Siegel's problem for *E*-functions

Tanguy Rivoal, CNRS and Université Grenoble Alpes

Joint work with Stéphane Fischler, Université Paris-Sud

Conference Diophantine Analysis and Related Topics, Moscow, june 2021, live from Grenoble

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

E- and G-functions (Siegel, 1929)

Definition 1 A power series $F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n \in \overline{\mathbb{Q}}[[z]]$ is an *E*-function if (i) F(z) is solution of a non-zero linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$. (ii) There exists C > 0 such that for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and any

(ii) There exists C > 0 such that for any $\sigma \in Gal(\mathbb{Q}/\mathbb{Q})$ and any $n \ge 0$, $|\sigma(a_n)| \le C^{n+1}$.

(iii) There exists D > 0 and a sequence of positive integers d_n , with $d_n \leq D^{n+1}$, such that $d_n a_m$ are algebraic integers for all $m \leq n$.

By (*i*), the a_n 's all lie in a Galoisian number field \mathbb{K} . There are only finitely many Galois conjugates $\sigma(a_n)$ of a_n to consider in (*ii*).

E-functions are entire functions. They form a ring stable under $\frac{d}{dz}$ and \int_0^z . If F(z) is an *E*-function and $\alpha \in \overline{\mathbb{Q}}$, then $F(\alpha z)$ is an *E*-function.

A power series $\sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[[z]]$ is a *G*-function if $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ is an *E*-function.

Examples

E-functions: polynomials in $\overline{\mathbb{Q}}[z]$,

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad L(z) := \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \binom{n}{k} \binom{n+k}{n}\right) \frac{z^n}{n!},$$
$$H(z) := \sum_{n=0}^{\infty} \left(\sum_{k=1}^n \frac{1}{k}\right) \frac{z^n}{n!}, \quad J_0(z) := \sum_{n=0}^{\infty} \frac{(iz/2)^{2n}}{n!^2}.$$

G-functions: algebraic functions over $\overline{\mathbb{Q}}(z)$ regular at 0, (multi)polylogarithms

$$\begin{aligned} \mathsf{Li}_{s}(z) &:= \sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}} \qquad (s \in \mathbb{Z}), \\ \sum_{n_{1} > n_{2} > \cdots > n_{k} \ge 1} \frac{z^{n_{1}}}{n_{1}^{s_{1}} n_{2}^{s_{2}} \cdots n_{k}^{s_{k}}} \qquad (s_{1}, s_{2}, \dots, s_{k} \in \mathbb{Z}), \\ \frac{1}{\pi} \int_{0}^{1} \frac{\sqrt{x(1-x)}}{1-zx} dx. \end{aligned}$$

The intersection of both classes of series is reduced to $\overline{\mathbb{Q}}[z]$.

Hypergeometric series

Set
$$(x)_m := x(x+1)\cdots(x+m-1)$$
.

Siegel: the "hypergeometric" series

$${}_{p}F_{q}\begin{bmatrix}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\\ z^{q-p+1}\end{bmatrix}:=\sum_{n=0}^{\infty}\frac{(a_{1})_{n}\cdots(a_{p})_{n}}{n!(b_{1})_{n}\cdots(b_{q})_{n}}z^{n(q-p+1)},$$

is an *E*-function when $q \ge p \ge 1$, $a_j \in \mathbb{Q}$ and $b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ for all *j*. L(z) and H(z) are not of ${}_pF_q(z^{q-p+1})$ type but

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{n}\right) \frac{z^{n}}{n!} = e^{(3-2\sqrt{2})z} \cdot {}_{1}F_{1} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}; 4\sqrt{2}z \\ \sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k}\right) \frac{z^{n}}{n!} = ze^{z} \cdot {}_{2}F_{2} \begin{bmatrix} 1, 1 \\ 2, 2 \end{bmatrix}; -z \end{bmatrix}.$$

Observation: Every polynomial with coefficients in $\overline{\mathbb{Q}}$ in series ${}_{p}F_{q}[a_{1}, \ldots, a_{p}; b_{1}, \ldots, b_{q}; \lambda z^{q-p+1}]$, with $q \ge p \ge 1$, $a_{j}, b_{j} \in \mathbb{Q}$ and $\lambda \in \overline{\mathbb{Q}}$, is an *E*-function. (The integers *p* and *q* can take different values for each series involved in the polynomial.)

Hypergeometric series

Set
$$(x)_m := x(x+1)\cdots(x+m-1)$$
.

Siegel: the "hypergeometric" series

$${}_{p}F_{q}\begin{bmatrix}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\\ z^{q-p+1}\end{bmatrix}:=\sum_{n=0}^{\infty}\frac{(a_{1})_{n}\cdots(a_{p})_{n}}{n!(b_{1})_{n}\cdots(b_{q})_{n}}z^{n(q-p+1)},$$

is an *E*-function when $q \ge p \ge 1$, $a_j \in \mathbb{Q}$ and $b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\le 0}$ for all *j*. L(z) and H(z) are not of ${}_pF_q(z^{q-p+1})$ type but

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{n}\right) \frac{z^{n}}{n!} = e^{(3-2\sqrt{2})z} \cdot {}_{1}F_{1} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}; 4\sqrt{2}z \\ \sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k}\right) \frac{z^{n}}{n!} = ze^{z} \cdot {}_{2}F_{2} \begin{bmatrix} 1, 1 \\ 2, 2 \end{bmatrix}; -z \end{bmatrix}.$$

Observation: Every polynomial with coefficients in $\overline{\mathbb{Q}}$ in series ${}_{p}F_{q}[a_{1}, \ldots, a_{p}; b_{1}, \ldots, b_{q}; \lambda z^{q-p+1}]$, with $q \ge p \ge 1$, $a_{j}, b_{j} \in \mathbb{Q}$ and $\lambda \in \overline{\mathbb{Q}}$, is an *E*-function. (The integers *p* and *q* can take different values for each series involved in the polynomial.)

Siegel's question

Question 1 (Siegel, 1949)

Is it possible to write every E-function as a polynomial with coefficients in $\overline{\mathbb{Q}}$ of series of the form ${}_{p}F_{q}[a_{1}, \ldots, a_{p}; b_{1}, \ldots, b_{q}; \lambda z^{q-p+1}]$, with $q \geq p \geq 1$, $a_{j}, b_{j} \in \mathbb{Q}$ and $\lambda \in \overline{\mathbb{Q}}$? (The integers p and q can take different values for each series involved in the polynomial.)

Observation: such a representation may not be unique. For instance

$$J_0(z) = {}_1F_2 \begin{bmatrix} 1 \\ 1,1; (iz/2)^2 \end{bmatrix} = e^{-iz} \cdot {}_1F_1 \begin{bmatrix} 1/2 \\ 1; 2iz \end{bmatrix}$$

Gorelov, 2004: the answer is yes if the *E*-function (even in the general sense) is solution of a non-zero linear differential equation of order ≤ 2 with coefficients in $\overline{\mathbb{Q}}(z)$.

In 2019, Fischler and myself gave a strong reason to believe that the answer was negative in general for differential order \geq 3. The answer was then shown to be indeed negative by Fresán and Jossen in 2020, who produced an explicit counter-example.

Rings of special values

G the ring of values taken at algebraic points by analytic continuations of *G*-functions. Algebraic numbers, $\Gamma(a/b)^b$ $(a, b \in \mathbb{N})$ and π are units of **G**.

H the ring generated by $\overline{\mathbb{Q}}$, $1/\pi$ and $\Gamma^{(n)}(r)$, $r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$, $n \in \mathbb{N}$. Algebraic numbers and $\Gamma(r)$ $(r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0})$ are units of **H**.

S the **G**-module generated by $\Gamma^{(n)}(r)$, $r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$, $n \in \mathbb{N}$. It is a ring.

 ${\bf G}$ and ${\bf H}$ are subrings of ${\bf S}.$

Proposition 1

(i) **H** is generated by
$$\overline{\mathbb{Q}}$$
, $1/\pi$ and

$$\begin{cases} \mathsf{Li}_{s}(e^{2i\pi r}) & s \in \mathbb{N}^{*}, \ r \in \mathbb{Q}, \ (s, e^{2i\pi r}) \neq (1, 1) \\ \log(q) & q \in \mathbb{N}^{*} \\ \Gamma(r) & r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0} \\ \gamma := -\Gamma'(1) & (Euler's \ constant) \end{cases}$$

(ii) **S** is the **G**[γ]-module generated by $\Gamma(r)$, $r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$.

Main result

Theorem 1 (Fischler-R., 2019)

At least one of the following statements is true:

- (*i*) $\mathbf{G} \subset \mathbf{H};$
- (ii) Siegel's question has a negative answer.

(i) is very unlikely. It contradicts a conjecture on (exponential) periods that generalizes Grothendieck's periods conjecture.

If there exist $s \in \mathbb{N}^*$ and $\alpha \in \overline{\mathbb{Q}}$ such that $Li_s(\alpha) \in \mathbf{G}$ is not in \mathbf{H} , then the *E*-function

$$\sum_{n=2}^{\infty} \left(\sum_{k=1}^{n-1} \frac{\alpha^k}{k^s} \right) \frac{z^n}{n!}$$

is a counter-example, of differential order at most s + 2.

I will outline the proof of Theorem 1 when in Siegel's question we further assume that p = q. The series are then said to be confluent hypergeometric series.

The proof of the general case is based on the case p = q together with more complicated arguments.

Asymptotic expansions in large sectors

Definition 2 Let $\theta \in \mathbb{R}$. We write

$$f(z) \sim \sum_{\rho \in \mathbb{C}} e^{\rho z} \sum_{\alpha \in \mathbb{C}} \sum_{i \in \mathbb{N}} \sum_{n=0}^{\infty} c_{\rho,\alpha,i,n}(\theta) \frac{\log(z)^i}{z^{n+\alpha}} \qquad (c_{\rho,\alpha,i,n}(\theta) \in \mathbb{C})$$

where the sums over ρ, α, i are finite, and we say that the RHS is the (asymptotic) expansion of f at ∞ in a large sector bisected by the direction θ , when:

There exist ε , R, B, C > 0 and certain functions $f_{\rho}(z)$ holomorphic in the sector

$$U := \Big\{ z \in \mathbb{C}, \ |z| \ge R, \ \theta - \frac{\pi}{2} - \varepsilon \le \arg(z) \le \theta + \frac{\pi}{2} + \varepsilon \Big\},$$

such that $f(z) = \sum_{
ho} e^{
ho z} f_{
ho}(z)$ and

$$\left|f_{\rho}(z)-\sum_{\alpha\in\mathbb{C}}\sum_{i\in\mathbb{N}}\sum_{n=0}^{N-1}c_{\rho,\alpha,i,n}(\theta)\frac{\log(z)^{i}}{z^{n+\alpha}}\right|\leq\frac{C^{N}N!}{|z|^{N-B}},\quad z\in U,\ N\geq 1.$$

If such an expansion exists in some large sector, it is unique in this sector.

Asymptotic expansions of *E*-functions

Theorem 2

(i) (André, 2000) Let f(z) be an *E*-function. There exists a finite set A such that, for any $\theta \in (-\pi, \pi) \setminus A$,

$$f(z) \sim \sum_{\rho \in \overline{\mathbb{Q}}} e^{\rho z} \sum_{\alpha \in \mathbb{Q}} \sum_{i \in \mathbb{N}} \sum_{n=0}^{\infty} c_{\rho,\alpha,i,n}(\theta) \frac{\log(z)^i}{z^{n+\alpha}},$$

in a large sector bisected by the direction θ , where (Fischler-R., 2016) the coefficients

$$c_{
ho,lpha,i,n}(heta)\in {\sf S}.$$

(ii) (Fischler-R., 2019) Let $\xi \in \mathbf{G}$. There exists an *E*-function F(z) and a finite set *S* such that for any $\theta \in (-\pi, \pi) \setminus S$, ξ is one of the $c_{\rho,\alpha,i,n}(\theta)$ of the expansion of F(z) in a large sector bisected by θ .

Asymptotic expansions of confluent hypergeometric series

Theorem 3

Let $\theta \in (-\pi, \pi) \setminus \{0\}$, and f(z) be a confluent hypergeometric series ${}_{p}F_{p}(z)$ with rational parameters. Then,

$$f(z) \sim \sum_{\rho \in \{0,1\}} e^{\rho z} \sum_{\alpha \in \mathbb{Q}} \sum_{i \in \mathbb{N}} \sum_{n=0}^{\infty} c_{\rho,\alpha,i,n}(\theta) \frac{\log(z)^i}{z^{n+\alpha}}$$

in a large sector bisected by the direction θ where (Fischler-R., 2019) the coefficients

$$c_{\rho,\alpha,i,n}(\theta) \in \mathbf{H}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is a consequence of Barnes and Wright's classical results, with refinements coming from the theory of Meijer's *G*-function.

Proof of Theorem 1 in the case p = qLet $\xi \in \mathbf{G}$.

By Theorem 2(*ii*), there exist an *E*-function F(z) and a finite set *S* such that for any $\theta \in (-\pi, \pi) \setminus S$, ξ is a coefficient of the expansion of F(z) in a large sector bisected by θ .

Assume that Siegel's question has a positive answer (in the case p = q).

There exist ${}_{p}F_{p}(z)$ hypergeometric series f_{1}, \ldots, f_{n} with rational parameters, algebraic numbers $\lambda_{1}, \ldots, \lambda_{n}$, and a polynomial $P \in \overline{\mathbb{Q}}[X_{1}, \ldots, X_{n}]$, such that

$$F(z) = P(f_1(\lambda_1 z), \ldots, f_n(\lambda_n z)).$$

Choose $\theta \in (-\pi, \pi) \setminus S$ such that $\theta + \arg(\lambda_i) \notin \pi\mathbb{Z}$ for every *i*. By Theorem 3, the expansion of each $f_i(\lambda_i z)$ in a large sector bisected by θ has coefficients in **H**. The same holds for F(z) because **H** is a $\overline{\mathbb{Q}}$ -algebra.

Such an expansion being unique, the coefficient ξ belongs to **H**.