Лекция 14. Условное математическое ожидание.

Завершение изучения нормального распределения N(a,C) в пространстве \mathbb{R}^n , когда матрица C вырождена. Формулировка аналогов теоремы Леви и теоремы единственности для характеристических функций случайных векторов. Критерий независимости компонент вектора: совместная характеристическая функция распадается в произведение характеристических функций компонент. Следствие для гауссовского вектора (независимость компонент равносильна тому, что ковариационная матрица диагональна). Лемма о (смешанных) производных характеристической функции вектора при наличии должного момента у всех его компонент, а также соответствующее обратное утверждение для вторых производных характеристической функции в точке $0 \in \mathbb{R}^n$. Доказательство того, что если $X \sim N(a, C)$, то a – вектор средних, а C – ковариационная матрица. Пример негауссовского вектора с гауссовскими компонентами. Условное математическое ожидание интегрируемой случайной величины относительно σ -алгебры. Пример нахождения $\mathsf{E}(X|\mathcal{A})$, где \mathcal{A} – есть σ -алгебра, порожденная разбиением вероятностного пространства. Свойства условного математического ожидания. Определение E(X|Z), где X – интегрируемая величина, Z – случайный вектор. Доказательство того, что $\mathsf{E}(X|Z) = \psi(Z)$, где ψ – борелевская функция.

ВОПРОСЫ, КОТОРЫЕ ВОЙДУТ В ЭКЗАМЕНАЦИОННУЮ ПРОГРАММУ

- 14.1. Критерий независимости компонент вектора в терминах характеристических функций этих компонент. Следствие для гауссовского вектора. Лемма о (смешанных) производных характеристической функции вектора при наличии должного момента у всех его компонент, а также соответствующее обратное утверждение для вторых производных характеристической функции в точке $0 \in \mathbb{R}^n$. Доказательство того, что если $X \sim N(a,C)$, то a вектор средних, а C ковариационная матрица.
- 14.2. Условное математическое ожидание интегрируемой случайной величины относительно σ -алгебры. Пример нахождения $\mathsf{E}(X|\mathcal{A})$, где \mathcal{A} есть σ -алгебра, порожденная разбиением вероятностного пространства. Свойства условного математического ожидания. Определение $\mathsf{E}(X|Z)$, где X интегрируемая величина, Z случайный вектор. Доказательство того, что $\mathsf{E}(X|Z) = \psi(Z)$, где ψ борелевская функция.