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1 Black-Scholes PDE (in the old world)

e Risk-free money market account with risk free rate r

e Stock price model

dS = pSdt+ oS dw.
e Option V' (S, 1)

e [to’s lemma for option

2
dV = (0_V + 1(72828—V> dt + a—VdS

ot 2 05? oS
e Replicate over |t,t + dt| with stock and cash. Portfolio
[I=AS+0
_ oV

— Stock position: A = 5&
— Cash position: self-financing

dV = dll = AdS + r3dt
e Hence cash position is

L[V 1, 0V
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2 Black-Scholes PDE

e Make replicating portfolio agree with the option on the terminal date,
V (Sp,T) =1l
e From self-financing, get

V(Si,t) = 1, =AS+ 3
OV 1oV 1, ,0°V
=55 (at T3075 as2>
e Re-arranging, obtain
oV ov. 1, ,0°V B
§+TS%+§U S ﬁ—rv
e Would have obtained if started from an SDE

dS = rSdt+ oS dW¥,
V(S;,t) = EY (e—ftTTdSV (Sy,T)

t, St) |
Here () is risk-neutral probability.

e Do not need to know .



3 What is wrong with Black Scholes

e Where is that credit-risk-free money market account?

— @ive cash to another bank?

— Give cash to a government?

e Nothing in modern economy looks like a classic money market account
e How to build an asset pricing theory without risk free rate?

e Asset pricing theory traditionally starts with assets that pay no dividends

and have a payoft at maturity. Is that how assets in modern economy look
like?



4 Credit risk mitigation in OTC trading

e Over-the-counter (bilateral) trading is governed by legal documents, pri-
mary of which is ISDA Master Agreement

e Part of it, Credit Support Annex (CSA) specifies credit risk mitigation in
form of collateral posting

e In broad strokes, it specifies that if party A owes money to party B, it has
to post collateral in that amount, and vice versa

e So if A defaults, B could take that collateral in lieu of the promise of A

e CSA specifies other important credit risk mitigants such as netting — if
A owes B on one contract and B owes A on some other, they can be
offset against each other in the case of default (different from traditional
bankruptcy law but it is a different story)

e CSAs between each two parties are (somewhat) different. CSA specifies

— Eligible collateral (cash in a number of currencies, bonds)

— Rates paid on collateral (party holding collateral typically pays certain
rate to the collateral ”owner” )

— frequency of collateral posting (e.g. daily)

rr—\ h | 1 1



5 Collateralized Assets

e Let us look at the mechanics of collateralized trading

e Party A sells a call option to party B

e B pays V(0) dollars to A

e A promises to pay the payoff of the option at expiry to B

e Any promise needs to be collateralized. A needs to post collateral. How
much?

e Well, it is the value of the promise (option) so V' (0) dollars! They go right
back to B

e During life, the value of the option fluctuates. Depending on the move A
will post or claim back collateral

e B will pay an agreed-upon overnight rate on the outstanding collateral to

A

e At any point in time the ¢ total collateral posted by A will be V' (¢) which
is the value of the option on that day



6 Collateralized Assets
e Note that at any time the option contract could be dissolved and collateral
kept — the collateral will exactly offset the market value of the option

e In particular, at option expiry B will just keep the collateral it has and A
does not need to pay anything else

e Quite different from a classic picture

e Details in [Pit12]



7 Hedging Instruments
e Trading in hedging ”cash” instruments (stocks, bonds) fits the same pat-
tern

e When we need to buy stock, where does the bank get money? (How does
it fund the shares)

e By borrowing them, with the borrow secured by the shares just bough!
e This is called a repo transaction

e The rate for this loan is the repo rate

e Borrow the money, buy stock

e Deliver shares as collateral for the loan

e Get collateral back the next day

e Return the loan and the overnight interest (repo rate)

e Repeat for as many days as the shares are needed

e Paying repo rate more efficient than borrowing unsecured — lower rate due
to absence of credit risk



8 Zero-Price Dividend-Paying Assets

e Traditional APT

— Starts with dividend-free assets and money market account

— Dividend-paying assets are incorporated by reinvesting dividends into
the asset itself

— Some dividend-paying assets have zero price: futures

— Reinvestment approach fails for futures but as long as there is a money
market account can cover by ATP

e Collateralized assets (and hedging instruments) are zero-price dividend-
paying assets (ZPDP)

— Can be entered into and exited at zero cost

— Pay dividend (in the form of collateral rate) continuously
e The only credit-risk-free assets in modern economy are ZPDP assets

— And there is no money-market account!

— And none of the assets can serve as a numeraire (zero price)

e Need APT built from these assets



9 ZPDP Assets and No Arbitrage

e A ZPDP asset is an asset that

— Can be “bought” for no money at any time
— Gives the holder the right to a dividend stream until the asset is sold

— Can be “sold” at any time for no money

e Fconomy is modelled by the p-dimensional cumulative-dividend process
G(t) = (Gi(t),. .., Gy(t))" of zero-price assets

— (5,(t) is the total dividend paid by the asset i over the time period |0, ]

e Trading strategy is a predictable adapted process ¢(t) = (¢1(t),..., ¢,(t))"
where ¢; is holding of the i-th asset at time ¢

— For convenience only consider trading strategies that are identically
zero after some time, i.e. there exists T such that ¢(t) =0 for ¢t > T



10 ZPDP Assets and No Arbitrage

e Total gains H? on this strategy are given by
= [ ot i
0

e As the cost of entering or exiting any position is always zero, the arbitrage
opportunity in this economy is defined as the existence of the strategy ¢
such that

H?>0as.,and P (H? > 0) > 0

e Main result (see |[AP16]): if the economy admits no arbitrage, then there
exists an equivalent martingale measure () such that GG is a Q-martingale

— Probably covered by some very general flavor of the Fundamental The-
orem of Asset Pricing but interesting to look in detail at this special
case



11 Proof of the Main Result

e Let G be given, under P, by
dG(t) = p(t) dt + o(t) dW (t)

— W (t) a d-dimensional Brownian motion

— u(t) = p(t,w) is p-dimensional and o(t) = o(t,w) is p X d-dimensional

e The total gains for any strategy ¢ are given by
= [ ot uwdt+ [ ot o) aw s
0 0

e First a simpler case of o(t) having rank p (d > p). We can find a d-
dimensional vector #(t) such that

p(t) = o(t)0(¢),
so that
dG(t) = o(t)0(t)dt + o(t) dW (t) = o(t) (dW (t) + 0(t) dt)

e The measure () is then given by Girsanov’s theorem — it is the measure
under which dW (t) + 0(t) dt is the driftless Brownian motion



12 Proof of the Main Result

e More interesting case of o(t) with rank strictly less than p. Then there
exists a p-dimensional vector ¢ # 0 such that

—T

¢ o(t) =0 as. (1)
e Trading strategy:

P(s5) = Lyp<s<trar) (al{gm(tpo} B 51{$T;L(75)<0}>

e Total gains on this strategy

H¢—/ o(s) " 1u(s) dt+/ P(s) W(s)

(1 {ETM(tKU}) dt + 0

e To ensure no-arbitrage

¢ wu(t) =0 a.s. (2)



13 Proof of the Main Result

e We have shown so far that for any vector ¢, ETa(t) = (0 implies ET p(t) =
0.

e Therefore, y(t) is in the range of o(t) and there exists a d-dimensional
vector 0(t) such that

p(t) = o(t)6()
e The rest of the argument follows the rank-p case above:
dG(t) = o(t)0(t)dt + o(t) dW (t) = o(t) (dW (t) + 0(t) dt)

e The measure () is not associated with any particular numeraire, unlike in
the tradition APT

e Not much of a problem as they work just as well as the “traditional” ones



14 Collateralized Cashflow Analysis

Notations

— V(t) is price of a collateralized asset between party A and B. If V(¢) > 0
for A, party B will post V(t) to A.

— ¢(t) is a contractually specified collateral rate c(t) on V (t). If V (t) > 0,
A will pay this rate to B



15 Collateralized Cashflow Analysis

Assume A “buys” some collateralized asset from B

1. Purchase of the asset. The amount of V' (t) is paid by A to B

2. Collateral at t. Since A’s mark-to-market is V (¢), the amount V() of
collateral is posted by B to A

3. Return of collateral. At time ¢t + dt A returns collateral V () to B
4. Interest. At time ¢t + dt, A also pays V (t)c(t) dt interest to B

5. New collateral. The new mark-to-market is V' (¢t +dt). Party B pays V(¢ +
dt) in collateral to A.

Note that there is no actual cash exchange at time ¢. At time ¢ + dt, net
cash flow to A is given by

V(t+dt) — V(E)(1+c(t)dt) = dV(t) — c(t)V(¢) dt.

As already noted, at time ¢ + dt, the MTM-+-collateral for each party is 0,
meaning they can terminate the contract (and keep the collateral) at no cost

o Collateralized asset 1s a ZPDP asset



16 Valuation Formula

e Economy with p collateralized derivatives, some may be stocks or bonds
with attached repo agreements

e Value processes Vi(t), ..., V,(t), collateral rates ¢, (t), . . ., ¢,(t), cumulative-
dividend processes G;(t), i =1,...,p

e It follows from the previous slide that
dGi(t) = dVi(t) — ¢;(t)Vi(t)dt, i =1,...,p
e Express V; in terms of G;:
d (e hemVi(t)) = —t)e OBVt dt + e DA v
= —¢;,(0)eh OBV () dt 1+ e b (GG () + a(t)Vit) di)
ke )

and, for any t < T,

() e R = [ BoRag) @



17 Valuation Formula

e By the main result there exists a risk-neutral measure Q) in which all G;(t),
1 =1,...,p, are martingales.

e Applying E? to (3):
T
_fo ci(s dsV(T) —e foCz dsv( ) / fO ci(s dsdG( )
t

and using the martingale property gives us the main valuation formula
for collateralized derivatives,

Vilt) = B ( — J eits dsv(T)) i=1,...,p (4)

e The value at time t of a collateralized derivative is equal to the expectation
of its value at a future time 7" > ¢ discounted at its own collateral rate



18 Example: Two Collateralized Assets

e Simple example of the general result: two assets collateralized with rates
c1(t) and cy(t)

e In real world measure the asset prices follow
dVi(t) = p(OVi(t) dt + o,(t)Vit) dW(2), 1 =1,2. (5)
e Note the same Brownian motion. Case of a stock (i.e. a repo transaction
with stock) and an option on that stock.

e At time ¢ form a portfolio to hedge the effect of randomness of dWW(t) on
the cash exchanged at time ¢ + dt (no cash exchange at t)

e Go long asset 1 notional o5(t)V5 () and go short asset 2 notional o (¢)V;(¢)
e The cash exchange at time t 4 dt is then equal to
02(t)Va(t) (dVi(t) — c1(t)Vi(t) dt) — o1 (8)Vi(t) (dVa(t) — ca(t)Va(t) di)
= oa(O)Vi()Va(t) (11 (8) — c1(t)) dE — o1 (E)VA()Va(t) (palt) — ca(t)) di
e This amount is known at time ¢ and the contract can be terminated at

t + dt at zero cost. Hence, the only way both parties agree to transact on
this portfolio (no arbitrage), this cash flow must actually be zero



19 Example: Two Collateralized Assets

e Hence
a(t) (1 (t) — 1(t)) = o1(t) (pa(t) — ca(t))
e Using this we can rewrite (5) as
dVi(t) = ci(t)Vi(t) dt + ai(H)Vi(t) dW (1), i =1,2, (6)

where

. pi(t) —alt) po(t) — calt)
(1) = dw (1) + PO ar — (o) + P2

e Now, looking at (6) we see that there exists a measure (), equivalent to
the real world one, in which asset i grows at rate ¢;(t).

e In ), the price process for each asset is given by

‘/;(t) _ E? (6_ ftTCz'(S) dS‘/;(T>) : 1 = 1, 2 (7)



20 Domestic and Foreign Collateral

e Many CSAs allow for delivery of cash in different currencies

e We need to consider zero coupon bonds (ZCBs) collateralized in the do-
mestic, and as well as some other (call it foreign) currency

e Economy with domestic and foreign assets and an FX rate X (¢) expressed
as a number of domestic (D) units per one foreign (F)

e The domestic collateral rate is c4(t) and the foreign rate is c(?)

e Domestic ZCB collateralized in domestic currency by P, 4(¢,T"). This bond
generates the following cashflow at time ¢ + dft,

de,d(ta T) — de,d(ta T) — Cd(t>Pd,d(ta T> dt (8)



21 Foreign Bonds with Domestic Collateral

e Now consider a foreign ZCB collateralized with the domestic rate. Let its
price, in foreign currency, be Py 4(t,T"). Cashflows:

1. Purchase of the asset. The amount of Py 4(¢,T') is paid (in foreign currency
F) by party A to B.

2. Collateral at ¢. Since A’s MTM is Py4(t,T) in foreign currency, the
amount Py (¢, T)X(t) of collateral is posted in domestic currency D by
Bto A

3. Return of collateral. At time ¢ + dt A returns collateral Py q(t,T)X (t)D
to B

4. Interest. At time ¢t + dt, A also pays cq(t)Prq(t,T)X (t) dt interest to B
inD

5. New collateral. The new MTM is Py 4(t + dt,T'). Party B pays Py q(t +
dt, T)X(t + dt) collateral to A in D

The cash flow, in D, at t 4+ dt is



22 Drift of FX Rate

e Equations (8), (9) are insufficient to determine the drift of X

e From (9) we can only deduce the drift of the combined quantity X Py 4
and the drift of Py, is in general not ¢ (nor it is ¢4, for that matter)

e To understand the drift of X (), we need to understand what kind of (do-
mestic) cash flow we can generate from holding a unit of foreign currency

e Suppose we have 1.F. If it was a unit of stock, we could repo it out (i.e.
borrow money secured by the stock) and pay a repo rate on the stock

e In FX, having 1.F, we can give it to another dealer and receive its price
in domestic currency, X (¢)D. The next instant t + dt we would get back
LF, and pay back X (t) + 4 ((t) X (t)dt, where r4 ¢(t) is a rate agreed on
this domestic loan collateralized by F. As we can sell 1F for X (t + dt)D
at time ¢t + dt the cash flow at ¢t + dt would be

dGx(t) = dX(t) —rqs(t)X(t)dt
e This is an “instantaneous” (aka tom/next in actual market) FX swap

e Importantly, the rate 4 ¢(¢) has no relationship to collateralization rates
in two different currencies



23 Cross-Currency Model under Domestic Collateral

1. Market in instantaneous FX swaps allows us to generate cash flow d.X (t)—
raf(t) X (t) dt

2. Market in P, 4 generates cash flow d Py 4(t,T) — cq(t)Piq(t,T) dt
3. Market in Py ; generates cash flow d (Py 4(t, T) X (t))—ca(t) Pra(t, T) X (t) dt

e Assume real world measure dynamics (u, dW are vectors and X is a
matrix)

dX/X
de,d/Pd,d = pdt + X dW,
d(PqX) [ (PpaX)

e By our main result, we can find a measure (“domestic risk-neutral”) Q¢

under which the dynamics are
dX / X Td.f

de,d/Pd,d = Cd dt + X de (10)
d(PraX) [ (PraX) Cd



24 Cross-Currency Model under Domestic Collateral

With
dX/X o
dPyq/ Py — | ¢ dt + T W
d (PfaX) [ (PraX) ¢

we have

X(t) = Ef (e_ [ rag(s)ds x (T>) |
Pyqa(t,T) = o (6_ JE cqls) ds) |

Pf,d<t7T> — Eg (e ft cq(s )dsX(T>)

X(t)

(11)



25 Cross-Currency Model under Foreign Collateral

e Same model under foreign collateralization

e Foreign bonds Py s and domestic bonds collateralized in foreign currency
P d’ f

e By repeating the arguments above we can find a measure Q/ under which

d(1/X)/(1/X) —Td,f )
dejf/Pf,.f =1 ¢f dt + X dw /! (12)
d(Pays/X) /[ (Pay/X) cy
e In particular
— TC S S 1
Pys(t,T) = X(t)E! <e Ji erls)d W) (13)

e Not all processes in (10) and (12) can be specified independently. In
fact, with the addition of the dynamics of Py s to (10), the model is fully
specified, as the dynamics of P ¢ can then be derived



26 Forward FX

e A forward FX contract pays X (7T) — K at T (in D). The price process of
the domestic-currency-collateralized forward contract is

R (e— Ji' cals)ds ( x () — K)) = X(£)Ppa(t,T) — K Pya(t, T)

e The forward F'X rate,i.e. K that makes the price process have value zero
is o X (t)P; 4(t,T
is given by X,(t,T) = %d{,z;) )

e We can also view a forward FX contract as paying 1 — K/X(T) in F

e Then, with foreign collateralization, the value would be
Bf (eI s (1= K/X(T)) = Pry(t, T) = K Pas(t, T)/X (2)
and the forward FX rate collateralized in c; is given by X(t,7T) =

X(t)Prp(t,T)
Pd’f<t,T)

e In the general model, there is no reason why X (¢,7") would be equal to
X4(t, T), and the forward FX rate would depend on the collateral used. It
appears, however, that in current market practice FX forwards are quoted
without regard for the collateral arrangements



27 Choice Collateral
e Consider a domestic asset, with price process V (¢), that can be collater-
alized either in the domestic (rate cq) or the foreign (rate cy) currency.
e Common case for CSA agreements between dealers

e From previous analysis it follows that the foreign-collateralized domestic
ZCB grows (in the domestic currency) at the rate ¢y +rq ¢

e It can be shown rigorously that the same is true for any domestic asset

e When one can choose the collateral, one would maximize the rate received
on it, so the choice collateral rate is equal to

max(cq(t), cp(t) +ra(t)) = ca(t) + max(cs(t) + rq (t) — ca(t),0)

e The simplest extension of the traditional cross-currency model that ac-
counts for different collateralization would keep the collateral basis

qaf(t) = cp(t) +rag(t) — cat)

deterministic (intrinsic)



28 Choice Collateral
e In this case the collateral choice will not generate any optionality although
the discounting curve for the choice collateral rate will be modified

e Anecdotal evidence suggests that at least some dealers do assign some
value to the option to switch collateral in the future

e Full collateral choice model:

V(t) _ Ef (@_ ftT cq(s) dse— ftT max(qdj(s),()) dsv(T))

o At least 4 factors: one for each of ¢4, cr, X, g4 r. “Standard” XC model
recovered with g4 r = 0.

e Need to price options even for simplest products!



29 Issues with Full Collateral Choice Model

e Large number of unobserved parameters (volatilities, correlations of ¢ ¢)

e Uncertain horizon — collateral choice may go away with developments in
the industry (more clearing, standard CSA)

e Assumes that instantaneous replacement of collateral from one currency
to another is possible

e More realistic assumptions (?)

— Only change in collateral balance can be posted in a choice currency

— Only currency previously posted can be recalled, not exceeding the
total amount posted (and change in MTM)

e This results in a path-dependent, non-linear dynamic optimization prob-
lem

e All in all, swaps pricing is getting quite complicated! More details in
[Pit10], [Pit12], [Pit13a], [Pit13b]



30 Barclays Graduate and Intern Program
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