Scatter matrices, principal component analysis (PCA), and independent component analysis (ICA)

Hannu Oja (together with Seija Sirkiä)

University of Tampere and University of Jyväskylä

ABSTRACT: Assume that a random p-vector \mathbf{s} has independent components and that $\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{b}$ where \mathbf{A} is a positive definite $p \times p$ matrix and \mathbf{b} is a p-vector. Assume that $\mathbf{x}_1, ..., \mathbf{x}_n$ is a random sample from the distribution F of \mathbf{x} . In the *independent component analysis* (ICA) one tries to estimate a matrix \mathbf{B} such that $\mathbf{B}\mathbf{x}$ has independent components. On the other hand, let $\mathbf{S}(F)$ or $\mathbf{S}(\mathbf{x})$ be a scatter matrix (functional), that is, $\mathbf{S}(\mathbf{x})$ is a symmetric positive definite $p \times p$ matrix with the affine equivariance property: $\mathbf{S}(\mathbf{A}\mathbf{x} + \mathbf{b}) = \mathbf{A}\mathbf{S}(\mathbf{x})\mathbf{A}'$. In the talk we show that the independent components may be found using two separate scatter matrices.