Let us prove the inclusion M C R. Take Q € M. Fix

N d
X=S S (s, ) e a

n=1 1=1
Set
N
Cr=> [I(upy <t)+I(v, <t)], te0,T],
n=1
o, =inf{t: C, >k}, k=0,...,2N,
N
G, = ZHnI(un <t<w,), te€[0,T],
n=1
t N d ) )
X, = / GudSy =Y > Hi(S, p—Sun), tE0,T].
0 n=1 i=1
Note that
N
GO'k = ZHnI(Jk—l < Ok, Un S Ok—1, Up > Uk—l)
n=1
N
+ ZHnI(Uk—l = O, Up < Op_1, Uy > 0_1), k=1,...2N.
n=1

It is seen from this representation that G,, is F,

o, -Imeasurable. Since G, = G, for
t € (o_1,0%], we have

Of—1

d . .
Xoy = Xopoy = GL (S, =S, ), k=1,...2N
=1
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By the optional stopping theorem (see [RY99; Ch. II, Th. 3.2]), the sequence
(S5, )k=0..2n is an (F,,,Q)-martingale. Hence, the sequence (X, )i—o .oy iS an
(Fo,.Q)-local martingale. Note that X, = 0 and X,,, = X. It follows from
Lemma 3.3 that Eq X~ > EqQX ™. As a result, Q € R. O

Remark. If the NGA condition is satisfied, then S is an (F;, P)-semimartingale
(and hence, S is an (F;, P)-semimartingale). This follows from the fact that

the semimartingale property is preserved under an equivalent change of measure
(see [JS03; Ch. III, Th. 3.13]).

The approach to arbitrage pricing in the continuous-time setting proposed here differs
considerably from the traditional approach. Let us briefly describe the latter one.

In the traditional approach, the price process S is assumed to be an R¢-valued
(F;, P)-semimartingale. The process S is defined by (3.2). The “set of attainable
incomes” (although this term is not used in the traditional approach) has the form

T
A= {/ H,dS,:H = (H},..., th)te[(]’T] is an (F;)-predictable
0
S-integrable process satisfying the admissibility condition, i.e. (3.4)

t
there exists a € R such that / H,dS, > a for any t € [0, T]}
0

(Here fot H,dS, is the vector stochastic integral; its definition can be found
in [JS03; Ch. III, § 6¢] or [SC02]). Consider the sets

A ={X-Y:XeA Yell}
AQZAlﬂLOO,

A3z = closure of As in the norm topology of L.

The no free lunch with vanishing risk (NFLVR) condition is defined as: A3 N LY = {0}.
The traditional FTAP (see [DS98], [K97]) states that a model satisfies the NFLVR
condition if and only if there exists an equivalent sigma-martingale measure, i.e. a
measure Q ~ P such that S is an (F;, Q)-sigma-martingale. Recall that a process
(Xi)tepo,r is called a sigma-martingale if there exists a sequence of predictable sets
(Dp)nen such that D, C Dpyq, U, Dn = Q x [0,7], and for any n, the stochastic
integral [; Ip, (s)dX, is a uniformly integrable martingale (this definition was proposed
by Goll and Kallsen [GK03]; it is equivalent to the original definition of Chou [C79] and
Emery [E80]). The class of sigma-martingales contains the class of local martingales and
is wider as shown by the Emery example (see [E80]). However, an R% -valued sigma-
martingale is necessarily a local martingale as shown by Ansel and Stricker [AS94].

The set of fair prices of a contingent claim F' is defined as the interval with the
endpoints C,(F) and C*(F), where

C.(F) = sup{z : there exists X € A such that z — X < F' P-ass.},
C*(F') = inf{x : there exists X € A such that z + X > F P-as.}

(here A is given by (3.4)). It follows from [DS98], [FK98], and [FK97] that if the NFLVR
condition is satisfied and F' is bounded below, then

C*(F) = sup EqF, (3.5)
QeEM,



3.8 Continuous-Time Model with a Finite Time Horizon 31
Traditional approach Proposed approach
The price process R¢-valued semimartingale ]Ri—valued adapted cadlag
process
Trading strategies Predictable strategies sat- | Simple strategies with no
isfying the integrability | integrability and no ad-
and the admissibility con- | missibility conditions im-
ditions posed
The variant of the no- || NFLVR NGA
arbitrage condition
FTAP NFLVR <= existence | NGA <= existence of
of an equivalent sigma- | an equivalent martingale
martingale measure measure
Set of fair prices of a || [C\(F), C*(F)] I(F)
contingent claim
Table 3. The differences between the traditional
approach to asset pricing in the continuous-time
setting and the proposed approach
where B
M, ={Q ~P:Sis an (F, Q)-sigma-martingale}. (3.6)

Remarks. (i) Note that the attainable incomes provided by (3.3) can be represented
as the stochastic integrals of piecewise constant processes with respect to .S, namely

N d ) ) T
S H(5, ~5.,) = [ GudS.
0

n=1 =1
where
N
Gy=Y Hp(u, <t<w,), te[0,T]. (3.7)
n=1

(11) In practice one can realize only simple strategies, i.e. the strategies of the
form (3.7). Thus, the definition of the free lunch with vanishing risk employs two limit
procedures: first, passing from simple strategies to general predictable strategies (it is
meant that one can approximate random variables of the form (3.4) by using simple
strategies); second, passing from A given by (3.4) to Az (it is meant that one can
approximate elements of Az by elements of A;). As for the generalized arbitrage, it
employs only one limit procedure, namely, passing from A given by (3.3) to A5(Z) given
by (2.8) (it is meant that one can approximate elements of A5(Z) by elements of A;).

(1ii) Any martingale is a sigma-martingale. Thus, if a model is arbitrage-free in the
proposed approach (i.e. it satisfies the NGA condition defined through simple strate-
gies), then it is arbitrage-free in the traditional approach (i.e. it satisfies the NFLVR
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condition defined through predictable admissible strategies). The reverse statement is
not true (see Example 3.9).

Let us now give 4 examples and 2 remarks, which illustrate the problems that arise
when one applies the traditional approach.

The first two examples and the remark following them show that the admissibility
condition leads to an inadmissible restriction of the class of strategies (by a strategy we
mean a process H that appears in (3.4)).

Example 3.6. Consider the Black-Scholes model, i.e. S; = et*7B t ¢ [0,T],
where B is a Brownian motion. Let F; = F°, F = Fp. Then the strategy H; = —1,
t € [0,T] is not admissible. In other words, the admissibility condition prohibits in this
model the strategy that consists in the short selling of the asset at time 0 and buying
it back at time T. O

Example 3.7. Consider the exponential Lévy model, i.e. S; = eXt, t € [0,T],
where X is a Lévy process. Let F;, = F7, F = Fp. Suppose that the jumps of X are
not bounded from above (the majority of the exponential Lévy models used in modern
financial mathematics satisfy this condition). One can check that if H is an admissible
strategy, then H(w,t) > 0 P x pup-a.e, where pj is the Lebesgue measure on [0,7].
In other words, the admissibility condition prohibits in this model all the strategies
employing short selling. Clearly, this is an unacceptable restriction: for example, when
hedging a put option in practice, one employs strategies H with H < 0 identically (for
more details, see [H97; Ch. 14)). O

Remark. Another drawback of the admissibility condition is as follows. Such a
condition is not imposed in the discrete-time models, but it is imposed in the continuous-
time models. This leads to an unpleasant unbalance. In particular, when one embeds
a discrete-time model (2, F, (F,)n=o...55 P, (Sn)n=0...n) into a continuous-time model
(this is done in the canonical way; see [JS03; Ch. I, § 1f]), then the set of attainable
incomes defined for this continuous-time model by (3.4) does not coincide with the set
of attainable incomes defined for the original discrete-time model by (3.1).

The next example shows that in some models the traditional interval of fair prices
is too wide.

Example 3.8. Let S, =I(t <T)+&I(t=T), t €[0,T], where £ is an R, -valued
random variable on a probability space (€2, F,P) with the property: for any a € R, ,
P(€<a)>0and P(¢ >a) > 0. Let F; = F°, F = Fr. Consider F = Sp.

Let us find C,(F). Let H be a predictable admissible strategy and x € R be such
that

T
T — / H,dS, < F. (3.8)
0

Note that .
0

Since H is (F;)-predictable and F, = {0,Q} for t < T', Hr is a real number. The
admissibility condition, together with the property P(§ > a) > 0 for any a € R, |,
shows that Hy > 0. This, combined with (3.8) and with the property P(¢ < a) > 0 for
any a € R, , yields x < 0. Consequently, C,(F) =0.
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In a similar way one checks that C*(F) = 1. Thus, the interval of fair prices
provided by the traditional approach is [0,1]. On the other hand, the interval of fair
prices provided by common sense consists only of point 1 since F' can be replicated by
buying the asset (whose discounted price is given by (S¢)iejor) at time 0. O

Remark. In the model of the previous example, we have, due to the result of Ansel
and Stricker [AS94],

M, ={Q ~ P : S is an (F;, Q)-local martingale}

(M, is given by (3.6)). Furthermore, for any (F;)-stopping time 7, we have either
7=T P-as. or 7 <T P-a.s. Consequently,

M, ={Q~P:Sisan (F, Q)-martingale} = {Q ~ P : Eq¢ = 1}.

Therefore, infqcy, EqF = 1. This shows that the equality C.(F) = infqc,,, EqF,
which is dual to (3.5), is not true for F' bounded below. (One way to overcome this
problem was proposed in [DS98]. Namely, the authors of that paper altered the defini-
tion of C.(F) and C*(F) by introducing the so-called w-admissibility condition as a
substitute of the admissibility condition. However, an unpleasant feature of this defini-
tion is that it depends on the choice of a so-called weight function.)

The fourth example is the most striking one. It shows that the use of the traditional
approach may lead to mispricing of contingent claims.

Example 3.9. Let S; = [B,|™", t € [0,T], where B is a 3-dimensional Brownian
motion started at a point By # 0 on a probability space (2, F,P). Let F, = F7,
F = Fr. Without loss of generality, B = B = 0. Note that

_1j2 _ const

VT
We take T large enough, so that EpSy < Sq (actually, EpSy < Sy for any T > 0).
Consider F = Sy.

Let us find C*(F'). Applying 1t6’s formula and P. Lévy’s characterization theorem
(see [RY99; Ch. IV, Th. 3.6]), we conclude that

EpSr = Ep((Br)” + (B7)” + (B7)*)™"? < Ee((B7)* + (B7)°)

t
§t2§0+/ SdW,, tel0,T], (3.9)
0

where W is an (F;, P)-Brownian motion. Furthermore, Itd’s theorem (see [(D03;
Th. 5.2.1]) guarantees that (S,7) is a strong solution of SDE (3.9), i.e. F° C FV.
It is clear from (3.9) that FV C F5, and hence, FV = F° = F,. Set
F, = Ep(F'|F), t € [0,T]. By the representation theorem for the Brownian motion
(see [RY99; Ch. V, Th. 3.5]), there exists an (F;)-predictable W -integrable process K
such that

t
Ft:EpFJr/ K, dW,, tel0,T].
0

In view of (3.9),

YK, — t o
F,=EpF + _—stu:EpF+/ H,dS,, te]o0,T]. (3.10)
0 S, 0
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Since F; > 0, the strategy H is admissible. Consequently, C*(F') < EpF'.

Similarly, by considering F}* = Ep(FI(F < n)|F;), we prove that C,(F) > EpF.
As a result, the fair price provided by the traditional approach is EpF = EpSy. On
the other hand, the fair price provided by common sense is Sy, which is not equal
to EpgT! O

The problems described above do not arise in the approach proposed here.

Indeed, no admissibility restriction is imposed in this approach, which solves the
problems described in Examples 3.6, 3.7, and the remark following Example 3.7. In par-
ticular, when one embeds a discrete-time model (Q, F, (F,)n=0...5> P, (Sn)n=0...n) into
a continuous-time model, then the set of attainable incomes defined for this continuous-
time model by (3.3) coincides with the set of attainable incomes defined for the original
discrete-time model by (3.1).

In Example 3.8, we have, due to Theorem 2.19,

I(F)={EqF : Qe M} = {EqF : Q~ P, Eq¢ =1} = {1},

which agrees with common sense.

By Theorem 2.19, we have V,(F) = infqc  EqF for any F' bounded below, which
solves the problem mentioned in the remark following Example 3.8.

Finally, in Example 3.9, P is the only local martingale measure for S. Indeed, if Q ~
P is a local martingale measure for S, then S satisfies SDE (3.9) with respect to Q. By
It6’s theorem (see [D03; Th. 5.2.1]), there are strong existence and pathwise uniqueness
for this SDE, and the Yamada-Watanabe theorem (see [RY99; Ch. IX, Th. 1.7]) implies
the uniqueness in law. Hence, Q = P. Since P is not a martingale measure, there exists
no equivalent martingale measure. This means that the model considered in Example 3.9
does not satisfy the NGA condition, and the paradox is solved.

Remark. An “arbitrage opportunity” in the model of Example 3.9 can be constructed
as follows. Consider the strategy G = H — 1, where H is given by (3.10). Then

T T
/ G5, — / H.dS. — Sr 150 = —EpSy + 5y > 0.
0 0

The strategy G is not admissible, so it does not yield a free lunch with vanishing risk
opportunity. It does not yield a generalized arbitrage opportunity either, but it can
be used to construct a generalized arbitrage opportunity as follows. There exist simple
strategies (i.e. strategies of the form (3.7)) (H,)nen such that

t t
sup / H,,dS., —/ H,dS, P
te[o,1]| /o 0 n—00
Set,
t —~ —_ —_
Ty = inf{t €[0,7]: / H,,dS, < —EpSt — 1},
0
Hp = Hyl(t <), tel0,T].
Since

t
/ H,dS, > —EpSy, te€[0,T],
0
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we get
T o, T B
/ H,,dS, —— H,dS, =St — EpSt.
n—oo 0
Set G, — 1. Then, for X, fOT GnudS, ., we have X, € A, where A is given

by (3.3). Furthermore, X, > —-Sr+ Sy —EpSy —1 P-as. for any n € N and

X, L)?o — EPET > 0.

n—oo

Note that Z := S —So belongs to B, where B is given by (2.6). Take Y, € L}, n € N

such that
- - “__A(So—EpSy),
Z+9(Z) Z+~(2) (So °57)

and then _ -
Xp =Y, oer(p) So— EpSt

Z+(Z) = | Z+2)
This yields a generalized arbitrage opportunity in the model of Example 3.9.

One of the problems associated with the model under consideration is related to the
change of numéraire. It is as follows. Let S = (57, ..., S%) e, be the price process of
d+ 1 assets. We assume that each its component is strictly positive. Let us choose the
0-th asset as a numéraire, i.e. we define the discounted price process as S = St/SY,
i=20,...,d and define the set of attainable incomes by (3.2) or (3.4), depending on the
choice of the approach. (In order to embed the model of the present section into this
framework, one should take S} = e and appropriately define S; by multiplying the
true price process of the i-th asset by a factor ! if the i-th asset is a dividend-paying
stock, stock index or a foreign currency or by a factor e if the i-th asset is a futures.)
Now let us choose another asset as a numéraire (for example, the 1-st asset), i.e we
define the new discounted process S as Si = Si/St, i =0,...,d and define the set of
attainable incomes A through S. The problem is whether the NFLVR or NGA property
holds or does not hold for the models (2, F,P, A) and (Q, F,P, A) simultaneously.

In the traditional approach, the answer is negative, as shown by the example below
(it is borrowed from [DS95]). Let us mention in this connection the papers [DS95’]
and [DS96] devoted to the study, under which additional assumptions the NFLVR, prop-
erty is preserved under the change of numéraire.

Example 3.10. Let S =1 and S' = |B|™", where B is a 3-dimensional Brownian
motion started at a point By # 0. Let F; = F7, F = Fr. The model (9, F,P, A)
(A is defined by (3.4)) satisfies the NFLVR condition since the process S is a local
martingale with respect to the original probability measure (see representation (3. 9))
On the other hand, S° = |B| (this is a 3-dimensional Bessel process) and 5! =
If Q is an equivalent sigma-martingale measure for S , then, by the result of Ansel
and Stricker [AS94], S° is an (F,, Q)-local martingale. Using It6’s formula, one easily
checks that the quadratic variation of S° is given by [§ 0], = t. P. Lévy’s characterization
theorem (see [RY99; Ch. IV, Th. 3.8]) now implies that 5% is a Q-Brownian motion.
But this contradicts the positivity of S°. Hence, the model (€2, F, P, A) does not satisfy
the NFLVR condition. O

In contrast, the change of numéraire preserves the NGA property, as shown by the
statement below.
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Theorem 3.11 (Change of numéraire). Let A (resp., A) be defined through S

(resp., S) by (3.3). Then the models (2, F,P, A) and (Q, F,P,A) satisfy or do not
satisfy the NGA condition simultaneously.

The proof employs the following statement (see [JS03; Ch. III, Prop. 3.8)).

Lemma 3.12. Let (0, F, (Fi)cfo1: P) be a filtered probability space and Q < P.

Let Z; = 23#2 , t €[0,T] be the density process of Q with respect to P. Then a process

M is an (Fy, Q)-martingale if and only if MZ is an (F;, P)-martingale.

Proof of Theorem 3.11.  Suppose that the model (2, F,P, A) satisfies the NGA
condition. Then there exists a probability measure Q ~ P such that S is an (F;, Q)-
martingale. Let Z denote the density process of Q with respect to P. Consider the

process / = cglf, where the constant ¢ is chosen in such a way that Zg =1. As
S' is an (Fi, Q)-martingale, then, by Lemma 3.12, Z is an (Fi, P)-martingale. Hence,
7 is the density process of a probability measure Q= ETP with respect to P (note
that Q ~ P since S and Z are strictly positive). As S is an (F;, Q)-martingale,
then, by Lemma 3.12, the process SZ =cS7Z is an (Fi, P)-martingale, which (again by
Lemma 3.12) implies that S is an (]:t,(s)—martingale. Hence, the model (€, F, P,g)
satisfies the NGA condition. O

To conclude the section, we show that the proposed approach to pricing in the
continuous-time setting agrees with the Black—Scholes formula (see [BS73]) as well as
with its extension to dividend-paying stocks provided by Merton (see [M73]) and the
extension to futures prices provided by Black (see [B76]).

Example 3.13 (Black—Scholes model). Let the price of a traded asset providing
no dividends have the form S, = Spet*™oB: t € [0,T], where 4 € R, o € R\ {0},
and B is a Brownian motion. Let F, = F7, F = Fr. The discounted price process S
has the form S, = e"S,, where r is the risk-free interest rate. By Theorem 2.12, this
model satisfies the NGA condition. Let F' € L° be bounded below and Q-integrable,
where Q is the unique martingale measure for S. According to Theorem 2.19,

I(F) = {EqF},  V.(F)=EqF, V*(F)=EqF. (3.11)

In particular, for F' = ¢ "7(Sp — K)* (recall that F denotes the discounted payoff),
we arrive at the Black—Scholes formula:

Vi(F)=V*(F) =Eqe " (e"'Sp — K)T

- soq><ln So/ K :;\(/TT“L UQ/Q)T) . erTKQ)<ln So/ K ﬂ;\(/%— 02/2)T>7

where @ is the distribution function of the standard normal distribution. O

Example 3.14 (Merton’s model). The framework is the same as in Exam-
ple 3.13, but S now means the price of a dividend-paying stock, stock index, or a
foreign currency with a dividend rate ¢. The discounted price process S has the
form S, = e(@!S,. By Theorem 2.12, this model satisfies the NGA condition. Let
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Fell be bounded below and Q-integrable, where Q is the unique martingale mea-
sure for S. According to Theorem 2.19, equalities (3.11) are true. In particular, for
F=e"(Sp — K)T, we arrive at Merton’s formula:

Vi(F)=V*(F) = Eqe " (" 9"Sy — K)*

s <ln So/K + :“\/—Tq + 02/2)T> e <ln So/ K + :“\/—Tq - 02/2)T> :

Example 3.15 (Black’s model). The framework is the same as in Example 3.13,
but S now means a futures price. The discounted price process S has the form S; = 5;.

By Theorem 2.12, this model satisfies the NGA condition. Let F € Lo_be bounded
below and Q-integrable, where Q is the unique martingale measure for S. According

to Theorem 2.19, equalities (3.11) are true. In particular, for F' = e ™" (Sp — K)T, we
arrive at Black’s formula:

Vi(F) = V*(F) = Eqe ™" (Sr — K)*

2 _ 42
:6_,TSO(I)<IHSO/K+U T/2> —e_’"TK(I)<1nSO/K O'T/2>.
oVT o/T

3.4 Continuous-Time Model
with the Infinite Time Horizon

Let (0, F, (Fi)ier, , P) be a filtered probability space. We assume that F is P-trivial.
Let (Sy)ier, be an RY -valued (F;)-adapted cadlag process. From the financial point
of view, S! is the price of the i-th asset at time ¢ (assets 1,...,d are the same as in
Section 2.1). Define S by (3.2). Define the set of attainable incomes by

N d
A= {ZZH; (gzn - g;n) :N €N, u, <w, are (F;)-stopping times 1)
n=1 1=1 .

such that {v, = oo} C {Eltlim S}, HY is fun—measurable}.
—00

Notation. Set M = {Q ~ P : S is an (F;, Q)-uniformly integrable martingale}.

Key Lemma 3.16. Suppose that the limit S = lim,_,o S; exists P-a.s. Then, for
the model (2, F,P, A), we have

Proof. Note that (Sy)ier, is an (F;, Q)-uniformly integrable martingale if and only
if (S¢)iefo,00] 15 @ (Gy, Q)-martingale, where

G {7 ifteR,,
T F ift=o00
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(this statement follows from [RY99; Ch. II, Th. 3.1]). The desired statement can now
be proved in the same way as Key Lemma 3.5. O

Since Key Lemma 3.16 contains an additional assumption, Theorem 2.12 cannot be
applied immediately, and the proof of the FTAP in this model requires a bit of additional
work.

Corollary 3.17. The model (Q, F,P, A) satisfies the NGA condition if and only if

there exists an equivalent uniformly integrable martingale measure (i.e. M # ().

Proof. Step 1. Let us prove the “only if” implication. Lemma 2.13 applied to
the o(L>, L'(P))-closed convex cone A4(0) yields a probability measure Q ~ P such
that EqX < 0 for any X € A that is bounded below. For any ¢ = 1,...,d, any
u<wveR,, and any D € F, such that gz is bounded on D, the random variable

ID(g — S;) is bounded below, and hence, EQID(g — EL) < 0. This shows that

S’ is an (Fi, Q)-supermartingale. By Doob’s supermartingale convergence theorem,
(see [RY99; Ch. II, Th. 2.10)), the limit lim,_,+ S; exists Q-a.s. and hence, P-a.s. Now,
Theorem 2.12, combined with Key Lemma 3.16, yields the desired statement.

Step 2. Let us prove the “if” implication. Take Q € M. Then by Doob’s theorem,
limy_ o S; exists Q-a.s. and hence, P-a.s. Now, Theorem 2.12, combined with Key
Lemma 3.16, yields the desired statement. a

] ]
v v

It has been shown in the proof of Corollary 3.17 that the NGA condition implies the
existence of lim;_,,, S; P-a.s. Hence, Theorems 2.19 and 2.25 can be applied with no
additional assumptions.

As an alternative to (3.12), one can define the set of attainable incomes in the model
under consideration as

N d . ‘
A= {ZZH; (gzn - gln) :N eN, u, <v, are (F,)-stopping

n=1 i=1

times such that v, < oo P-a.s., H,iL is ]:un—measurable}.

For this choice of A, we can prove that R = M. However, we cannot prove that in this
case Assumption 2.11 is satisfied.

Lemma 3.18. For the model (2, F,P, A), we have
R = M.

Proof. Step 1. The inclusion M C R follows from the similar inclusion in Key
Lemma 3.16.
Step 2. Let us prove the inclusion R C M. Choose Q € R. Fix i € {1,...,d}.

For any v < v € Ry and D € F,, we have, due to the positivity of gi, that
Eql/p(S, —S,) = 0. Hence, S is an (F,, Q)-martingale. ‘

By Doob’s supermartingale convergence theorem, there exists a limit S; =
(a.s.) limy_s S;. By the Fatou lemma for conditional expectations,

Eq(S. | F) <58, t>0. (3.13)
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In particular, EQgio < EQgg.
Suppose that EqS,, < EqSy. The process X, = Eq(S., | i), t > 0 has a cadlag
modification. Furthermore, X; % g;. Consequently, the stopping time
— 00

_i EoS, — EoS'
T:inf{tZO:|St—Xt|§%}

is finite Q-a.s. It follows from the inclusion Q € R and the positivity of S’ that
EqS. = EqS,. Thus,

EqS, — EQS —
_XTU X" EnS
2 > FQ

EQYT > Eng) — (Z)o

But this contradicts the equality Eq X, = EQgio, which is a consequence of the optional
stopping theorem for uniformly integrable martingales (see [RY99; Ch. II, Th. 3.2]). As
a result, EqS,, = EqS,. This, combined with (3.13), yields Eq(S., | F) = S;, t > 0.
The proof is completed. O

The traditional approach to the arbitrage pricing in continuous-time models with
the infinite time horizon is the same as the one for continuous-time models with a finite
time horizon. The only difference is that the set of attainable incomes given by (3.4)
should be replaced by

A= {/ H,dS, : H is (F;)-predictable, S-integrable,
0

t
admissible, and such that lim H,dS, exists P—a.s.}.

t—o0 0

Here [°H,dS, := lim_ fot H,dS,. (This might be called the improper stochastic
integral. Alternatively, one can use the stochastic integral up to infinity fooo H,dS,;
see [CS04]. The FTAP remains the same for these two types of integrals.)

Many models with the infinite time horizon that are arbitrage-free in the traditional
approach (i.e. satisfy the NFLVR condition for predictable admissible strategies) are
not arbitrage-free in the proposed approach (i.e. do not satisfy the NGA condition for
simple strategies). This is illustrated by the following example.

Example 3.19. Let S, = P2t ¢ R, where B is a Brownian motion. Let
Fo=F>, F= V>0 Fi- This model satisfies the NFLVR condition since the process S
is a martingale (and hence, a sigma-martingale) with respect to the original probability
measure. On the other hand, this model does not satisfy the NGA condition. Indeed,
consider the stopping time v = inf{t € R, : S; = 1/2}. Then the random variable
—S, + So = 1/2 belongs to the set A given by (3.12). Hence, the NGA condition is
violated.

From the financial point of view, the strategy providing the generalized arbitrage
in this model consists in the short selling of the asset at time 0 and buying it back
at time v. Note that this strategy is prohibited in the traditional approach by the
admissibility condition. O
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Remark. A “buy and hold” strategy consists in buying an asset, waiting until its
discounted price reaches some higher level, and selling it back at that time. The opposite
(it may be called “sell and wait”) strategy consists in the short selling of an asset, waiting
until its discounted price reaches some lower level and buying it back at that time. In
many models (like the one described above) such “sell and wait” strategies lead to
arbitrage opportunities. In the traditional approach, these strategies are prohibited by
the admissibility condition. In the approach proposed here, such strategies are allowed,
but the models, in which they yield arbitrage opportunities, are “prohibited” in the
sense that they do not satisfy the NGA condition. Indeed, if the NGA condition is
satisfied, then there exists an equivalent uniformly integrable martingale measure. But
a uniformly integrable martingale with a strictly positive probability never reaches a
preassigned level, so that in models satisfying the NGA condition the “sell and wait”
strategy does not yield an arbitrage opportunity.

Remark. (Change of numéraire). Consider the problem of the change of
numéraire. The setting of the problem is the same as in the previous section, but
the time horizon is now infinite.

The same arguments as those used for the model with a finite time horizon (with
the obvious changes) show that if lim;_,« §2 > 0 P-a.s. (this limit exists P-a.s. if the
model (Q, F,P, A) satisfies the NGA condition), then the NGA property is preserved
under the replacement of S by S,

But without this additional assumption, the NGA property might not be preserved.
As an example, consider the model with S® = 1 and S} = B =#7/2 where B is a
Brownian motion and 7 = inf{t > 0 : e%7%/2 > 2}. Let F, = F’, F = \/,o0 Fi-
If we take the O-th asset as a numériare, then, clearly, the NGA condition is satisfied.
However, if we take the 1-st asset as a numéraire, then the NGA condition is not satisfied
because lim; ., S{ equals +oo with a strictly positive probability.

To conclude the section, we show that no “stationary” model with the infinite time

horizon satisfies the NGA condition. We say that a process (Z;);cr, has stationary
Law

increments if Zy ., — Zsip = Zy— Zg forany s <te Ry, he R,.

Proposition 3.20. Let gi = goezf, 1 = 1,...,d, where Z has stationary incre-
ments and P(Z; # Zy) > 0 for some t € R, . Then the NGA condition is not satisfied.

Proof. Suppose that the NGA condition is satisfied. Without loss of generality,
we can assume that P(Z! # Z}) > 0 for some ¢ € R,. The reasoning used in the

proof of Corollary 3.17 shows that there exists lim; gi P-a.s. Hence, there exists
limy ,o, Z} =: Z! P-a.s. (this limit takes on values in [—00,00)). Denote P(Z. > —o0)
by p. Fix € > 0 and find N € N such that N > 1/¢ and

P(ZL > —occand |Z! — Z1 | <eforany n > N) >p —e.

Then
P(ZL > —oc and | Z;y — Zy| < 26) > p—e.

Since Z1y — ZL "2 71, we get P(|Z}| < 2¢) > p —e. As & can be chosen arbitrarily
small, we conclude that P(ZL, = 0) = p. Hence, Z1, = 0 P-a.e. on theset {Z! > —oc}.
This means that Z! takes on only values —oc and 0.
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Take t € R, such that P(Z! # Z}) > 0. Choose a € R, such that
P(Z! — Zj| > @) > 0. For any T € R, ,
P(1Z74 = Z7 > @) = P(1Z; — Zg| > a) > 0.

Consequently, P(Zl = 0) < 1. Thus, S takes on only values 0 and gé, and

o0

P(gio =0)>0. Then M = (), and, by Corollary 3.17, the NGA condition is not
satisfied. O

Corollary 3.21. Let §1 = ggezf, 1 =1,...,d, where Z 1s a Lévy process that is
not identically equal to zero. Then the NGA condition is not satisfied.

3.5 Model of the Term Structure of Interest Rates

Let (0, F, (Fi)ier, , P) be a filtered probability space. We assume that Fq is P-trivial.
Let T C R, be the set of maturities of risk-free zero-coupon bonds. For any T € T, let
(S(t,T))seo,7 be a [0, 1]-valued (F;)-adapted cadlag process such that S(7,7T) = 1.
From the financial point of view, S(¢,T) is the price at time ¢ of a risk-free zero-coupon
bond with maturity 7 and face value 1. Let (7);er, be an Ry -valued (F;)-adapted

cadlag process such that fot rsds < oo P-a.s for any ¢ > 0. From the financial point of
view, 1, is the instantaneous risk-free interest rate at time ¢ (this is in contrast with
the previous sections, where r is assumed to be constant). Set

t
S(t,T) = exp{—/ rsds}S(t,T), TeT, tel0,T].
0

Define the set of attainable incomes by
{ZH (v, T) — S(un, Tp)) : N €N, T,, € T, u, < v, are

[0, T}, ]-valued (F;)-stopping times, H,, is fun—measurable}.

From the financial point of view, A is the set of incomes discounted to time 0 that can
be obtained by trading risk-free zero-coupon bonds with various maturities (and using
the bank account with the instantaneous risk-free interest rate to borrow/lend money).

Notation. Set
M={Q~P:forany T € T, (S(t,T))seo,r is an (F;, Q)-martingale}.
Key Lemma 3.22. For the model (Q, F,P, A), we have
R =TR(0) = M.

Proof. The statement is verified in the same way as Key Lemma 3.5. The proof
here is even simpler since S(¢,T") takes on values in [0, 1]. O
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3.6 Model with European Options

Let (€2, F,P) be a probability space and T' € R, . Let Sy be an R% -valued random
vector on (€, F,P). From the financial point of view, SI is the price of the i-th
asset at time T (assets 1,...,d are the same as in Section 2.1). For i = 1,...,d, let
K' C R, be the set of strike prices K of traded European call options on the i-th
asset with maturity T (the option holder receives the amount (S — K)* at time T').
In practice K’ is finite, but in theory it is often assumed that K = R, . Let ¢'(K),
i=1,...,d, K € K be the price at time 0 of a European call option on the i-th asset
with maturity T and strike price K. Let r € R, be the risk-free interest rate. Define
the set of attainable incomes by

d

Sy =Kt N
" (K;)):N K eK, b eR}.
{Zzhn< T, () €N, K, €K, hj, €

n=1 =1

From the financial point of view, A is the set of incomes discounted to time 0 that can
be obtained by trading at times 0 and 1" European call options on assets 1,...,d with
maturity 7 (and using the bank account to borrow/lend money). The possibility to
trade the underlying assets at times 0 and 7T is easily incorporated into the model by
assuming that 0 e K*, i =1,...,d.

Notation. Set

D' :{u : i is a probability measure on B(Ry ) such that
/ (z — K)Tp(dz) = (1+7)0"(K), K € K} i=1,...,d
R+

Lemma 3.23.(i) Let p be a probability measure on B(R,) such that fR+:17u(dx) <00
Then the function

() = / (- K)tu(dr), K€R,

satisfies the conditions:

(a) ¢ is conver on R, ;

(b) ¢, (0) > —1:

(c) limg oo p(K) = 0.
Moreover, = ¢", where ¢" is the second derivative of ¢ taken in the sense of dis-
tributions (i.e. ¢"((a,b]) = ¢ (b) — ¢, (a)) with the convention: ¢"({0}) = ¢ (0) + 1.
(In what follows, we will always use this convention.)

(ii) Suppose that ¢ satisfies conditions (a)—(c). Then the measure u = ¢" is a

probability measure on B(R,) and

oK) = / (v — K)*u(dr), K <R,.

Proof. Step 1. Let us prove (i). Conditions (a)—(c) are clear. Furthermore,
¢ (K) = —p((K,0)), K € Ry, which implies that ¢" = p.
Step 2. Let us prove (ii). We have

p((a,0]) = ¢/ (b) — ¥y (a), a<beR,.
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It follows from condition (c) that limg_, ¢’ (K) = 0, and hence, ;((a,00)) = —¢', (a).
Clearly, u is a probability measure. For the function

() = / (r— K)tu(dr), K €R,,

we have
LK) = —p((K,00)) = ¢ (K), KeR,.
Since
Jim (K) = lim o(K) =0,
we get @ = . O

Important remark. By Lemma 3.23, an equivalent description of D' is as follows:

Dl = {(p” : ¢ is convex on R, , g0'+(0) > —1, lim p(K) =0,

K—oo

and p(K) = (1 +1)¢(K), K € K}

In particular, if K* = R, and ¢’ satisfies conditions (a)—(c) of Lemma 3.23, then
D' ={(p)"}. If K = R, and ¢’ does not satisfy any of conditions (a)—(c) of
Lemma 3.23, then D! = ().

Notation. Set M ={Q~ P :LawqS. €D’ i=1,...,d}.

Key Lemma 3.24. Suppose that 0 € K', i = 1,...,d. Then, for the model
(Q,F,P,A), we have

R = R(i(sgz —(1+ r)goi(O))> = M.

i=1
This statement is clear (take Lemma 2.10 into account).

Remarks. (i) The condition 0 € K*, i = 1,...,d means the possibility to trade the
underlying assets at times 0 and 7. So, from the financial point of view, this is not at
all a restriction.

(ii) Let d =1 and K = R, . It follows from Theorem 2.12 and Key Lemma 3.24
that the NGA condition is satisfied if and only if ¢ satisfies conditions (a)—(c) of
Lemma 3.23 and the condition

(d) (1 +7)¢" ~ Lawp Sr.

(iii) Let 4 € {1,...,d} and K' = R, . Suppose that the NGA condition is satisfied.
Key Lemma 3.24 shows that LawqS% is the same for all Q € R. This might be
interpreted as follows: the market-estimated distribution of S% is determined uniquely

by the prices of European call options on the i-th asset with maturity 7" and all positive
strike prices.

(iv) Let i € {1,...,d} and K’ = R, . Suppose that the NGA condition is satisfied.
Consider F' = f(S%), where f is bounded below. It follows from Theorem 2.19 and
Key Lemma 3.24 that

{ [ f<x><1+r><w>"<dx>} it [ 5@ ) < o

] otherwise.

I(F) =
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In particular, the price of a binary option on the i-th asset (this is a contingent claim
with the payoff I(Si. > K) or SLI(S: > K)) is uniquely determined by the prices of
European call options on the i-th asset with maturity 7" and all positive strike prices.

We conclude this section by three interesting examples. The first example shows
that the ordinary NA condition (which means that AN L% = {0}) is too weak for the
model under consideration.

Example 3.25. Let d=1, K=R,,
1
P(Sr € A) = 5(I(l €A+ / e“‘dx), A e BR;),
A

©(K) =e X and r = 0. This model satisfies the NA condition. Indeed, suppose that

there exists
N

X =) ha((Sr— Kn)" = @(K,)) € A

n=1

such that X > 0 P-as. and P(X > 0) > 0. Note that X can be represented as
X = f(Sy) with a continuous function f: R, — R satisfying

f(z)e ®dz = 0. (3.14)
Ry

The above assumptions on X imply that f > 0 everywhere and f is not identically
equal to zero. But this contradicts (3.14). Thus, NA is satisfied.

Consider now F' = I(Sy = 1). For every € > 0, consider the function f.(z) =
(1 — &'l — 1|)*. Then the random variables

XE - fE(ST) - fe(x)eimdx

Ry

belong to A and
X, + fe(x)e™®dz > F P-as.
Ry

As [, fe(z)e™®dz —> 0, it is reasonable to conclude that the fair price of F' should
Ry el0

not exceed 0 (thus, the fair price should equal 0 since F' is positive). But on the other
hand, P(F =1) = 1/2, so that we obtain a contradiction with the common sense. The
reason is that this model is not “fair” because one can construct “asymptotic arbitrage”
taking X, with ¢ | 0. O

The second example shows that the NFL condition (see Remark (iii) following Defi-
nition 2.8) is also too weak for the model under consideration.

Example 3.26. et d=1, K=R,, P(Sy<z)=1-¢%, p(K)=¢e%+1, and
r = 0. This model satisfies the NFL condition. Indeed, let

X =) ha((Sr— Kn)" = o(Ky)) € A

n=1
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be bounded below. Note that X can be represented as X = f(S7) with a continous
function f: R, — R satisfying

The assumption on X implies that ZN h, > 0. Then we can write

X > Z ha((Sr — Kn)t —e™") = g(Sr) — /R g(x)e™"dz = g(St) — Epg(St)

n=1

with g(z) = 3.2, hy(z — K,,)*. This implies that for any X € A4(0) (A4(0) is defined
by (2.7)), we have EpX < 0, so that NFL is satisfied.

On the other hand, in this model the price of a European call option tends to 1 as
the strike price tends to 400, which contradicts the common sense. Thus, this model
is not “fair” since one can construct “asymptotic arbitrage” by selling European call
options with the strike price K — +oc. O

The third example shows that V.(F) and V*(F) might not coincide with the values
C.(F) and C*(F) given by (2.13) and (2.14). Thus, in general the proposed approach
to arbitrage pricing yields a finer interval of fair prices than the traditional approach
based on sub- and superreplication.

Example 3.27. let d =1, K=R,, P(Sp <2) =1-¢%, p(K) = e X, and
r = 0. This model satisfies the NGA condition since P € M. Choose D € B(R,)
such that, for any a < b € R, , the sets D N [a,b] and [a,b] \ D have a strictly positive
Lebesgue measure. Consider F' = I(Sy € D).

Let us find C*(F') defined by (2.14). Let = € R and

N

X = h((Sr— Kn)" = (K,)) € A

n=1

be such that z +X > F P-a.s. Set

N
:Zhn(y_Kn)+: y€R+'
n=1

We have
N
— Z hne’K"
Z h / Te Ydy
= g(St) — / g(y)e”vdy.
Ry
Thus,

z+g(St) — / g(y)e Ydy > I(Sy € D) P-as.
Ry
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Using the continuity of g and the properties of D, we get

z+ g(2) —/R glye ¥dy > 1, zeRy.

1.

This implies that = > 1. Consequently, C*(F') =
= 0. On the other hand, it follows from

In a similar way one checks that C,(F)
Theorem 2.19 and Key Lemma 3.24 that

V*(F):V*(F):/Deydye (0,1). O

3.7 Model with Barrier Options

Let (2, F,P) be a probability space and T' € Ry . Let Sy, My be R? -valued random
vectors on (Q, F,P). From the financial point of view, S% is the price of the i-th asset
at time T (assets 1,...,d are the same as in Section 2.1) and M is the maximal
price of the i-th asset on [0,7]. For ¢ = 1,...,d, let B* C R% be the set of pairs
(K, L), for which there exists a traded up-and-in call option on the i-th asset with
maturity 7', strike price K, and barrier L (the option holder receives the amount
(St — K)*I(M} > L) at time T'). Let ¢'(K,L), i=1,...,d, (K,L) € B’ be the price
at time 0 of such an option. Let r € R, be the continuously compounded risk-free
interest rate. Define the set of attainable incomes by

d

A= { S KO > 1) - (K, 1)

n=1 =1
NeN, (K.,L\) B, b € R}.
The possibility to trade the underlying assets at times 0 and 7' is easily incorporated
into the model by assuming that (0,0) € B, i =1,...,d.

Notation. Set

D' = {u : p is a probability measure on B(R%) such that

/R (x — K)*1(y > L)p(dz, dy) = e p'(K, L), (K, L) GIB%’}, i=1,...,d

2
+

Remark. Let B' = R% . Then D' is either a singleton or the empty set.

Notation. Set M = {Q ~ P : Lawq(S%, ML) € D', i=1,...,d}.

Key Lemma 3.28. Suppose that (0,0) € K, i = 1,...,d. Then, for the model
(Q,F,P,A), we have

d

R = R(Z(S; - eTTgoi(O,(]))> = M.

=1

This statement is clear (take Lemma 2.10 into account).
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Remarks. (i) Let i € {1,...,d} and B’ = R% . Suppose that the NGA condition
is satisfied. Key Lemma 3.28 shows that Lawgq(Sk, M%) is the same for all Q € R.
This might be interpreted as follows: the market-estimated distribution of (S, M%)
is determined uniquely by the prices of up-and-in call options on the z-th asset with
maturity 7', all positive strike prices, and all positive barriers.

(ii) Let 4 € {1,...,d} and B' = R? . Suppose that the NGA condition is satisfied.
Consider F = f(S%, M), where f is bounded below. It follows from Theorem 2.19 and
Key Lemma 3.28 that

{ f(x,we”w‘(dx,dy)} it [ fpan ) < o,
R? R?

1] otherwise,

I(F) =

where p! is the unique element of D. In particular, the prices of an up-and-in put
option, an up-and-out call option, and an up-and-out put option on the i-th asset (these
are the contingent claims with the payoffs (S&— K) I[(M% > L), (Sh—K)*I(ML < L),
and (S5 — K) I(M% < L)) as well as the price of a lookback option on the i-th asset (it
has the payoff Mt — St) are uniquely determined by the prices of up-and-in call options
on the i-th asset with maturity 7', all positive strike prices, and all positive barriers.

3.8 Model for Assessing Credit Risk

Let (2, F,P) be a probability space. Let £ be a [0, cc]-valued random variable on
(Q, F,P). From the financial point of view, £ is the time of default of some company.
Let T C R, be the set of maturities of (risky) zero-coupon bonds issued by this company.
Let B(T), T € T be the price at time 0 of a zero-coupon bond with maturity 7" and
face value 1 issued by this company. Let 7(T), T € R, be the risk-free interest rate
for the period [0,T], i.e. e ™7 is the price at time 0 of a risk-free zero-coupon bond
with maturity 7 and face value 1. Let us assume that there exists s € [0,1) such
that at time & each holder of a zero-coupon bond with maturity 7" > £ issued by the
company receives the amount e "(M7T+7(6)¢ (when discounted to time 0, this amount
equals 2e "7 which is s times the discounted amount obtained by a holder of a risk-
free zero-coupon bond with maturity 7' and face value 1). Define the set of attainable
incomes by

N
A= {Z hn(ew(Tn)Tn(I(Tn <& +xl(T,>&)-B(T,): NeN, T, €T, h, € R}.
n=1

Notation. Set
D= {u : i is a probability measure on B([0, oc])

1—erMTB(T)

such that u([0,7]) = 1
—

,TGT}

M ={Q ~P:Lawq¢ € D}.
Key Lemma 3.29. For the model (Q, F,P, A), we have
R =R(0) = M.

This statement is clear (take Lemma 2.10 into account).
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Remark. Let T = R, . Suppose that the NGA condition is satisfied. Key Lemma 3.29
shows that Lawq ¢ is the same for all Q € R. This might be interpreted as follows: the
market-estimated distribution of ¢ is determined uniquely (under the above assump-
tions) by the prices of zero-coupon bonds with all positive maturities issued by the
company.

3.9 Mixed Model

Let (0, F, (Fi)icjo.r1, P) be a filtered probability space. We assume that F is P-trivial.
Let (S¢)ieio,r) be an R -valued (F;)-adapted cadlag process. From the financial point
of view, S! is the price of the i-th asset at time ¢ (assets 1,...,d are the same as in
Section 2.1). For i =1,...,d, let E C[0,7] x R, be the set of pairs (¢, K), for which
there exists a traded European call option on the ¢-th asset with maturity ¢ and strike
price K. Let ¢'(t,K), i = 1,...,d, (t,K) € FE' be the price at time 0 of such an
option. Let r € R, be the risk-free interest rate. Define S by (3.2). Define the set of
attainable incomes by

M4 N d o
S L T DI TS, - KD - KD)
1 =1

m=1 =1 n=

M,N €N, u,, <, are (F,)-stopping times, H' is F,, -measurable,

(6 K eE, b e R}.
From the financial point of view, A is the set of incomes discounted to time 0 that
can be obtained by trading assets 1,...,d on the interval [0,7] and trading European

call options on these assets at times 0 and T (as well as using the bank account to
borrow/lend money).

Notation. Set
K(t)={KeR, : (t,K)€E}, i=1,...,d, t€l0,T],

D'(t) = { ¢ is a probability measure on B(R; ) such that

/R (x — K)Tp(d) ="' (t, K), K € Ki(t)}, i=1,...,d, t€][0,T],

M ={Q ~P:Sisan (F;,Q)-martingale and
Lawq S; € D'(t), i=1,...,d, t € [0,T]}.

Key Lemma 3.30. For the model (Q, F,P, A), we have

d

R = R<Z(§"T - §3)> M
i=1
Proof. Denote Zle(giT - gé) by Zj.
Step 1. The inclusion R C R(Z,) follows from Lemma 2.10.
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Step 2. Let us prove the inclusion R(Z;) € M. Take Q € R(Zy). The proof of
Key Lemma 3.5 (Step 2) shows that S is an (F;, Q)-martingale. Fix i € {1,...,d},

(t, K) € B . There exists a € Ry, such that .S, = S!. We have
Eq(aS; — aSy — (S — K)" + ¢! (, K)) = 0
since the random variable under the expectation belongs to A and is bounded. By the
martingale property of S, Eq (Ozgi — OES) = 0, which implies that
Eq(S; — K)" =e"¢'(t, K).

As a result, Q € M.
Step 3. Let us prove the inclusion M C R. Take Q € M. Fix X = X; + X, € A,
where

Xi=3 > Hu(S,, —5.,),

m=1 i=1

ZZh’ REICTEY <A MUY 3))

n=1 =1

Clearly, X, is Q-integrable and EqXy; = 0. The proof of Key Lemma 3.5 (Step 3)
shows that EqX, > EqX; . This leads to the inequality Eq X~ > EqX ™. As a result,
QeR. O

We conclude this section with a definition of the implied volatility that is alternative
to the traditional one.

Definition 3.31. Suppose that the model (€2, F,P, A) satisfies the NGA condition.
We call the values

o0 = int (f ) - (f + wu(dfv)>2> "
(0) = sup ( /R ) - ( /R + w(d@f) "

the lower and upper implied volatility of the i-th asset at time ¢. If o%(t) = 0*(t), then
we call this value the implied volatility of the i-th asset at time ¢.
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Sections 4.1-4.4 are the “friction duals” of Sections 3.1, 3.3, 3.6, and 3.9.

We do not have the friction analog of the results of Section 3.4.

From the study below it is completely clear how to extend the models and the results
of Sections 3.2, 3.5, 3.7, and 3.8 in order to incorporate friction. Therefore, we do not
present explicitly the “friction duals” of these sections.

4.1 One-Period Model

Let (Q, F,P) be a probability space. Let S§, S¢, S5 € R and Sy, S}, S¢ be RY -valued
random vectors on (€, F,P). From the financial point of view, (5%) is the ask price of
the i-th asset at time n, i.e. the amount needed to buy this asset at this time; (S°)? is
the bid price of the i-th asset at time n, i.e. the amount obtained when one sells this

asset at this time; (5¢)! is the amount obtained when one short sells the i-th asset at

time n (so that S* > S® > S¢ componentwise). Define S, gb, and S° by (2.1). Define
the set of attainable incomes by

A= {Z[Qi((gb)’i — (8")) + 1 (= (8 + (899)] : ', b € R, }

Remark. The case S¢ = S’ = S¢ corresponds to a frictionless model; the case
Se = S% S¢ =0 corresponds to a model with no transaction costs but with short sales
prohibited; the case S¢ = S® corresponds to a model with transaction costs an no costs
of short selling, etc.

Notation. Set
M ={Q~P:Eq(S)] < (5")) and Eq(S")} > (S, i =1,....d}

(here Eq(S“)! may take on the value +00).

Key Lemma 4.1. Suppose that for any i = 1,...,d, either (S¢)* = 0 or there
’f’ P’

exists 7' € Ry, such that (S")" <~ (gb)i. Then for the model (£ A), we have
d
<byi T
R= R(Z((S )1 — (S )0)) =M.
i=1

This statement is clear (take Lemma 2.10 into account).

The theorem below shows that in this model one can deal with the NA condition
instead of the NGA condition.
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Theorem 4.2 (FTAP). Under the assumptions of Key Lemma 4.1, the following
conditions are equivalent:

(a) NGA;
(b) NA (i.e. ANLY ={0});
(c) M#£D.

Proof. Step 1. The implication (a)=>(b) is obvious.

Step 2. Let us prove the implication (b)=-(c).  Consider the measure
P' = ¢(]|S¢|| v 1)"'P, where ¢ is the normalizing constant. The set A is a closed con-
vex cone in L'(P"). By the “L! version” of the Kreps—Yan theorem (it is the same as
Lemma 2.13 with L* replaced by L' and o(L*,L') replaced by the norm topology
of L'; the proof can be found in [Y80]), there exists a probability measure Q ~ P’ such
that the density dQ/dP’ is bounded and EqX < 0 for any X € A. Then Q € M.

Step 3. The implication (c)=-(a) follows from Theorem 2.12. O

Remarks. (i) Let F' € L° be bounded below. It follows from Theorem 4.2 that
the objects I(F'), Vi(F), and V*(F') would remain unchanged if we replaced the NGA
condition in their definition by the NA condition.

(ii) Consider a model with proportional transaction costs and proportional costs
of short selling, i.e. a model with

(Sa)il = S:w (Sb):L = (1 - ai)wa (SC):L = (1 - ai - 52)57217

where S; € R, Sy is an RY -valued random vector, o' € [0,1), ' € [0,1], o'+ " < 1.
Set C' = conv supp Lawp S; and let C° denote the relative interior of C'. Set

C° = {Z € RL : there exists z € C° such that
1-a)r' <F<(1—a —p) ' i=1,...,d}

It is easy to see that conditions (a)—(c) of Theorem 4.2 are equivalent to
(d) Sy € Ce.
(iii) Consider a model with proportional transaction costs and proportional

costs of short selling described above. Let F € L’ be bounded below. Set
D = conv supp Lawp(F, S7) and let D° denote the relative interior of D. Set

D° = {(z,7) € R, x R? : there exists (z,y) € D° such that
T=zand (1-a)y' <7 <(1—-a' —=p) N, i=1,...,d}

It follows from the previous remark that

I(F) = {z: (z,5) Eﬁ’}
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d
R-I-

DO

Figure 6. The joint arrangement of
I(F), V.(F), V¥(F), D°, and D° in a
model with proportional transaction costs

4.2 Continuous-Time Model
with a Finite Time Horizon

In this section we consider a model with friction on 3 levels of generality:

1. model with arbitrary transaction costs and arbitrary costs of short selling;
2. model with arbitrary transaction costs and no costs of short selling;
3. model with proportional transaction costs and proportional costs of short selling.

1. Let (0, F, (Fi)icpo,r), P) be a filtered probability space. We assume that F is
P-trivial, while (F;) is right-continuous and complete. Let (S{)ci077. (SP)tepo,r], and
(5¢)teo,r) be R -valued (F;)-adapted cadlag processes. From the financial point of
view, (S%)i is the ask price of the i-th asset at time ¢, (S°)¢ is the bid price of the i-th
asset at time ¢, and (S°)! is the amount one gets when short selling the i-th asset at

time ¢. Define S°, gb, and S° by (3.2). Define the set of attainable incomes by

A= {X_,: ;[Gi((gb); — (S )+ HL (=S + (8 )] NeN,

u, < v, are (JF;)-stopping times, G*,, H' are R, -valued and ]:un—measurable}.

Notation. (i) Set
M= {Q ~ P :forany i=1,...,d and any (F;)-stopping times u < v,
b\ T T i TE\i
(ii) Let ¢q,t9,... be a numbering of {¢7T : ¢ € QN [0,1]}. Set

. . b
(This series converges P-a.s. since S is cadlag.)
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Y

Key Lemma 4.3. Suppose that for any i = 1,...,d, either (S) = 0 or there
exists v € Ry, such that (S°)" <+ (S°)'. Then for the model (2, F,P, A), we have

R = R(Zy) = M.

Proof. Step 1. The inclusion R C R(Z) follows from Lemma 2.10.
Step 2. Let us prove the inclusion R(Z;) C M. Take Q € R(Z). Fixi € {1,...,d}
and (F;)-stopping times u < v. For n € N, set

KT ((k—1)T kT
I L (L

n
k=1
kT _((k-1)T kT
n = — I — < — .
Y kz:;n ( n SUS n)

Then for any n < m and any D € F,_ such that (ga)im is bounded on D, we have

u
Uy, < v, and
b

Eolp((S);, — (SY)i.) <0,

which implies that
b\ T\
Eo((S)5, | Fun) < (S )i, (4.1)
As u,, decreases to u pointwise, we have F, C F, . and [ °_, F,,. = F, (see [RY99;
Ch. I, Ex. 4.17]). Therefore,

EQ((B")i | Fun) 25 Eq((S

m— 00

oo | Fu)
(see [RY99; Ch. II, Cor. 2.4]) and (4.1) yields

Eq((S");, | 7)) < (")
Applying the Fatou lemma for conditional expectations, we get
Tvi T i
It remains to prove the inequality

Eq((SYi | F.) > (S (4.2)

—
S~
U
o
~—
<
I
O
-+

It 0, this inequality i is clear. Let us assume that (S ) # 0, which means that
(S) < ’yi(Sc)i with some 7* € R, ;. Then, for any D € F,, _,

Eqlp (= (S, + (S)i,) <0
(we have used the inequality (S*)? < (gb)i), which implies that
Eq((S)5, | Fun) = (S,
Arguing similarly as above, we get
Eo((5%);, | Fu) > (57,

"

(4.3)
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It follows that for any (JF;)-stopping time v,
T4 i (TN i T i Tlyi
(S, <'(S), <VEQ((S)r | F) < (V)°EQ((S)7 | F)-

Using the inclusion Q € R(Z), it is easy to check that (gb)ép is Q-integrable, and hence,
the collection ((Sa)i )2021 is Q-uniformly integrable. Now (4.2) follows from (4.3).

Un

Step 3. Let us prove the inclusion M C R. Take Q € M. Fix

n=1 1

[GL((S")E, — (S"),) + Hi(—(S")i, + (S).,)] € A.

d
Un
=1

It follows from Lemma 4.4 that Eq¢™ > Eqé™. Hence, Q € R. O

Lemma 4.4. Let X, Y, Z be R‘i -valued (F;)-adapted cadlag processes such that
for any (F;)-stopping times uw < v and any i = {1,...,d}, we have

E(Y) | 7)< X, E(XFR)>Z,

Let N € N, u, < v, be (F,)-stopping times, G, H, be R‘i -valued F,, -measurable ran-
dom vectors, n =1,...,N. Let o be an (F,)-stopping time such that 0 < uy A -+ AN uy.
Then, for the random variable

N d

e=2 > [G.(v, - X))+ Hy (=X, + Z,,)].

n=1 i=1
we have

E(§™ | 7o) > E(ET | F).
(Here E(§ | F,) and E(ET | F,) can take on the value +00.)

Proof. We will prove this statement by the induction in N.
Base of induction. Let N =1. Clearly, E({ | F,,,) < 0o a.s. and

E(¢™ | Fu) > E(ET | Fu)-

This yields the desired result.
Step of induction. Assume that the statement is true for N — 1. Let us prove it
for N. Set T=u; A--- Auy,

D, ={r=w}, Dy={r=wuy}\Dy,....,Dy={1=un}\ UD”

(note that Dq,..., Dy € F;). Fix m € {1,..., N} and set

d
¢=> Gy, - X )+ H,(-X) +2,)].
=1
0= S [G (Y~ XL) + H(=X) + 2L )] =€~ C.

n#m 1=1
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Note that {C N D,,:Ce F.} ={CNnD,,:CéeF,, }. Using this property, we get
E(Ip, |C|| Fr) = E(Ip,,|[C| | Fu,) <00 as.

and
E(Ip,¢ | ) =E(Ip, ¢ | Fun) > EUIp, T | Fun) = E(Ip, (T | Fr).

It follows from the induction assumption that
E(n™ | F-) > E(n" | Fr).

Consequently,
IDmE(gi |f7’) Z IDmE(é‘Jr | fT)

As m has been chosen arbitrarily, we get
E(™ | F) > E(ET | F),
which yields the desired statement. a

2. Let us now consider a model with no costs of short selling, i.e. a model with
S¢ = Sb. In order to establish the structure of risk-neutral measures in this model, we
need several auxiliary statements. The first one has been proved by F. Delbaen and
W. Schachermayer [DS94; Appendix].

Lemma 4.5. Let &,&,... be Ry -valued random wvariables on (2, F,P). Then
there exists a sequence (Ny)nen such that n, € conv(fn, fur1,--.), n € N and (n,)
converges a.s. to a [0, 4o00]-valued random variable (“conv” denotes the convex hull).

The next result is of independent interest. It has been proved by Choulli and
Stricker [CS98] under some additional assumption. Here we give a simpler proof and
get rid of this assumption.

Theorem 4.6. Let X be a supermartingale and Y be a submartingale on a fil-
tered probability space (S0, F, (Fy)iejo,r): P) with a right-continuous and complete filtra-
tion (X and Y are not necessarily cadlag). Suppose that X; <Y, a.s., t € [0,T|. Then
there exists an (F;)-martingale M such that X; < My <Y} a.s., t € [0,T].

Proof. Step 1. Let us first prove this statement in the discrete-time setting, i.e.
for the processes (X,)n—0.. v and (Y,)n—o,.. ~ defined on a filtered probability space
(Q, F, (Fn)no...n,P). Construct (M,)n—o,.. n going from 0 to N by the following
procedure: we set My = X, and if M,,..., M, are already constructed, we find an
Fn-measurable random variable )\, such that

and set
Mn+1 = )\an+1 + (1 - )\n)YnJrl-

Then M is an (F,)-martingale, 0 < A\, < 1,and X, <M, <Y, as, n=0,...,N.
Step 2. Consider now the continuous-time case. There exists a countable set
T C [0,7] such that T is dense in [0,7] and the functions ¢ — EX; and ¢ — EY;
are continuous on [0,7]\ T. Let ¢;,t9,... be a numbering of T. For each n € N, we
can find a random sequence (M]!)g—o.. ., that is a martingale with respect to (Fy, )k=o...n

.....



56 4 Particular Models with Friction

and is such that X;, < M <Y}, as., k=0,...,n. Applying Lemma 4.5 to the ran-
dom variables &, = M, we construct a sequence (1,) such that 7, € conv(&,, &niq, ... )

and (n,) converges a.s. to a random variable 1. Notice that X; < 5, < Y as. (T

L'(P
can be chosen in such a way that T € T), so that n, A 1. Consider the process

n—o0

M, =E(n|F), t €0, T] (we take its cadlag version). Then the inequalities
Xi, <EOm | Fr,) <Yy, neN, m>n, k=0,...,n

imply that X; < M; <Y, a.s. for t € T. The processes X and Y admit modifica-
tions that are right-continuous on [0, 7]\ T (see [IW89; Ch. I, Th. 6.9]). As a result,
X, < M; <Y, as. for any t € [0,7]. O

The next lemma clarifies the structure of risk-neutral measures in the model under
consideration.

Lemma 4.7. Let X and Y be (F,)-adapted cadlag processes such that for any
(Fy)-stopping time T, the random wvariables X, and Y, are integrable. This pair of
processes satisfies the condition

E(Xy | Fu) <Y, E(Y, | F) 2 X,

for any (F;)-stopping times v < v if and only if there exists an (F;)-martingale M
such that X < M <Y a.s.

Proof. Step 1. Let us prove the “only if” implication. Set

X, = esssupE(X, | F), tel0,T],
TEM;

Y, = essinf E(Y, | F), te€0,T],
TEM,

where 9, denotes the set of (F;)-stopping times 7 such that 7 > ¢. (Here esssup, (;
means the essential supremum of a family of random variables, i.e. a random variable (
such that for any 7, ¢ > (, a.s. and for any other random variable {’ with this property,
we have ( < ('; essinf, (, is defined similarly.) As 9, O 9, for s < ¢, the process X
is an (F;)-supermartingale, while Y is an (;)-submartingale.

Let us prove that )?t < 1~ft a.s., t € [0,T]. Assume that there exists ¢ such that
P(X, > Y;) > 0. Then there exist 7,0 € 9, such that

P(E(XT | ft) > E(er | ft)) > O

This implies that P(§ > 1) > 0, where £ = E(X, | Fyns) and n = E(Y, | Frno). Assume
first that P({€ > n} Nn{r <o}) > 0. On the set {7 < o}, we have

5 = X’T = XT/\0'7
= E(Ya | ‘TT/\O') = E(YT\/O' | ‘7’7'/\0')’

which yields a contradiction. In a similar way, we arrive at a contradiction under the
assumption P({& > n} N {r > ¢}) > 0. As aresult, X < Y. Now, an application of
Theorem 4.6 yields the existence of a desired process M.

Step 2. The “if” implication follows immediately from the optional stopping theorem
(see [RY99; Ch. II, Th. 3.2]). O
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Notation. Set

M={Q~P:foranyi=1,...,d, there exists an
(F;, Q)-martingale M* such that (Eb)i < Mi < (3}

Key Lemma 4.8. Suppose that for any i = 1,...,d, there exists v' € Ry, such
that (S") < 'yi(gb)i. Then for the model (2, F,P, A), we have

R =R(Zy) = M.
Proof. This statement is a consequence of Key Lemma 4.3 and Lemma 4.7. O

Remark. As a corollary, the model satisfies the NGA condition if and only if M # 0.
This agrees with the result of Jouini and Kallal [JK95]. However, there are several
differences between our approach and the one in [JK95]. The most important one is that
Jouini and Kallal work with the L?-setting (in particular, the random variables (S%)
are assumed to be square-integrable and the densities dQ/dP or risk-neutral measures
should also be square-integrable), while we work with the L°-setting.

3. Finally, we consider a model with proportional transaction costs and proportional
costs of short selling, i.e. a model with

(s =8, (S =(1-a)s, (9 =(1-a'=g)s,

where S is an RY -valued (F;)-adapted cadlag process, o' € [0,1), A € [0,1],
0B <1,

Definition 4.9. Let a,b € [0,1]. An R, -valued process X 1is called an
(Fi, P) -delta-martingale of order (a,b) (or (Fy, P, a,b)-delta-martingale, or (Fy, P)-A-
martingale of order (a,b)) if

(i) X is (F;)-adapted and cadlag;
(i) EpX, < 0o, t € [0,T];
(iii) for any (F;)-stopping times u < v, we have

aX, <Ep(X,|F,) <b'X, (4.4)
(if b =0, then the second inequality is omitted).

Remarks. (i) If a = b =1, then the above definition is equivalent to the definition
of a martingale. If a = 0, b =1, then the above definition is equivalent to the definition
of a supermartingale. If a = 1, b = 0, then the above definition is equivalent to
the definition of a submartingale. These statements follow from the optional stopping
theorem (see [RY99; Ch. II, Th. 3.3]).

(ii) Gnedenko [GO04] introduced the notion of an epsilon-martingale in connection
with some optimal control problem in models with transaction costs. The definition
of an epsilon-martingale is similar to that of delta-martingale with (4.4) replaced by:
|Ep(X, | Fu) — Xu| < e, where € € R, .

In the definition of a martingale, supermartingale, or submartingale, one can use
deterministic times u, v (this leads to an equivalent definition). This is not the case
for the delta-martingales as shown by the example below.
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Example 4.10. Let Q = {w;,wq}, Fo = {0,Q}, F, = F =22, P(wy) = P(wy) =
1/2. Consider the random sequence defined by

Xo(wl) = ]_, Xo(u)g) = ]_,
Xl(wl) = ]_, Xl(u)g) = 3/2,
Xo(w1) = 4/5,  Xo(ws) = 5/3.

Let a = b =4/5. One can check that (4.4) is satisfied for any deterministic times u < v.
On the other hand, this property is violated for the stopping times u = 0, v(wy) = 1,
v(wy) = 2. O

The following remark clarifies the nature of delta-martingales.

Remark. Let (Xi)icjor; be an Ry -valued (F;)-adapted cadlag process with

E|Xr| <oo. Set Xy = E(X¢|F), t€[0,T]. If X is an (F;, a,b)-delta-martingale,
then, clearly, bX < X < a 'X. “Conversely”, if cX < X < ¢ 'X, where ¢ = a'/?vb'/?,
then, for any (F;)-stopping times u < v, we have

X, < X, <c'X,,
X, = cE(X, | F.) <E(X, | F) < E(X, | Fo) = ¢ Xo,

which implies that
aX, < Xy <EX, | F)) <X, <b71X,,
ie. X is an (F,a,b)-delta-martingale.

The following corollary of Lemma 4.7 yields a convenient description of delta-
martingales of order (a,a).

Corollary 4.11. Let a € [0,1]. An Ry -valued (F;)-adapted cadlag process X is an
(Fi, a, a) -delta-martingale if and only if there exists an (F;)-martingale M such that
aX <M<X.

Notation. Set

M= {Q ~P:5 is an (Fi,Q, (1 — o' — %), (1 — a'))-delta-martingale, i = 1, ..., d}.

Important remark. Consider a model with no transaction costs and with short
selling prohibited, i.e. a model with o/ =0, f'=1,i=1,...,d. Then

M={Q~P: S is an (Fi, Q)-supermartingale, i = 1,...,d}.
Key Lemma 4.12. For the model (Q, F,P, A), we have
R =R(Z) = M.

Proof. This statement is a direct consequence of Key Lemma 4.3. O
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4.3 Model with European Options

Let (Q,F,P) be a probability space and T' € R, . Let Sy be an R% -valued random
vector on (£, F,P). From the financial point of view, S is the ask price of the i-th asset
at time T (assets 1,...,d are the same as in Section 2.1). For simplicity, we consider
only proportional transaction costs on the underlying assets, i.e. the bid price of the
i-th asset at time T is (1 — o’)SL, where o' € [0,1). For i = 1,...,d, let K C R,
be the set of strike prices K of traded European call options on the i-th asset with
maturity 7. Let ¢*(K) and ¢"(K), i =1,...,d, K € K' be the ask and bid prices
at time 0 of such an option. (The short position in the option can be taken without
paying additional premium for short selling.) Let » € R, be the risk-free interest rate.
Define the set of attainable incomes by

A= {3 o (I ) o (I i)

1+7r 1+7r

n=1 1=1

NeN, K! €K, g;,h:;eﬂzq}.

The possibility to trade the underlying assets at time 0 is easily incorporated into the
model by assuming that 0 e K', i =1,...,d.

Notation. Set
D' = { i pu is a probability measure on B(R, ) such that
/ (1= al)z — K)*p(dz) < (14 )" (K) and
Ry

/R(x—K)J’u(dz)z(l—Fr)gobi(K),KGK’}, i=1,...,d.

Important remark. By Lemma 3.23, an equivalent description of D' is as follows:

Dt = {(p” : ¢ is convex on R, g0'+(0) > —1, lim p(K) =0,

K—oo

14r
1—af

o((1— o) 'K) < ¢WKmewm3zu+WwWKLKGK}-

Notation. Set M = {Q~P:LawqSi€ D! i=1,...,d}.

Key Lemma 4.13. Suppose that 0 € K', ¢ = 1,...,d. Then, for the model
(Q,F,P,A), we have

R =R(32(( - a)sh - (14 7)) = M.

d
1=

1

This statement is clear (take Lemma 2.10 into account).
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0" ((1 - a)K), K € Ry—

p(K), K € R —

(1+7)p"(K), K € Ry —

K
Figure 7.a. The structure of D' in the case, where
K’ = R, . The set D! consists of the second deriva-
tives ¢”, where ¢ is convex on Ry, ¢/, (0) > —1,
limg 00 ¢(K) =0, and ¢ lies in the shaded region.
11,—1—(;‘ @al((l - ai)K)ﬂ K e 1]15;1' -1
o(K), K € Ry —
1+7r)"(K), K e K —
\a ' R ) K

K

Figure 7.b. The structure of D' in the case, where
K’ is finite. The set D consists of the second deriva-
tives ¢”, where ¢ is convex on Ry, ¢/, (0) > —1,
limg 00 ¢(K) =0, and ¢ lies in the shaded region.

4.4 Mixed Model

Let (2, F, (Fi)icjo,r, P) be a filtered probability space. We assume that Fy is P-trivial
and (F;) is right-continuous. Let (S;)iep,r7 be an R{ -valued (F;)-adapted cadlag pro-
cess. From the financial point of view, S} is the ask price of the i-th asset at time ¢
(assets 1,...,d are the same as in Section 2.1). For simplicity, we consider only pro-
portional transaction costs and costs of short selling on the underlying assets, i.e. the
bid price of the i-th asset at time ¢ is (1 — a*)S?, while the amount obtained by short
selling this asset at time ¢ is (1 —a — 5%)S?, where o' € [0,1), B* € [0,1], af +3* < 1.
Fori=1,...,d,let E' C[0,7] x R, be the set of pairs (¢, K), for which there exists a
traded European call option on the ¢-th asset with maturity ¢ and strike price K. Let
0¥(t,K) and ¢"(t,K),i=1,...,d, (t, K) € E' be the ask and bid prices at time 0 of
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such an option. We assume that the set of possible maturities
{t € [0,T] : there exist 4, K such that (¢, K) € E'}

is countable. Let 7 € R, be the risk-free interest rate. Define S by (3.2). Define the
set of attainable incomes by

={ZZ[GQ((l—ai)?ZM—Eim)+H’( Sun + (1=’ = 5)5,,)]

d
33l (1S~ K2 — g, D)

n=1 i=1
+%pa%®@fmf+¢wgmmszeN
U, < Uy, are (F;)-stopping times, G¢ , H! are R, -valued and

F.,,-measurable, (t: K') € E', ¢" bl € R, }

Notation. (i) Set
K(t)={KeR,:(t,K)eE}, i=1,...,d,t€]0,T],
Di(t) = {u : u is a probability measure on B(R, ) such that
/ (1 —a'z — K)Tpu(dz) < e¢(t, K) and
Ry
/ (x — K)"p(dr) > e"' " (t, K), K € Ki(t)}, i=1,...,d, t€[0,T],
Ry
M= {Q ~P:35 is an (Fi,Q, (1 — o' — 89", 1 — a')-delta martingale,
i=1,...,d and LawqS; € D'(t), i=1,....d, t € [0,T]}.
(ii) Let ty,%5,... be a numbering of
{t € [0,T] : there exist 4, K such that (t, K) € E'} U{qT :q € QnJ[0,1]}

and set

222 (1—a?)5, —35).

n=1 =1
Key Lemma 4.14. For the model (Q, F,P, A), we have
R =R(Z) = M.

Proof. Step 1. The inclusion R C R(Z) follows from Lemma 2.10.

Step 2. Let us prove the inclusion R(Z;) C M. Take Q € R(Z,). Fixi e {1,...,d}.
The proof of Key Lemma 4.7 (Step 2) shows that S is an (F;, Q)-delta-martingale of
order ((1 —a'— )", 1—a?). Fix (t,K) € E'. There exist A, p € R, such that

—(S; — K)" + e (t, K) > —\Zy — p.
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Hence, . _
Eq(S; — K)* > e"¢"(t, K).

In a similar way, we obtain
Eq((1—a)S; — K)* < e"o(1, K).

As a result, Q € M.
Step 3. Let us prove the inclusion M C R. Take Q € M. Fix X = X, + X, € A,
where

M d . » o | -
X =3 Y6 (1 -a)S,, - S,,) + HL (=S, + (1 —a' -89S, )],
m=1 =1
N d . y . . . . . .
X =Y Y [gn (e (1= ah)S) - Ki)" = ¢ (1, K))
n=1 1=1

+ b (—e T (SE — K2) T+ (L KL)))

Clearly, X, is Q-integrable and EqX, < 0. The proof of Key Lemma 4.7 (Step 3) shows
that EQX~ > EqQX™. As a result, Q € R. O
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In this chapter, we introduce the possibility approach to arbitrage pricing.

Section 5.1 contains several examples known in financial mathematics of pricing with
no use of probability measure. These examples serve as prototypes of the possibility
approach.

Sections 5.2-5.5 are the “possibility duals” of Sections 2.1-2.4.

Section 5.6 describes how to obtain the “possibility duals” of the models of Chap-
ters 3, 4.

As an example, we consider in Section 5.9 the “possibility dual” of the model of
Section 3.4.

In Sections 5.7, 5.8, and 5.10, we study whether the possibility version of the NGA
condition is satisfied for some models of Chapters 3, 4.

Probability | Possibility
approach approach

Pricing by the ordinary arbitrage 2.1 5.2
in the one-period model

Pricing by the generalized arbitrage || 2.2, 2.3, 2.4 5.3,5.4,5.5
in the general arbitrage pricing model

Table 4. The structure table for various approaches
to pricing by arbitrage. The numbers indicate the sec-
tions, in which the corresponding approach is described.

5.1 Examples

We begin with a probability example of calculating the fair price in a one-period binomial
model.

Example 5.1. Let (€, F,P) be a probability space, a,b € Ry, Sy € (a,b), S; be
an {a,b}-valued random variable on (€2, F,P). From the financial point of view, S,, is
the discounted price of some asset at time n. Consider a contingent claim F = f(S;).
Define the fair price of F' by

C(F) = {x : there exists h € R such that 2 + h(S; — Sy) = F P-a.s.}.
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One can check that if P(S; =a) > 0 and P(S; = b) > 0, then

_b—go go—a

O(F) = =20 f(a) + 20—

f(0). (5-1)

The next example shows that the same result can be obtained with no use of the
original probability measure.

Example 5.2. Let , F, S, Si, F be the same as in the previous example. Define
the fair price of F' by

C(F) = {z : there exists h € R such that = + h(S; — S¢) = F pointwise}.

One can check that if {S;(w) : w € Q} = {a, b}, then (5.1) is true. O

Remark. In the multiperiod binomial model (known as the Cox-Ross-Rubinstein
model), the fair price of a contingent claim can also be calculated with no use of the
original probability measure.

We now pass on to a more general one-period model.

Example 5.3. Let (€2, F,P) be a probability space, So € R, , S; be an R -
valued random variable on (€2, F,P). From the financial point of view, S, is the dis-
counted price of some asset at time n. Consider the contingent claim F = (S; — K)*,
where K € R, (we assume for simplicity that the risk-free interest rate is zero, so that
F is the European call option). Define the lower and upper prices of F' by

C.(F) = sup{x : there exists h € R such that z + h(S; — Sp) < F P-a.s.},
C*(F) = inf{z : there exists h € R such that x + h(S; — Sy) > F P-a.s.}.

One can check that if supp Lawp S; = R, , then

C.(F)=(Sy— K)*, C*(F) = S,. (5.2)

The next example shows that the same result can be obtained with no use of the
original probability measure. This example is borrowed from [S99; Ch. V, § 1c] (to be
more precise, this book contains a similar example).

Example 5.4. Let Q, F, Sy, Si, F be the same as in the previous example. Define
the lower and upper prices of F' by

C.(F) = sup{x : there exists h € R such that 2 + h(S; — Sy) < F pointwise},
C*(F) = inf{z : there exists h € R such that x + h(S; — Sy) > F pointwise}.

One can check that if {S;(w):w € Q} =R, , then (5.2) is true. O
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5.2 Ordinary Arbitrage in a One-Period Model

Definition 5.5. A possibility space is a pair (€, F), where € is a set and F is a
o-field on €. We call Q2 the set of possible elementary events.

Let (©,F) be a possibility space. Let Sy € RY and S; be an R?-valued F-
measurable function. From the financial point of view, S is the price of the i-th
asset at time n (assets 1,...,d are the same as in Section 2.1). Define S by (2.1).
Define the set of attainable incomes by

d . .
A= {Zhi(?l —Sy) k'€ ]R}.
=1

Definition 5.6. A one-period model is a collection (€2, F, Sg, S1).

Definition 5.7. The model (Q, F, Sq, S;) satisfies the no arbitrage (NA) condition
if ANLY ={0} (L% denotes the set of Ry -valued F-measurable functions).

Definition 5.8. A martingale measure is a probability measure Q on F such that
Eq|S1| < oo and EqS1 = Sg. The set of martingale measures will be denoted by M.

Notation. Set C = conv{S;(w) : w € Q} and let C° denote the relative interior
of C.

Theorem 5.9 (FTAP). For the model (Q,F, Sy, S1), the following conditions are
equivalent:

(a) NA;

(b) Sp € C°;

(¢) for any D € F\ {0}, there exists Q € M such that Q(D) > 0.

Remark. Each of conditions (a)—(c) of Theorem 2.4, which is the “probability dual”
of Theorem 5.9, is equivalent to the following one:

(c’) for any D € F such that P(D) > 0, there exists a measure Q < P such that
EQ|Sl| < 00, EQSl = S(), and Q(D) > 0.

Indeed, the implication (c¢)=-(c’) is trivial, while the implication (¢’)=-(a) is straight-
forward.

Proof of Theorem 5.9. Step 1. Let us prove the implication (a)=>(b). If Sy ¢ C°,
then, by the separation theorem, there exists h € R? such that (h,(S; — Sq)) >0
pointwise and (h, (S;(w) — Se(w))) > 0 for some w € Q. This contradicts the NA
condition.

Step 2. Let us prove the implication (b)=(c). Fix D € F\ {0}. Take wy € D. The
set

E = {Zakgl(wk):mGN, Wiy eeeyWm € Q) gy, am € Ry, Zakzl}
k=0

k=0

is convex, and the closure of E contains {S;(w) : w € Q}. Consequently, E D C°.
Thus, there exist wy,...,wy € Q and o, ..., a, € Ry such that Yo oar =1 and
Y o axS1(wg) = So. Then the measure Q = Y_,"  aydy, belongsto M and Q(D) > 0.
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Step 3. Let us prove the implication (¢)=(a). Suppose that the NA condition
is not satisfied, i.e. there exists X € AN (L% \ {0}). Consider Q € M such that
Q(X > 0) > 0. Then EqX > 0. On the other hand, as Q € M, we should have
EqQX = 0. The obtained contradiction shows that the NA condition is satisfied. O

Now, let F' be a real-valued F-measurable function. From the financial point of
view, F' is the payoff of some contingent claim discounted to time O.

Definition 5.10. (i) A real number z is a fair price of F' if the model with d + 1
assets (Q,}",x,gé, ) ..,gz,F, EL___,?‘;) satisfies the NA condition. The set of fair
prices of F' will be denoted by I(F).

(ii) The lower and upper prices of F' are defined by

Vi(F)=inf{z : 2z € I(F)},
V*(F) =sup{z:z € I(F)}.

Notation. Set D = conv{(F(w),Si(w)) : w € Q} and let D° denote the relative
interior of D.

Theorem 5.11. Suppose that the model (Q,F, Sy, S1) satisfies the NA condition.
Then

I(F)={z:(2,5)) € D°} ~ {EqF : Q € M}, (5.3)

V.(F) = inf EqF, (5.4)
QeMm

V*(F) = sup EqF. (5.5)
QeM

The expectation EQF here is taken in the sense of finite expectations, i.e. we consider
only those Q, for which Eq|F| < occ.

Proof. One should prove only (5.3). Theorem 5.9 implies that
I(F) = {z: (z,5) € D°} C {EqF : Q € M}. (5.6)

Let z € {EQF : Q € M}. Take Qo € M such that z = Eq,F'. One can find Q; € M
such that Eq, |F| < co and conv supp Lawq, (F, S;) = D (Q; can be found in the form
> @ndy, ). For any € € (0,1), the measure Q(g) = (1 — £)Qp +Q; belongs to M
and conv supp Lawq.)(F, S1) = D. Therefore, Eq(.)(F,S1) € D°, which means that

EQ(E)F € {{L‘ : (Sﬁ,gg) € Do}.
Furthermore, Eq(.)F ? x. This, together with (5.6), proves the approximate equality
in (5.3). 0

Remarks. (i) Let F be such that Vi.(F) < V*(F). It follows from the equal-
ity I(F) = {z : (z,S0) € D°} that I(F) = (Vi,(F),V*(F)). As for the interval
{EQF : Q € M}, it has the endpoints V,(F) and V*(F), but may contain them. For
instance, this interval contains V*(F') if and only if

(V*(F),So) € conv{(F(w),S1(w)) : w € Q}.
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(i1) Another way to define the lower and upper prices is as follows:

C.(F) = sup{z : there exists X € A such that x — X < F pointwise},
C*(F) = inf{z : there exists X € A such that x + X > F pointwise}.

Using the equality I(F) = {z : (2,S0) € D°} and elementary geometric considera-
tions, one can check that if the model (Q,F, Sy, S1) satisfies the NA condition, then
Ci(F) =Vi(F) and C*(F) = V*(F).

— {(F(w),S1(w)) : w € N}

I(F)
Vi(F) V*(F) R

Figure 8. The joint arrangement of I(F'),
Vi(F), V*(F), {EQF : Q € M}, and D°. In the
example shown here, I(F)= (V.(F),V*(F)),
while {EqF': Q € M} = (Vi (F),V*(F)].

5.3 Generalized Arbitrage

Let (£2,F) be a possibility space.

Definition 5.12. An arbitrage pricing model is a triple (2, F, A), where A is a
convex cone in L% (L% is the space of real-valued F-measurable functions). The set A
will be called the set of attainable incomes.

Notation. (i) Set

B = {Z € L’ : there exist (X, )nen € A and a € R such

(5.7)
that X, > a pointwise and Z = lim X, pointvvise}
n—oQ
(ii) For Z € B, denote y(Z) =1 —inf .o Z(w) and set
A ={X-Y:XeA Yell}
X
Ay(Z) =8 =———=: X € A, ¢,

(0= {75 e (5:8)

Ag(Z) - AQ(Z) N Loo’
A4(Z) = closure of A3(Z) in o(L™, Mp).
Here L‘i is the set of R, -valued elements of L°; L> is the space of bounded elements

of L°; o(L>®, My) denotes the weak topology on L* induced by the space My of finite
o-additive measures on F (i.e. signed measures with finite variation).
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Definition 5.13. The model (2, F, A) satisfies the no generalized arbitrage (NGA)
condition if for any Z € B, we have A4(Z) N L% = {0}.

Remark. One can define the no arbitrage (NA) condition as: AN LY = {0}.

Definition 5.14. A risk-neutral measure is a probability measure Q on F such that
EQX™ > EQX™ for any X € A. The expectations Eq X~ and EqQX ™ here may take on
the value +oo. The set of risk-neutral measures will be denoted by R.

Notation. For Z € B, we will denote by R(Z) the set of probability measures Q
on F with the property: for any X € A such that X > —aZ — § pointwise with some

a, € Ry, we have Eq|X| < 00 and EqX < 0.

Lemma 5.15. For any Z € B, we have R C R(Z).

This statement is proved in the same way as Lemma 2.10.

The following basic assumption is satisfied in all the particular models considered
below.

Assumption 5.16. There exists Z; € B such that R = R(Z,) (in particular, both
sets might be empty).

Theorem 5.17 (FTAP). Suppose that Assumption 5.16 is satisfied. Then the
model (2, F,A) satisfies the NGA condition if and only if for any D € F\ {0}, there
exists a risk-neutral measure Q such that Q(D) > 0.

Remark. Each of the equivalent conditions of Theorem 2.12, which is the “probability
dual” of Theorem 5.17, is equivalent to the following one: for any D € F such that
P(D) > 0, there exists Q < P such that Eq X~ > EqQX ™ for any X € A and Q(D) >0
(this is proved similarly to Theorem 2.12).

The proof of Theorem 5.17 is based on the following statement (the possibility ana-
logue of the Kreps—Yan theorem):

Lemma 5.18. Let C' be a (L™, Mp)-closed convex cone in L*° such that C' O L*
(L> s the set of negative elements of L>). Let W € L\ C. Then there ezxists a
probability measure Q on F such that EQX <0 for any X € C and EQWW > 0.

Proof. By the Hahn-Banach separation theorem (see [S71; Ch. II, Th. 9.2]), there
exists a measure Qy € Mp such that Eq,WW ¢ {Eq,X : X € C}. Without loss of
generality, Eq,WW > 0. As C' is a cone, Eq,X <0 for any X € C'. Since C' O L*, Q
is positive. Then the measure Q = ¢Qq, where ¢ is the normalizing constant, satisfies
the desired properties. O

Proof of Theorem 5.17. Step 1. Let us prove the “only if” implication. Fix
D e F\{0}. Set W = Ip. Take Z, € B such that R = R(Z;). Lemma 5.17
applied to the o(L*>, Mp)-closed convex cone Ay(Z;) and to the point W yields a
probability measure Qp on F such that Eq,X < 0 for any X € A4(Zy) and Eq,W > 0.

By the Fatou lemma, for any X € A such that ﬁ(zo) is bounded below, we have
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X : _
Q 7oy = 0- Consider the measure Q =

constant. Then Q € R(Z;) =R and

. ) ..
To T 70) Qo, where ¢ is the normalizing

cW

=Eg ——>0.
QOZ(H—’Y(ZO)

Q(D)

Step 2. Let us prove the “if” implication. Suppose that the NGA condition is not
satisfied. Then there exist Z € B and W € A4(Z) N (L% \ {0}). Take Q € R such that
Q(W > 0) > 0. It follows from the Fatou lemma that Z is Q-integrable. Consider the

measure Q = ¢(Z +v(Z))Q, where ¢ is the normalizing constant. For any X € A such

that ﬁ(z) is bounded below by a constant —a (« € R, ), we have

EQX_ < EQ(O[Z‘*‘O!’Y(Z)) < 00,

and consequently,
X

E._ —
VZ +(Z)
Hence, EgX <0 for any X € A4(Z). On the other hand,

= CEQX S 0.

EaW = cEq(Z +v(Z2))W > 0.
The obtained contradiction shows that the NGA condition is satisfied. O

It is seen from the above proof that the necessity part in Theorem 5.17 is true without
Assumption 5.16. The following example shows that this assumption is essential for the
sufficiency part.

Example 5.19. Let

) = {w: w is a real-valued B(R, )-measurable function such
that w(t) = 1 for all t € Ry, except for a finite set}.

Set X;(w) = w(t). Consider an auxiliary process
K(M)ZZI(XS(W)%l), WGQ: t€R++
s<t

and set F =o(X;, Yt € Ry, ),

N
A= {Zhnth:NeN, tn e R ., hneR}.

n=1

Clearly, the only element of A that is bounded below is 0. This implies that the
model (2, F, A) satisfies the NGA condition.
Suppose now that there exists a risk-neutral measure Q. Consider the set

C={(w,1) € xRy : Xy(w) # 1}

and, for n € N, define the set

Ch

{(w,t) € QxR : X (w) #1 for some s € (7,
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where [tn] denotes the integer part of ¢n. In view of the equality

> m m+1
m=0

we have C), € F x B(R;), and consequently, C = (2, C,, € F x B(R;; ). Consider
the functions

folw) = /R I((w,t) € Cp)dt, we, neN,

In(t) = /QI((w,t) € C,)Q(dw), teR., neN

Using the Fubini theorem and the property f, —— 0 pointwise, we get
n—oQ

/R LS /Q £(@)Qdw) ——> 0.

n—oe

This, combined with the inequality

m(t)> [ 1) €C)Q). teRu, neN,
Q
yields
/I((w,t) € C)Q(dw) =0 for pr-ae. t € Ry,
Q

where 7, denotes the Lebesgue measure. Hence, X; = 1 Q-a.s. for up-a.e. t. The
contradiction obtained shows that there exists no risk-neutral measure. O

Definition 5.20. A combination of arbitrage pricing models (2, F, A,), v € I' is
the model (Q,}", ZyeFAv)a where

N
Y A= {an :NeN, X, €A, 1€ r}.
n=1

vel

5.4 Pricing of Contingent Claims
Let (2, F, A) be an arbitrage pricing model.
Definition 5.21. A contingent claim is a real-valued F-measurable function F'.

Definition 5.22. (i) A real number z is a fair price of F if the combination
(Q,F, A+ A(x)), where
A(x) ={h(F —xz): h eR},

satisfies the NGA condition. The set of fair prices of F' will be denoted by I(F).
(ii) A pair of real numbers (z,y) is a fair bid-ask price of F if the combination
(Q,F, A+ A(z,y)), where

A(z,y) ={9(F —y) +h(zx = F): g,h € R },
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satisfies the NGA condition. The set of fair bid-ask prices of F' will be denoted by J(F).

(iii) The lower and upper prices of F are defined by

Vi(F)=inf{z:2 € I(F)},
V*(F)=sup{z:x € I(F)}.
Theorem 5.23 (Main theorem for pricing contingent claims). Suppose that

the model (Q,F,A) satisfies Assumption 5.16 and the NGA condition, while F is
bounded below and EqF < oo for any Q € R. Then

I(F) ~ [inf EqF, sup EqF'|, (5.9)
QER QeR
J(F) ~ {(x,y):xgy, x < sup EqF, y > inf EQF}, (5.10)
QeR QeR

Vi(F) = inf EQF, (5.11)
QeRrR

V*(F) = sup EqF. (5.12)
QeRrR

Proof. Equalities (5.11) and (5.12) follow from (5.9). Thus, we should only
prove (5.9) (Steps 1-3 below) and (5.10) (Steps 4, 5 below).
Step 1. Let us prove the inclusion

I(F) C | inf EqQF, sup EqF'|.
QeR QER

Let z € I(F). Take Z, € B such that R = R(Z,). Set Z; = Zy+ (F — z). Then
7y € B', where B’ is defined by (5.7) with A replaced by

A ={X+h(F-—x2): X €A, heR}. (5.13)

Set W = 1. Lemma 5.18 applied to the o(L*, Mp)-closed convex cone A (Z,) (A4(Zy)
is defined by (5.8) with A replaced by A’) and to the point W yields a probability
measure Qy on F such that Eq,X < 0 for any X € A}(Z,). By the Fatou lemma, for
any X € A’ such that #(Zl) is bounded below, we have EQO#(ZI) < 0. Consider

the measure Q = ﬁ(zl) Qo, where ¢ is the normalizing constant. Then Q € R(Z;) C

R(Zy) = R. Moreover, Eq(x — F) < 0 and Eq(F — x) < 0 since the functions 2%

Z1+v(Z1)
and #’(g“’zl) are bounded below. Thus, EqF = z.

Step 2. Suppose that EqF' = Eq F' for any Q,Q" € R. Let us prove the inclusion
EQF € I(F). Denote EqF by x. Suppose that = ¢ I(F), i.e. the model (2, F, A",
where A’ is given by (5.13), does not satisfy the NGA condition. Then there exist
Z e B and W € Ay (Z)N (L% \{0}). Take Z, € B such that R = R(Z;). Lemma 5.18
applied to the o(L*, Mp)-closed convex cone A4(Z;) and to the point W yields a
probability measure Qq on F such that Eq,X < 0 for any X € A4(Zy) and Eq,W > 0.
Consider the measure Q = m&], where c¢ is the normalizing constant. Then
Q € R(Zy) =R and EqQW > 0. Moreover, EqF = x.

Choose an arbitrary Y = X +h(F —x) € A’ (here X € A) such that Y is bounded
below. It follows from the condition EqF = x that EqQ X~ < 0co. As Q € R, we have

EqX < 0. This, combined with the condition EqF' = z, implies that EqY < 0. By the
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Fatou lemma, Z is Q-integrable. Consider the measure Q = ¢(Z + v(Z))Q, where c is
the normalizing constant. For any Y = X + h(F —z) € A’ (here X € A) such that

7Z+:(Z) is bounded below by some constant —« (« € R, ), we have

EY ™ < Eq(aZ + ay(Z)) < .
Consequently, Eq X~ < 0o, EqX < 0, and EqY < 0. This means that Eaﬁ(z) < 0.
Hence, EgW < 0. But this is a contradiction since Q ~ Q and EQW > 0. As a result,
xz € I(F).
Step 3. Let us prove the inclusion

(inf EqQF, sup EQF> C I(F).
QeR QeR

Let = belong to the left-hand side of this inclusion, i.e.

inf EqF’ < x < sup EqF.

QeR QeR
Suppose that = ¢ I(F), i.e. the model (Q,F, A"), where A’ is defined by (5.13), does
not satisfy the NGA condition. Then there exist Z € B and W € A}(Z) N (L% \ {0}).
Applying the same reasoning as in the previous step, we find a measure Q; € R such
that Eq,W > 0. By the conditions of the theorem, Eq,|F| < oo. Find measures
Q2,Q3 € R such that Eq,F' < z, Eq,F' > x. Clearly, there exist ay, as, a3 € Ry, such
that a; +as+a3 =1 and EqF = x, where Q = ;1 Q1 + a3Q2 + a3Q3. Note that Q € R
due to the convexity of R and EqW > 0. The proof is now completed in the same way
as in the previous step.

Step 4. The arguments similar to those used in Step 1 show that

J(F) C {(m,y) cx <y, x < sup EqF, y > inf EQF}.
QeR QeR

Step 5. Let us prove the inclusion

{(x,y):x§ y, © < sup EQF, y > inf EQF} C J(F),
QER QeRrR

where “o” denotes the interior. Let (x,y) belong to the left-hand side of this inclusion,

i.e.
x <, x < sup EqF, y > inf EqQF.
QER QER

Suppose that (z,y) ¢ J(F), i.e. the model (2, F, A"), where
A={X+g(F—y)+h(z—F): X €A, ghe R},

does not satisfy the NGA condition. Then there exist Z € B’ and W € A{(Z) N
(L% \ {0}). Applying the same reasoning as in Step 2, we find a measure Q; € R
such that Eq, W > 0. By the conditions of the theorem, Eq,|F| < occ. Find measures
Q2, Q3 € R such that Eq,F' > x, Eq,F < y. Clearly, there exist a;, as, a3 € Ry, such
that a; +as + a3 =1 and = < EQF' < y, where Q = a;Q; + a3Qs + a3Q3. Note that
Q € R due to the convexity of R and EqW > 0. The proof is now completed in the
same way as in Step 2. a

The following example shows that the equality I(F) = {EqF : Q € R} (which is
true in the probability setting; see (2.9)) can be violated.
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Example 5.24. Let Q = [0,1], F = B([0,1]), and A = {0}. Consider F(w) = w.
Then I(F) = (0,1), while {EqF : Q € R} = [0, 1]. 0

The next example shows that the assumption “EqF < oo for any Q € R” in
Theorem 5.23 is essential.

Example 5.25. Let Q =R, , F = B(R,), and

N
A= {ZhnXanbn :NeN, a, <b, €R,, hy ER},
n=1

where

b
Xab(w)zl(a<w§b)—/ e fdr, weq.

Consider F(w) = e¥.
If Q € R, then, for any a > 0, we have EqXy, = 0 (note that Xy, is bounded),
which means that

Q((0.a)) = Q(R,.) / evdr, acR,,.

Hence, Q has the form a1Q; + a2Qo, where aj, a0 € R\, a1 +as =1, Q; = dg, and Qg
is the exponential distribution on R, with parameter 1. Clearly, any measure of this
form belongs to R. We have
1 if Q=
EoF — { if Q=Q,

+o0o otherwise.

Consequently, {EqF : Q € R} = {1}.
Take now z € I(F). For n € N, set

0 ifw=0,
F,(w)=qe™ ifwe(mm+1], m=0,....,n—1,
0 ifw>n,

Ty = /OO Fo(x)e "dz.
Then F,, —x, € A. As x, i) 00, there exists ng such that z,, > x. Then
(F(w) —x) — (Frg (W) — Tpg) = Ty —x >0, w € Q.
But
(F—z)— (Fp—an,) € A ={X+hF—-2): X €A, heR}.
This contradicts the choice of z. As a result, I(F) = (). O
Remark. Another way to define the lower and upper prices is through the sub- and
superreplication, i.e.
C.(F) = sup{z : there exists X € A such that z — X < F pointwise}, (5.14)
C*(F) = inf{z : there exists X € A such that z + X > F pointwise}. (5.15)

Obviously, under the assumptions of Theorem 5.23, we have
C.(F) < Vi(F) < V*(F) < C*(P).

In some models (for example, in the one-period model), we have C.(F) = V.(F),
C*(F) = V*(F). However, in other models (even in the multiperiod model), these
equalities might be violated (see Example 5.32).
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5.5 Pricing of Controlled Contingent Claims
Let (2, F, A) be an arbitrage pricing model.

Definition 5.26. A controlled contingent claim is a collection (F))yea of real-valued
F-measurable functions.

Definition 5.27. (i) A real number z is a fair price of (F)\)xep if there exists
Ao € A such that the combination (2, F, A+ A(z, \o)), where

N
Az, No) = {Zhn(lﬁn —x)+ho(x —Fy\): NeN, A\, €A, h, eRy, hy € R+},

n=1

satisfies the NGA condition. The set of fair prices of (F))yea will be denoted
by I(Fx; A € A).

(ii) A pair of real numbers (z,y) is a fair bid-ask price of (F\; A € A) if there exists
Ao € A such that the combination (2, F, A+ A(z,y, A\o)), where

N
A(fl?,y,)\[)) = {Zhn(FAn_y)+h0(x_FAo):NGN: )\nEA, hn €R+: hU €R+}7

n=1
satisfies the NGA condition. The set of fair bid-ask prices of (F))yea will be denoted

by J(Fa A€ A).
(iii) The lower and upper prices of (Fy)aea are defined by

Vi(Fx;A € A) =inf{y: (z,y) € J(Fx; A € A)},
V*(Fx; A € A) =sup{z: (z,y) € J(F\; A € A)}.
Theorem 5.28 (Main theorem for pricing controlled contingent claims).

Suppose that the model (Q,F,A) satisfies Assumption 5.16 and the NGA condition,
while Fy is bounded below for any A € A and supyc, EqFy\ < 0o for any Q € R. Then

I(F\; e A) C [inf sup EqF), sup sup EqF) |, (5.16)
QER AEA QER XeA
J(F\; A€ N) =~ {(:v,y) cx <y, v < supsupEqF), y > inf sup EQF,\}, (5.17)
QER AEA QER AEA

Vi(Fx; A € A) = inf sup EqF), (5.18)
QER AeA

V*(Fx; A € A) = sup sup EqF). (5.19)
QER AeA

Proof. We will check only (5.17). Inclusion (5.16) is verified similarly, while equali-
ties (5.18) and (5.19) follow from (5.17).
Step 1. Let us prove the inclusion

J(Fxy; A€ A) C {(m,y) cx <y, x < supsup EqF)\, y > inf sup EQF)\}. (5.20)
QER AEA QER NEA

Let (z,y) € J(Fx; A € A). Let Ay be an element of A such that the model (2, F, A +
A(x,y, A\o)) satisfies the NGA condition. Take Z; € B such that R = R(Z,). Set
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7y = Zy + (F\, — y). Employing the same reasoning as in the proof of Theorem 5.23
(Step 1), we find a measure Q € R such that Eq(z — F),) < 0 and Eq(F\ —y) < 0 for
any A € A. Then
z < EqFy, < supEqF) <,
AeA

which means that (z,y) belongs to the right-hand side of (5.20).
Step 2. Let us prove the inclusion

{(:E,y) cx <y, x < supsup EqF)\, y > sup sup EQF,\} C J(F\; A€ N),
QER XA QER AEA
where “o” denotes the interior. Let (z,y) belong to the left-hand side of this inclusion,
i.e.
T <y, x < sup sup EqF), y > inf sup EqQF).
QER XeA QER XEA
Find measures Q, Qs € R such that

sup Eq, F\ > =z, sup Eq, )\ < .

AEA xeA
Set Q(a) = (1 —a)Q +aQs, a € [0,1]. As the map o +— sup,c, Eq(a)Fh is continuous
in «, there exists ag € (0,1) such that

x < sup EqQag) Fx < .
AEA

Note that Q(ag) € R due to the convexity of R. Find A\g € A such that Eqae)F>, > .
Suppose that the model (Q, F, A’), where

N
A = {X+Zhn(F,\n—y)+hg(a:—F,\o) X€A NeN, N\, €A, h, €R,, hy € R+},

n=1

does not satisfy the NGA condition. Then there exist Z € B' and W € A{(Z) N (L% \
{0}) (A4(Z) is defined by (5.8) with A replaced by A’). Applying the same reasoning as
in the proof of Theorem 5.23 (Step 2), we find a measure Q3 € R such that Eq, 1V > 0.
By the conditions of the theorem, sup,c, Eq,Fy < 0o. Clearly, there exists ¢ € (0,1)
such that
< EQF)\O < supEQF)\ <,
AEA

where Q = (1 —¢)Q(a) +£Q3. Then Q € R due to the convexity of R and EqW > 0.
The proof is now completed in the same way as in Theorem 5.23 (Step 2). O

5.6 Particular Models

The main results for each of the models considered in Chapters 3 and 4 are:

1. the proof that Assumption 2.11 is satisfied;
2. the description of R.

These results can easily be transferred to the possibility framework. (Of course,
the results that employ some particular probabilistic structure, like Examples 3.13,
3.14, 3.15, Proposition 3.20, and Corollary 3.21, cannot be transferred to the possibility
setting.) In order to do this, one should
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1. Replace the probability space (2, F,P) (resp., the filtered probability space

sibility spac; (Q,}") (resp., the filtered possibility space (S0, F,(Fn)n=o,..N),
(Qafa (ft)tE[U,T])a or (Qafa (‘Tt)teR+))'

. Replace the condition “F, is P-trivial” by the condition “Fy = {0, Q}”.

3. Replace the condition “S; is an R% -valued random variable on (Q,F,P)” (resp.,

N

.....

an R -valued (F;)-adapted cadlag process”, etc.) by the condition “S; is an
R? -valued F-measurable function” (resp., “(S,)n=o,..n is a collection of R -
valued (F,)-measurable functions” or “(Si)icor) is a collection of ]Ri -valued
(Fi)-measurable functions such that, for any w € Q, the map t — S;(w) is
cadlag”, etc.).

4. Replace the condition “Q ~ P” in the definition of M by the condition “Q is a
probability measure on F”.

Also note that in the probability approach all the random variables are considered as
the classes of equivalence under the indistinguishability relation, while in the possibility
approach we consider measurable functions with no nontrivial equivalence relation.

Then the Key Lemmas of Sections 3.1-4.4 (together with their proofs) are automat-
ically transferred to the possibility framework and

e Theorem 5.17 yields the necessary and sufficient conditions for the absence of the
generalized arbitrage;

e Theorem 5.23 yields the form of fair prices of a contingent claim (that satisfies
the conditions of this theorem);

e Theorem 5.28 yields the form of fair prices of a controlled contingent claim (that
satisfies the conditions of this theorem).

5.7 Multiperiod Model

We will first consider the frictionless model, i.e. the model of Section 3.2 with the
changes described in Section 5.6.

Recall that an atom of a o-field F is a set a € F such that a # () and, for any
D € F, we have either D Daor DNa=40.

Notation. Suppose that, for any n = 0,..., N — 1, w € €2, there exists an atom
ap(w) of F, that contains w. Set Cp(w) =conv{S,+1(w') : ' € ay(w)} and let C;(w)
denote the relative interior of C,(w).

Theorem 5.29 (FTAP). Suppose that, for any n =0,... , N—1, w € Q, there ez-
ists an atom a,(w) of F, that contains w. Then, for the model (2, F, A), the following
conditions are equivalent:

(a) NGA;

(b) NA (i.e. ANLY ={0});

(c) Sp(w)eC(w), n=0,...,N—1, we;

(d) for any D € F\ {0}, there exists Q € M such that Q(D) > 0 (M denotes the
set of martingale measures for S).

Proof. Step 1. The implication (a)=-(b) is obvious.
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Step 2. Let us prove the implication (b)=(c). Suppose that there exist
m € {0,.. —1} and wy € Q such that S,,(wo) gé C? (wo). By the separation the-
orem, there ex1sts h € R? such that (h, (Spi1(w) — Sm(w))) > 0 for any w € ay,(wo)

and (h, (Spmi1(w) — Sm(w))) > 0 for some w € a,(wg). Set

H, (o) = hl(w € ap(wg)) ifn=m+1,
" o otherwise.

Then
N d ) )
DY Hu(S,—Sum) € An (LS {0}),
n=1 =1

which contradicts the NA condition.

Step 3. Let us prove the implication (¢)=(d). Fix D € F \ {0}. Choose wy € D.
Take wy,...,w, € Q2 and ag,...,a, € Ry, provided by Lemma 5.30. Then the
measure Q = > ", a;d,, belongs to M and Q(D) > 0

Step 4. The implication (d)=-(a) follows from Theorem 5.17 and the Key Lemma for
the model under consideration (it states that R = R(Zivzl Z;j:l (§; — ?3)) =M). O

Lemma 5.30. Suppose that condition (c) of Theorem 5.29 is satisfied. Let wq € §.
Then there exist wi,...,wy € Q and «a,...,an € Ry such that Y " ja, = 1 and
Yoo x X (wi) =0 for any X € A.

Proof. We will prove this statement by the induction in N.

Base of induction. For N = 1, the statement is verified by the same arguments as
those used in the proof of Theorem 5.9 (Step 2).

Step of induction. Assume that the statement is true for N — 1. Let us prove it
for N. By the induction hypothesis, there exist wy,...,w; € Q and ay,...,q € Ry,
such that Wy = wy, 22:0 a; =1, and Zi‘:o a; X (w;) =0 for any X € A’, where

N-1 d

= {Z ZH; (§; — 5271) : H! is fn_l—measurable}.
n=1 i=1
For any i =0,...,[, there exist Wy, ..., W) € an—1(w;) and ao, . .., aiu € Ry such

that &i() = (:ji, Zé(i)[] &ij = ]_, and

Z i (SN (@ig) = Sn—1(@ij)) = 0.

Let (2(0),]( ))s-.y(i(m),j(m)) be a numbering of the set {(i,j) : i =0,...,1, j =
,l(z)} We arrange this numbermg in such a way that i(0) = j(0) = 0. Set
Wi wl(k) i(k)s Ok = az(k)ozl(kh(k), k= 0 ,m. Then for any
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we have
N-1 1 ()
Z X (w) = DY Y @ (H(@ig), (Su(@i) = Su1(@55)))
n=1 =0 5=0
1 U(3)
+ Qi (H y (Wi5), (S (@ig) — Sn-1(wig)))
i=0 j=0
N-1 1
= &Z<Hn(a}2)a (Sn(at) - Snfl(@)»
n=1 =0
l 1(5) B B
+ Zaz<HN(al), ai; (Sn (@) sN_l(am))> =
i=0 j=0
In the second equality, we used the fact that H,, n=0,...,N and S,, n=0,...,N—1
are constant on the atoms of Fn_q. Thus, wq,...,w, and ag,..., a,, satisfy the desired
conditions. O

Theorem 5.29 yields

Corollary 5.31. Suppose that So € RL
{(S1(w),...,Sy(w)) :we N} = (]R‘_LF)N,

Fn = }f, and F = Fy. Then the model (2, F, A) satisfies the NGA condition.
The following example shows that in the model under consideration the lower and
upper prices Vi (F) and V*(F) provided by Definition 5.22 do not coincide with the

values C,(F) and C*(F') defined by (5.14) and (5.15).

Example 5.32. Let Q = R%_, F, = {0,Q}, Fi = o(X1), F» be the universal

completion of B(Q) (i.e. Fp = [qB(R )Q, where B(Q)Q denotes the Q-completion
of B(2), and the intersection is taken over all the probability measures Q on B()),
F=F,8=1,8 =1, 8y, =X,, where X;, X, are the coordinate maps Q — R, .
It follows from Theorem 5.29 that this model satisfies the NGA condition. Let D C R,
be a set such that D ¢ B(R,,) and D belongs to the universal completion of B(R, )
(as an example of such a set, one can take a Suslin set that is not Borel; see [F96;
2.2.11]). Consider F = (X, — 1)I(X; € D).

Let us prove that C*(F) = 1. Since 1+ Sy — S; > F, we get C*(F) < 1. Suppose
now that C*(F) < 1. Then there exist x < 1 and an Fj-measurable function H such
that o + H(Sy — S1) > F. There exists a B(R,,)-measurable function H such that
H = H(X;) pointwise. We have

x+f[(x1)(x2—1) >wxo—1, €D, 29 € R,
4+ H(z)(ra—1) >0, z,¢ D, 25 €Ry,.

Consequently, H > 1on D and H < z on Ry, \ D. This implies that
{H >z} ={X; € D} ¢ F;. The contradiction obtained shows that C*(F) = 1.

For any Q € R, we have Eq(X,|F)) = Eq(S2|F1) = 1 and {X; € D} € fQ.
Hence, EqF = 0. Consequently, V*(F) = 0. O



5.8 Continuous-Time Model with a Finite Time Horizon 79

Let us now consider the multiperiod model with friction. Recall that in this model
the set of attainable incomes is defined as

A= S G (- S, )+ H(F (L)) M e N

m=1 i=1

Uy < Uy, are (F,)-stopping times, G°,, H', are R, -valued and Fum—measurable}.

We present only a sufficient condition for the absence of the generalized arbitrage.
Corollary 5.33. Suppose that So € R%__,
{(S1(w),...,Sv(w)) :weN} = (RLF)N,

F,=F5, and F = Fy. Then the model (Q,F, A) satisfies the NGA condition.

n’

Proof. For any

m=1 =1
we have
M d ‘ . . ‘
X <) > [Gn(S, = 5y,) + Hy (=5, +5,,)]-
m=1 i=1
The result now follows from Corollary 5.31. a

5.8 Continuous-Time Model
with a Finite Time Horizon

We will first consider the frictionless model, i.e. the model of Section 3.3 with the
changes described in Section 5.8. We present two sufficient conditions for the absence
of the generalized arbitrage.

Proposition 5.34. Suppose that Sy € R%__,

e . _ . . N N . . . d
{S(w):weQ} ={f: fis a cadlag piecewise constant function [0,7] — R%
with a finite number of jumps, f(0) = So},

Fi = }—tg’ and F = Fr. Then the model (2, F, A) satisfies the NGA condition.

Proof. Fix D € F\ {0}. Take wy € D. Let 0 < t; < --- < txy < T be the
jump times of S.(wg). We set tg = 0, tyy; = T. It follows from Lemma 5.30 that
there exist wy,...,w, € Q and aq,...,q, € R, such that S.(w;) is constant on
[ti,tie1), k=0,...,m, 1 =0,...,N, Zk ok = 1, and the sequence (S, ..., S.,)
is an (Fy,, - .- ,]—"tN+1)—martingale Wlth respect to the measure Q = > °1", apd,, . As S
is Q-a.s. constant on [t;,t1), I = 0,..., N, the process (gt)te[(],T] is an (F, Q)-
martingale. By the Key Lemma for the model under consideration (it states that
R = R(Z?:1(§; —ES)) = M), we have Q € R. Moreover, Q(D) > 0. An appli-
cation of Theorem 5.17 completes the proof. O
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o, el d
Proposition 5.35. Suppose that So € R},

{S(w):weQ}={f:fis acadlag function [0,7] — R%, with finite variation
such that inf,cp fit)>0,i=1,....,dand f(0) = So},

Fi = .7:?, and F = Fr. Then the model (2, F, A) satisfies the NGA condition.

Proof. Fix D € F\ {0}. Take wy € D. Set o(t) = Sy(wo), ¥i(t) = Inpi(t),
i=1,...,d, t € [0,T]. For each i = 1,...,d, the function ¢’ can be represented as
Y=t — ', where ¢ and ¢* are cadlag and increasing. Set
_ V() Q)

N ()= -—""2 i=1,....d t T7.
6—]_’ 7() 1_6_17 Z b b) b 6[07 ]

(1)

Let Ni, N, i=1,...,d be independent Poisson processes with intensity 1. For each
1=1,...,d, the process

Z; = exp{(N{)xi. ) — (ND)xi o — (e = DXL () + (1= e HAL()}, t€[0,T]
is a martingale with respect to its natural filtration. Consider the space

V= {f : f is a cadlag function [0,7] — ]RfiHr with finite variation
such that inf,c m fit)>0,i=1,...,dand f(0) = So}

equipped with the o-field G = o(X;;t € [0,7]), where X;(f) = f(t). Set Qy =
Law(Z;t € [0,T]). Then X is an (F;¥,Qg)-martingale. In view of the representation

Zi = ¢' ) exp{(N)xiy — Nxi o}, i=1,...,d, t €0, T),

we have Qo({¢}) > 0. Define the measure Q on {S.7'(C): C € G} by Q(571(C)) :=
Qo(C). Note that {S.7'(C) : C € G} = F and Q is correctly defined. Then S is an
(Fi, Q)-martingale. By the Key Lemma for the model under consideration, Q € R.
Moreover, the set S."!({¢}) contains wy and is an atom of F. Hence, S."'({¢}) C D,
and therefore, Q(D) > 0. An application of Theorem 5.17 completes the proof. O

The following statement is rather surprising.
Proposition 5.36. Suppose that Sy € R?__,
{S(w) :w e Q}={f: fis a continuous function [0,T] = RL_, f(0) =S¢},

F,=FF, and F = Fr. Then the model (Q,F,A) does not satisfy the NGA condition.

Proof. Suppose that the NGA condition is satisfied. By Theorem 5.17, there exists
a measure Q € M such that Q(D) > 0, where D = {gi =1+t, t€[0,7]}. By the
Key Lemma for the model under consideration, S is an (F;, Q)-martingale. Moreover,
S is continuous. On the set D, the quadratic variation of S' is 0. This implies that

g; = §(1] Q-a.e. on D (see [RY99; Ch. IV, Prop. 1.13]). The obtained contradiction
shows that the NGA condition is not satisfied. O

Let us now consider the model with friction, i.e. the model of Section 4.2 with the
changes described in Section 5.6. For this model, we are able to prove the absence
of the generalized arbitrage under more natural assumptions than those used for the
frictionless model.
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o, 0 el d
Proposition 5.37. Suppose that So € R,

S(w):weQ}={f:fisacadlag function [0,7] — R such that
{ g ++

inf, o f'(t) >0, i=1,...,dand f(0) = Sp}, (5.21)

Fi = }“tg, and F = Fr. Suppose moreover that o >0, i = 1,...,d. Then the model
(Q,F, A) satisfies the NGA condition.

Proof. Fix D € F\ {0}. Take wy € D. Consider the function ¢(t) = S;(wp),
€ [0,T]. There exists a cadlag function 1 : [0,T] — ]Ri_Jr with the properties: ) is
piecewise constant with a finite number of jumps, 1(0) = Sy, and

(1 —a')g'(t) < Pi(t) < p'(t), i=1,...,d, t€[0,T). (5.22)

Take wfy € € such that Sy(w)) = ¢(¢). The reasoning used in the proof of Propo-
sition 5.34 shows that there exist wi,...,w!, € Q and «ay,...,q,,, € Ry, such that

S oar =1 and
D> awH' () (S, () = 5, (64)) = 0 (5.23)

for any (F;)-stopping times v < v and any R?-valued F,-measurable function H. Set
wr, =wy, k=1,...,m. Consider an arbitrary element

X:ZZ 1—a Zn g:m)+H£(—§fjn+(1—ai—ﬁi)§zn)] € A.

Set
Y =33 [Gi(S,, = S.,) + Hi(=S,, +5,.)].
Then
> X (wi) < aY (wp) + Y X (wr) < apY (wp) + Y Y (wp) = D Y (w})
k=0 k=1 k=1 =

(in the first inequality, we applied (5.22)). It follows from (5.23) that Y, ;Y (w},) = 0.
Hence, the measure Q = ;" ; a0, belongs to R. Moreover, Q(D) > 0. An applica-
tion of Theorem 5.17 completes the proof. O

Remark. Proposition 5.37 remains true if we replace the word “cadlag” in (5.21) by
the word “continuous”. The proof is the same.

5.9 Continuous-Time Model
with the Infinite Time Horizon
Let us consider the model of Section 3.4 with the changes described in Section 5.6. In

this section, we will show that the additional reasoning of Section 3.4 related to the
existence of lim; ,., S; can be transferred to the possibility setting.
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Key Lemma 5.38. Suppose that the limit limy_,o, Si(w) exists for any w € €.
Then, for the model (2, F, A), we have

d

R = R(Z(Eﬁm —Eé)) = M

i=1
(M denotes the set of uniformly integrable martingale measures for S).
The proof is similar to the proof of Key Lemma 3.16.

Corollary 5.39. The model (2, F, A) satisfies the NGA condition if and only if for
any D € F\ {0}, there exists a uniformly integrable martingale measure Q such that
Q(D) > 0.

Proof. Step 1. Let us prove the “only if” implication. Suppose that the set
C= {w €Q: tlim S (w) does not exist} (5.24)
— 00

is nonempty. Note that C' € F in view of the equality

d
C= H{w €Q: ligi}}fsi(w) < liﬁilpsz(w)}.

Consider W = I. Lemma 5.18 applied to the o(L*, My)-closed convex cone A4(0) and
to the point W yields a probability measure Q on F such that Q(C) > 0 and EqX <0
for any X € A that is bounded below. For any i =1,...,d, any u < v € R, and any
D € F, such that gz is bounded on D, the random variable Ip (gz —gz) is bounded be-
low, and hence, Eqlp (gz —gz) < 0. This shows that S' is an (F,, Q)-supermartingale.
By Doob’s supermartingale convergence theorem (see [RY99; Ch. II, Th. 2.10}), the
limit lim;_, . gi exists Q-a.s. The obtained contradiction shows that C' = (). Now,
Theorem 5.17, combined with Key Lemma 5.38, yields the desired statement.

Step 2. Let us prove the “if” implication. Suppose that the set C' defined by (5.24)
is nonempty. Take Q € M such that Q(C) > 0. By Doob’s theorem, lim;_,, S; exists
Q-a.s. The obtained contradiction shows that C' = (). Now, Theorem 5.17, combined
with Key Lemma 5.38, yields the desired statement. O

It has been shown in the proof of Corollary 5.39 that the NGA condition implies
the existence of lim;_,,, S;(w) for each w € Q. Hence, Theorems 5.23 and 5.28 can be
applied with no additional assumptions.

5.10 Model with European Options

We will first consider the frictionless model, i.e. the model of Section 3.6 with the
changes described in Section 5.6. This model will be studied in two special cases:

1. the case, where K' =R, ,i=1,...,d;
2. the case, where K’ is finite, i =1,...,d.
Propositions 5.40 and 5.42 show that in case 1 the NGA condition is not satisfied in

most natural situations, while in case 2 the NGA condition is satisfied in most natural
situations.
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Proposition 5.40. Suppose that K' =R, , i=1,...,d. Then the model (Q,F, A)
satisfies the NGA condition if and only if the set {Str(w) : w € Q} is countable and,
for any a € {Sr(w) : w € Q}, there exists a probability measure p concentrated on

{Sr(w) : w € Q} such that u({a}) >0 and

prip=(L+1)(@), i=1,....d
(pr’ u denotes the projection of ju on the i-th coordinate axis of R‘i ).

Proof. Step 1. Let us prove the “only if” implication. Take a € {Sp(w) : w € Q}.
By Theorem 5.17, there exists Q € R such that Q(Sy = a) > 0. Consider the measure
p = Lawg Sr. Then p({a}) > 0, and it follows from the Key Lemma for the model
under consideration (it states that R = R(Z?ZI(S% — (1+7)¢'(0))) = M) that

/(x—K)J“priu(dx):(1+7")<pi(K), i=1,...,d, K eR,.
Ry

By Lemma 3.23 (i),
prip=(1+7)(p), i=1,...,d
Consequently, (¢')"(z) > 0 for any = € {Si(w): w € Q}, i =1,...,d. This implies
that the set {Sr(w) : w € Q} is countable. To complete the proof, it remains to note
that the measure p constructed above is concentrated on {Sy(w) : w € Q}.
Step 2. Let us prove the “if” implication. Fix D € F \ {0}. Take wy € D. There
exist wy,ws, -+ €  such that

{ST(wi):izO,l,...}:{ST(w):wGQ}

and
ST(WZ) #ST((U]% 7".]20’]-77 Z#]
Let p be a probability measure concentrated on {Sr(w) : w € €} such that
p({Sr(wo)}) > 0 and . .
prru=(1+r)(")", i=1,...,d.
It follows from the Key Lemma for the model under consideration that the measure
Q = >, _onn({Sr(wk)})du, (the upper limit on the sum may be finite or infinite) is a

risk-neutral measure. Moreover, Q(D) > 0. An application of Theorem 5.17 completes
the proof. O

Corollary 5.41. Let d =1 and K = Ry. Then the model (Q, F, A) satisfies the
NGA condition if and only if the set {Sy(w) : w € Q} is countable, ¢" is concentrated
on this set, and ¢"({x}) >0 for any x € {Sp(w) : w € Q}.

Proposition 5.42. Suppose that K' is finite, 0 e K', i =1,...,d, and
{Sr(w):weQ}=RL,. (5.25)

Then the model (Q, F, A) satisfies the NGA condition if and only if

(a) ¢ is strictly positive on K', i =1,...,d;

(b) " s strictly convez on K,i=1,...,d;

(c) @' is strictly decreasing on K, i= 1 ,d;

(d) (1+7)¢"(K) > (1+r)g0(0)—K,z—1, ,d, K €K\ {0}.
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Proof. Step 1. Let us prove the “only if” implication. We will check only (b)
(conditions (a), (c), (d) are verified similarly). If (b) is not satisfied, then there exist
i€{l,...,d} and K; < Ky < K3 € K such that

Ky— Ky Ky~ K, .
K,) > 23 712 e (K. 2
P 2 I )+ ) (5.26)
Set
Ky — s — Ky
X =T — K
Ky — Kl( K™= ( ”)Kg Kl‘p( )
— (8% — Ky) "+ (1 4+1)¢"(Ky)
Ky— K, Ky~ K, .
i K — (1 K
KK, (Sp = K3)" = ( +T)K3 KIS"( 3)
Then X € A and, in view of (5.26),
Ky — ‘ K, 4
x> BB gy (s )t B2 R g )t = (s,

The function g is positive and g(K3) > 0. Combining this with (5.25), we arrive at a
contradiction. As a result, (b) is satisfied.
Step 2. Let us prove the “if” implication. Fix D € F\ {0}. Take wy € D. Set
L = Si(wo), i =1,...,d. Foreach i =1,...,d, we can ﬁnd a function ¢ : R, — R,
with the properties: 1’ is convex on Ry ; (@/J’)’JF(O) = —1; limg 0 ¥ (K) = 0; ¢° is
piecewise linear; (*)"({a%}) > 0;

PI(K)=(1+7)¢'(K), KeK.

Consider the measure p = (¢')” x -+ x (¢%)”. Then p is concentrated on a count-
able set {ao,ai,...}, which belongs to RZ, in view of the condition (¢?)' (0) = —1,
i=1,...,d. For k = 1,2,..., find w, € Q such that Sp(wx) = a;. Consider the
measure Q =), u({Sr(wk)})ds, . By Lemma 3.23 (ii),

Eo(Sh—K)' = [ (a = K (0')"(da)
=" (K)=(1+r)¢'(K), i=1,....d, K eK.

It follows from the Key Lemma for the model under consideration that Q € R. More-
over, Q(D) > 0. An application of Theorem 5.17 completes the proof. O

Let us now consider the model with friction, i.e. the model of Section 4.3 with the
changes described in Section 5.6. The statement below shows that in most natural cases
the NGA condition is satisfied regardless of the structure of K¢ .

Proposition 5.43. Suppose that condition (5.25) is satisfied and o' € (0,1),
i=1,....d. If

(a) ¥ > o on K,i=1,...,d;

(b) ¢* and go ' are strictly positive on K, i =1,...,d;

(¢) ¥ and @ are strictly convex on K, i=1,...,d;
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(d) % and ¢ are strictly decreasing on K*, i =1,...,d;
(©) (1 +7)g(K) > (14 r)gh(0) — K, i =1,....d, K € K\ {0};
(f) limgeri ko0 @™ (K) =0 if K' is unbounded from above, i =1,...,d,

then the model (Q, F, A) satisfies the NGA condition.

Proof. Fix D € F\ {#}. Take wy € Q. Set a) = Si(wp), i = 1,...,d. For each
i=1,...,d, we can find a function ¢’ : R, — R, with the properties: ¢’ is convex
on Ry; (¢),(0) = —1; limg 00 ¢"(K) = 05 ¢" is piecewise linear; (¢")”({af}) > 0;

. . 1+r
7 1— Z—IK < :
H1-a)y ) < T

G(K) > (1+1r)"(K), KeK.

¢"(K), KeK;

Consider the measure = (p')” x -+ - x (¢?)". The proof is completed in the same way
as in Proposition 5.42 (Step 2). O

Remark. Propositions 5.42 and 5.43 remain true if we replace condition (5.25) by the
condition

{Sr(w) :we N} =RL.

The proof is the same.
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Index of Notation

conv C
conv C
Ep X
Er(XG)

essinfcq Z(w)

FTAP

7
1)

70
L'(P)
I,
Lawp X

the Borel o-field on the space E

the interior or the relative interior of the set C'

the convex hull of the set C'

the closed convex hull of the set C'

the P-expectation of the P-integrable or bounded below function X

the conditional P-expectation with respect to the o-field G of the P-
integrable or bounded below function X

sup{z € R: Z > z P-a.s.}, the essential infimum of the function Z

fundamental theorem of asset pricing in the probability setting or the
possibility setting, 15, 18, 30, 65, 68

0(Xs; s < t), the natural filtration of the process X

the set of fair prices of the contingent claim F'in the probability setting
or the possibility setting, 15, 19, 66, 70

the set of fair prices of the controlled contingent claim (F))jep in the
probability setting or the possibility setting, 23, 74

the set of fair bid-ask prices of the contingent claim F' in the probability
setting or the possibility setting, 20, 71

the set of fair bid-ask prices of the controlled contingent claim (F))ea
in the probability setting or the possibility setting, 24, 74

the space of classes of equivalence under the indistinguishability re-
lation of real-valued random variables on (€2, F,P) in the probability
setting or the space of real-valued F-measurable functions in the pos-
sibility setting

the set of R, -valued elements of L°
the space of P-integrable elements of L°
the space of bounded elements of L°

the P-distribution of the measurable function X



92 Index of Notation

Lawp(X | )

Mp
N
NA

NFL
NFLVR
NGA

VE(Fy ) € A)

the conditional P-distribution of the measurable function X with re-
spect to the o-field G

the space of finite o-additive measures on (2, F)
{1,2,...}, the set of natural numbers

no arbitrage in the probability setting or the possibility set-
ting, 15, 17, 65, 68

no free lunch, 17
no free lunch with vanishing risk, 30

no generalized arbitrage in the probability setting or the possibility
setting, 17, 68

the set of rational numbers

the set of real numbers

[0, 00), the set of positive real numbers

(0, 00), the set of strictly positive real numbers

the set of equivalent risk-neutral measures in the probability setting or
the set of risk-neutral measures in the possibility setting, 17, 68

special subset of R, 17, 68
the path of the process S that corresponds to the elementary outcome w
the support of the measure P

the lower price of the contingent claim F' in the probability setting or
the possibility setting, 15, 20, 66, 71

the lower price of the controlled contingent claim (F))yea in the prob-
ability setting or the possibility setting, 24, 74

the upper price of the contingent claim F' in the probability setting or
the possibility setting, 15, 20, 66, 71

the upper price of the controlled contingent claim (F)) e in the prob-
ability setting or the possibility setting, 24, 74

the minimum of x and y

the maximum of x and y

—x V 0, the negative part of z
x V 0, the positive part of x
the set of integer numbers

{0,1,2,...}, the set of positive integer numbers



Index of Notation 93

1 — essinf,cq Z(w) in the probability setting or 1 —inf, ., Z(w) in the
possibility setting, 17, 67

the delta-measure concentrated at the point a

the locally convex topology on the space E induced by the duality (-, -)
between FE and E’, i.e. the topology generated by the collection of
seminorms {|(-,2")|; 2’ € E'}

the distribution function of the standard normal distribution
the right-hand derivative of the function ¢ at the point x

the second derivative of the convex function ¢ : Ry — R, taken in
the sense of distributions (i.e. ¢"((a,b]) = ¢’ (b) — ¢ (a)) with the
convention: ¢”({0}) = ¢/, (0) +1

the equivalence relation between probability measures

the absolute continuity relation between probability measures
the approximate equality between sets, 20

the equality in law between random variables

the scalar product in R¢

the Euclidean norm in R¢
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Admissible strategy, 30
American option, 22

Approximate equality between sets, 20

Arbitrage pricing model
in the possibility setting, 67
in the probability setting, 16
Ask price, 50

Barrier option
up-and-in call, 46
up-and-in put, 47
up-and-out call, 47
up-and-out put, 47
Bermudian option, 22
Bid price, 50
Binary option, 44
Black’s formula, 37
Black—Scholes formula, 36
“Buy and hold” strategy, 40

Callable bond, 23
Change of numéraire, 36
Combination of models
in the possibility setting, 70
in the probability setting, 19
Contingent claim
in the possibility setting, 70
in the probability setting, 19
Controlled contingent claim
in the possibility setting, 74
in the probability setting, 21
Convertible bond, 22

Delta-martingale, 57

Delta-martingale measure, 7
Discounted price
in the continuous-time setting, 28
in the discrete-time setting, 14

European call option, 42
Epsilon-martingale, 57
Extendable interest-rate swap, 23

Fair price
of a contingent claim
in the possibility setting, 66, 70
in the probability setting, 15, 19
of a controlled contingent claim
in the possibility setting, 74
in the probability setting, 23
Fair bid-ask price
of a contingent claim
in the possibility setting, 70
in the probability setting, 19
of a controlled contingent claim
in the possibility setting, 74
in the probability setting, 24
Filtered possibility space, 76
fundamental theorem of asset pricing
(FTAP)
in the possibility setting, 65, 68, 76
in the probability setting, 15, 18, 28,
30, 51

Implied volatility, 49
lower, 49
upper, 49



Lookback option, 47
Lower price
of a contingent claim
in the possibility setting, 66, 71
in the probability setting, 15, 20
of a controlled contingent claim
in the possibility setting, 74
in the probability setting, 24

Main theorem for pricing
contingent claims
in the possibility setting, 71
in the probability setting, 16, 20
controlled contingent claims
in the possibility setting, 74
in the probability setting, 24
Martingale measure, 4
in the possibility setting, 65
in the probability setting, 15
Martingale  measure  with  given
marginals, 6
Measure with given marginals, 6
Merton’s formula, 37
Model with friction, 7
Model with no friction, 4

No arbitrage (NA)
in the possibility setting, 65, 68
in the probability setting, 15, 17
No free lunch (NFL), 17
No free lunch with vanishing risk
(NFLVR), 30
No generalized arbitrage (NGA)
in the possibility setting, 68
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in the probability setting, 17

One-period model
in the possibility setting, 65
in the probability setting, 15

Possibility space, 65
Puttable bond, 22
Puttable interest-rate swap, 23

Relative interior, 15
Risk-neutral measure,
in the possibility setting, 68
in the probability setting 17

Set of attainable incomes

in the possibility setting, 67

in the probability setting, 16
Set of possible elementary events, 65
Sigma-martingale, 30
Sigma-martingale measure, 4, 30

Uniformly integrable martingale mea-
sure, 4
Upper price
of a contingent claim
in the possibility setting, 66, 71
in the probability setting, 15, 20
of a controlled contingent claim
in the possibility setting, 74
in the probability setting, 24



