ОБЯЗАТЕЛЬНЫЕ ЗАДАЧИ ПО МАТЕРИАЛУ ЛЕКЦИИ 3

1 а). При каких значениях действительных параметрах a,b,c следующая функция

$$F(x) = \begin{cases} a + b \arctan x, & x < 0, \\ 4b + c \sin(\pi x) & 0 \le x \le 1, \\ 1 - \exp\{-x\}, & x > 1, \end{cases}$$

является функцией распределения вероятностной меры P на прямой? Найти P((0,1]), P([0,1)) и P((-1,2)).

1 б). При каких действительных a,b и c функция $p(x)=\max\{-|x-a|+b,c\}$ является плотностью вероятностной меры P на прямой? Найти $\mathsf{P}([a+\frac{1}{2},a+1)).$

Комментарий. Задача 1 требует вспомнить, какие свойства характеризуют функцию распределения и плотность вероятностной меры.

2. Рассмотрим схему n независимых испытаний Бернулли с вероятностью успеха p. Пусть $\Omega = \{\omega = (k_1, \ldots, k_n), \text{ где } k_i \text{ равны нулю или единице, } i = 1, \ldots, n\}, \mathcal{F} = 2^{\Omega},$ $\mathsf{P}(\{\omega\}) = p^{\sum_{i=1}^n k_i} (1-p)^{n-\sum_{i=1}^n k_i}.$ Определим события $A_i = \{\omega : k_i = 1\}$ ("успех" в i-ом испытании), $i = 1, \ldots, n$. Доказать, что A_1, \ldots, A_n независимы.

Комментарий. Важно не забыть рассмотреть всевозможные наборы A_{i_1}, \ldots, A_{i_k} , для которых $1 \le i_1 < \ldots < i_k \le n$.

3. Точка (a,b) случайно бросается в квадрат $[0,h] \times [0,h]$, где h>0. Найти вероятность того, что уравнение $x^2+ax+b=0$ имеет действительные корни.

Комментарий. Ответ существенно зависит от величины h.