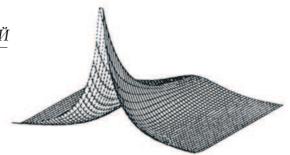


Кафедра ТЕОРИИ ВЕРОЯТНОСТЕЙ



БОЛЬШОЙ СЕМИНАР КАФЕДРЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Руководитель - член-корр. РАН, профессор А. Н. Ширяев

Заседание 7 апреля. М. Житлухин, Я. Люлько и А. Муравлев

М. Житлухин Максимальное неравенство для косого броуновского движения Пусть X_t^{α} — косое броуновское движение с параметром $\alpha \in (0, 1)$ и τ — произвольный момент остановки для X_t^{α} . Мы докажем, что выполнено следующее максимальное неравенство:

$$\mathsf{E} \big[\max_{s \le \tau} X_s^{\alpha} - \min_{s \le \tau} X_s^{\alpha} \big] \le \sqrt{K_{\alpha} \mathsf{E} \tau},$$

где K_{α} — некоторая константа, зависящая от α . Будет найдено явное выражение для K_{α} , а также будет доказано, что неравенство является в некотором смысле точным.

Данное неравенство является обобщением известных максимальных неравенств для стандартного броуновского движения и его модуля.

Я. Люлько О распределении времени, проводимого марковской цепью на разных уровнях до момента достижения фиксированного состояния

Рассмотрим однородную марковскую цепь $S=(S_k)_{k0}$ с множеством фазовых состояний $\mathbb{Z}=\{0,\pm 1,\,\pm 2,\ldots\}$, начальным распределением $p_0(i)=\mathsf{P}(S_0=i)$ и переходными вероятностями $p_{i,j}=\mathsf{P}(S_n=j|S_{n-1}=i),\,i,j\in\mathbb{Z}$. Положим

$$N_n(a) = \sum_{k=1}^n I(S_k = a),$$

где $a \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}$, и пусть $\tau_b = \inf\{k > 0 : S_k = b\}$, где $b \in \mathbb{Z}$.

В работе исследован вопрос о нахождении распределения вероятностей случайной величины $N_{\tau_b}(a)$, которая есть число посещений состояния a марковской цепью S до момента τ_b первого попадания цепи в состояние b. Основным результатом является теорема, в которой устанавливается, что распределение $N_{\tau_b}(a)$ будет $\emph{гео-метрическим}$ с параметрами, зависящими от a и b. Во второй части работы эти параметры находятся для бернуллиевского случайного блуждания.

Теорема.

Если $a\in\mathbb{Z}_+=\{0,1,2,\ldots\}$ и $b\in\mathbb{Z}$ $(b\neq a)$ таковы, что $\mathsf{P}_a(\tau_a<\tau_b)<1$, то распределение времени $N_{\tau_b}(a)$ относительно меры P_x задается формулами

$$\begin{cases} \mathsf{P}_x(N_{\tau_b}(a) = 0) = 1 - \alpha_x , \\ \mathsf{P}_x(N_{\tau_b}(a) = k) = \alpha_x(1 - \alpha_a)\alpha_a^{k-1}, \ k = 1, 2, \dots, \end{cases}$$

где $\alpha_x = \mathsf{P}_x(\tau_a < \tau_b)$ для $x \in \mathbb{Z}$. В частности, $\mathsf{E}_x N_{\tau_b}(a) = \frac{\alpha_x}{1 - \alpha_a}$.

А. Муравлев

Пусть $X = (X_t)_{t\geq 0}$ – одномерная регулярная диффузия на промежутке $I \subset \mathbb{R}$, а \mathcal{G} – производящий оператор X. Для $\alpha > 0$ определим функции ψ_{α} и ϕ_{α} как единственные (с точностью до множителя) непрерывные решения обобщенного дифференциального уравнения

$$\mathcal{G}u = \alpha u$$
,

при этом ψ_{α} является возрастающим решением, а φ_{α} – убывающим. Введем следующие обозначения:

$$w_{\alpha}(x) = \psi_{\alpha}'(x)\phi_{\alpha}(x) - \psi_{\alpha}(x)\phi_{\alpha}'(x), \quad \rho_{\alpha}(x,y) = \psi_{\alpha}(x)\phi_{\alpha}(y) - \psi_{\alpha}(y)\phi_{\alpha}(x).$$

Рассмотрим локальное время диффузии X на уровне x L(t,x). В настоящей работе производится исследование свойств локального времени в момент выхода из интервала $(a,b) \subset I$

$$\tau_{ab} = \inf\{t \ge 0 : X_t \not\in (a,b)\}.$$

Теорема. Для $\alpha > 0$, $\beta > 0$ и $a \le x \le b$

$$E_x e^{-\alpha \tau_{ab} - \beta L(\tau_{ab}, x)} = \frac{\rho_{\alpha}(a, x) + \rho_{\alpha}(x, b)}{\rho_{\alpha}(a, b) - \frac{2\beta}{w_{\alpha}(x)} \rho_{\alpha}(a, x) \rho_{\alpha}(x, b)}.$$

Семинар проводится по средам в аудитории 16-24 с 16:45 до 17:45

Координатором семинара на весенний семестр 2010 года назначен к.ф.-м.н., доцент кафедры теории вероятностей Сергей Анатольевич Пирогов (e-mail: pirogov@mail.ru), ученым секретарем семинара - Айгуль Тилековна Абакирова (e-mail: abakirova@gmail.com).