## Siegel's problem for $E$-functions

## Tanguy Rivoal, CNRS and Université Grenoble Alpes

Joint work with Stéphane Fischler, Université Paris-Sud

Conference Diophantine Analysis and Related Topics, Moscow, june 2021, live from Grenoble

## $E$ - and $G$-functions (Siegel, 1929)

Definition 1
A power series $F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n} \in \overline{\mathbb{Q}}[[z]]$ is an $E$-function if
(i) $F(z)$ is solution of a non-zero linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.
(ii) There exists $C>0$ such that for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and any $n \geq 0,\left|\sigma\left(a_{n}\right)\right| \leq C^{n+1}$.
(iii) There exists $D>0$ and a sequence of positive integers $d_{n}$, with $d_{n} \leq D^{n+1}$, such that $d_{n} a_{m}$ are algebraic integers for all $m \leq n$.

By ( $i$ ), the $a_{n}$ 's all lie in a Galoisian number field $\mathbb{K}$. There are only finitely many Galois conjugates $\sigma\left(a_{n}\right)$ of $a_{n}$ to consider in (ii).
$E$-functions are entire functions. They form a ring stable under $\frac{d}{d z}$ and $\int_{0}^{z}$. If $F(z)$ is an $E$-function and $\alpha \in \overline{\mathbb{Q}}$, then $F(\alpha z)$ is an $E$-function.

A power series $\sum_{n=0}^{\infty} a_{n} z^{n} \in \overline{\mathbb{Q}}[[z]]$ is a $G$-function if $\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n}$ is an $E$-function.

## Examples

$E$-functions: polynomials in $\overline{\mathbb{Q}}[z]$,

$$
\begin{gathered}
\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad L(z):=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{n}\right) \frac{z^{n}}{n!}, \\
H(z):=\sum_{n=0}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{k}\right) \frac{z^{n}}{n!}, \quad J_{0}(z):=\sum_{n=0}^{\infty} \frac{(i z / 2)^{2 n}}{n!^{2}} .
\end{gathered}
$$

$G$-functions: algebraic functions over $\overline{\mathbb{Q}}(z)$ regular at 0 , (multi)polylogarithms

$$
\begin{gathered}
\operatorname{Li}_{s}(z):=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}} \quad(s \in \mathbb{Z}), \\
\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{z^{n_{1}}}{n_{1}^{s_{1}} n_{2}^{s_{2}} \cdots n_{k}^{s_{k}}} \quad\left(s_{1}, s_{2}, \ldots, s_{k} \in \mathbb{Z}\right), \\
\frac{1}{\pi} \int_{0}^{1} \frac{\sqrt{x(1-x)}}{1-z x} d x .
\end{gathered}
$$

The intersection of both classes of series is reduced to $\overline{\mathbb{Q}}[z]$.

## Hypergeometric series

Set $(x)_{m}:=x(x+1) \cdots(x+m-1)$.
Siegel: the "hypergeometric" series
is an $E$-function when $q \geq p \geq 1, a_{j} \in \mathbb{Q}$ and $b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ for all $j$.
$L(z)$ and $H(z)$ are not of ${ }_{p} F_{q}\left(z^{q-p+1}\right)$ type but

$$
\begin{gathered}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{n}\right) \frac{z^{n}}{n!}=e^{(3-2 \sqrt{2}) z} \cdot{ }_{1} F_{1}\left[\begin{array}{c}
1 / 2 \\
1
\end{array} ; 4 \sqrt{2} z\right] \\
\sum_{n=0}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{k}\right) \frac{z^{n}}{n!}=z e^{z} \cdot{ }_{2} F_{2}\left[\begin{array}{c}
1,1 \\
2,2
\end{array} ;-z\right]
\end{gathered}
$$

Observation: Every polynomial with coefficients in $\overline{\mathbb{Q}}$ in series ${ }_{p} F_{q}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \lambda z^{q-p+1}\right]$, with $q \geq p \geq 1, a_{j}, b_{j} \in \mathbb{Q}$ and $\lambda \in \overline{\mathbb{Q}}$, is an $E$-function. (The integers $p$ and $q$ can take different values for each series involved in the polynomial.)

## Hypergeometric series

Set $(x)_{m}:=x(x+1) \cdots(x+m-1)$.
Siegel: the "hypergeometric" series
is an $E$-function when $q \geq p \geq 1, a_{j} \in \mathbb{Q}$ and $b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ for all $j$.
$L(z)$ and $H(z)$ are not of ${ }_{p} F_{q}\left(z^{q-p+1}\right)$ type but

$$
\begin{gathered}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{n}\right) \frac{z^{n}}{n!}=e^{(3-2 \sqrt{2}) z} \cdot{ }_{1} F_{1}\left[\begin{array}{c}
1 / 2 \\
1
\end{array} ; 4 \sqrt{2} z\right] \\
\sum_{n=0}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{k}\right) \frac{z^{n}}{n!}=z e^{z} \cdot{ }_{2} F_{2}\left[\begin{array}{c}
1,1 \\
2,2
\end{array} ;-z\right]
\end{gathered}
$$

Observation: Every polynomial with coefficients in $\overline{\mathbb{Q}}$ in series ${ }_{p} F_{q}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \lambda z^{q-p+1}\right]$, with $q \geq p \geq 1, a_{j}, b_{j} \in \mathbb{Q}$ and $\lambda \in \overline{\mathbb{Q}}$, is an $E$-function. (The integers $p$ and $q$ can take different values for each series involved in the polynomial.)

## Siegel's question

## Question 1 (Siegel, 1949)

Is it possible to write every E-function as a polynomial with coefficients
in $\overline{\mathbb{Q}}$ of series of the form ${ }_{p} F_{q}\left[a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \lambda z^{q-p+1}\right]$, with
$q \geq p \geq 1, a_{j}, b_{j} \in \mathbb{Q}$ and $\lambda \in \overline{\mathbb{Q}}$ ? (The integers $p$ and $q$ can take different values for each series involved in the polynomial.)
Observation: such a representation may not be unique. For instance

$$
J_{0}(z)={ }_{1} F_{2}\left[\begin{array}{c}
1 \\
1,1
\end{array} ;(i z / 2)^{2}\right]=e^{-i z} \cdot{ }_{1} F_{1}\left[\begin{array}{c}
1 / 2 \\
1
\end{array} 2 i z\right] .
$$

Gorelov, 2004: the answer is yes if the $E$-function (even in the general sense) is solution of a non-zero linear differential equation of order $\leq 2$ with coefficients in $\overline{\mathbb{Q}}(z)$.

In 2019, Fischler and myself gave a strong reason to believe that the answer was negative in general for differential order $\geq 3$. The answer was then shown to be indeed negative by Fresán and Jossen in 2020, who produced an explicit counter-example.

In the rest of the talk, I will explain our 2019 result.

## Rings of special values

G the ring of values taken at algebraic points by analytic continuations of $G$-functions. Algebraic numbers, $\Gamma(a / b)^{b}(a, b \in \mathbb{N})$ and $\pi$ are units of $\mathbf{G}$.
$\mathbf{H}$ the ring generated by $\overline{\mathbb{Q}}, 1 / \pi$ and $\Gamma^{(n)}(r), r \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}, n \in \mathbb{N}$. Algebraic numbers and $\Gamma(r)\left(r \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)$ are units of $\mathbf{H}$.
$\mathbf{S}$ the $\mathbf{G}$-module generated by $\Gamma^{(n)}(r), r \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}, n \in \mathbb{N}$. It is a ring.
$\mathbf{G}$ and $\mathbf{H}$ are subrings of $\mathbf{S}$.

## Proposition 1

(i) $\mathbf{H}$ is generated by $\overline{\mathbb{Q}}, 1 / \pi$ and

$$
\begin{cases}\operatorname{Li}_{s}\left(e^{2 i \pi r}\right) & s \in \mathbb{N}^{*}, r \in \mathbb{Q},\left(s, e^{2 i \pi r}\right) \neq(1,1) \\ \log (q) & q \in \mathbb{N}^{*} \\ \Gamma(r) & r \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0} \\ \gamma:=-\Gamma^{\prime}(1) & (\text { Euler's constant })\end{cases}
$$

(ii) $\mathbf{S}$ is the $\mathbf{G}[\gamma]$-module generated by $\Gamma(r), r \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$.

## Main result

## Theorem 1 (Fischler-R., 2019)

At least one of the following statements is true:
(i) $\mathbf{G} \subset \mathbf{H}$;
(ii) Siegel's question has a negative answer.
$(i)$ is very unlikely. It contradicts a conjecture on (exponential) periods that generalizes Grothendieck's periods conjecture.

If there exist $s \in \mathbb{N}^{*}$ and $\alpha \in \overline{\mathbb{Q}}$ such that $\operatorname{Li}_{s}(\alpha) \in \mathbf{G}$ is not in $\mathbf{H}$, then the $E$-function

$$
\sum_{n=2}^{\infty}\left(\sum_{k=1}^{n-1} \frac{\alpha^{k}}{k^{s}}\right) \frac{z^{n}}{n!}
$$

is a counter-example, of differential order at most $s+2$.
I will outline the proof of Theorem 1 when in Siegel's question we further assume that $p=q$. The series are then said to be confluent hypergeometric series.
The proof of the general case is based on the case $p=q$ together with more complicated arguments.

## Asymptotic expansions in large sectors

## Definition 2

Let $\theta \in \mathbb{R}$. We write

$$
f(z) \sim \sum_{\rho \in \mathbb{C}} e^{\rho z} \sum_{\alpha \in \mathbb{C}} \sum_{i \in \mathbb{N}} \sum_{n=0}^{\infty} c_{\rho, \alpha, i, n}(\theta) \frac{\log (z)^{i}}{z^{n+\alpha}} \quad\left(c_{\rho, \alpha, i, n}(\theta) \in \mathbb{C}\right)
$$

where the sums over $\rho, \alpha, i$ are finite, and we say that the RHS is the (asymptotic) expansion of $f$ at $\infty$ in a large sector bisected by the direction $\theta$, when:

There exist $\varepsilon, R, B, C>0$ and certain functions $f_{\rho}(z)$ holomorphic in the sector

$$
U:=\left\{z \in \mathbb{C},|z| \geq R, \theta-\frac{\pi}{2}-\varepsilon \leq \arg (z) \leq \theta+\frac{\pi}{2}+\varepsilon\right\}
$$

such that $f(z)=\sum_{\rho} e^{\rho z} f_{\rho}(z)$ and

$$
\left|f_{\rho}(z)-\sum_{\alpha \in \mathbb{C}} \sum_{i \in \mathbb{N}} \sum_{n=0}^{N-1} c_{\rho, \alpha, i, n}(\theta) \frac{\log (z)^{i}}{z^{n+\alpha}}\right| \leq \frac{C^{N} N!}{|z|^{N-B}}, \quad z \in U, N \geq 1 .
$$

If such an expansion exists in some large sector, it is unique in this sector.

## Asymptotic expansions of $E$-functions

Theorem 2
(i) (André, 2000) Let $f(z)$ be an E-function. There exists a finite set $A$ such that, for any $\theta \in(-\pi, \pi) \backslash A$,

$$
f(z) \sim \sum_{\rho \in \overline{\mathbb{Q}}} e^{\rho z} \sum_{\alpha \in \mathbb{Q}} \sum_{i \in \mathbb{N}} \sum_{n=0}^{\infty} c_{\rho, \alpha, i, n}(\theta) \frac{\log (z)^{i}}{z^{n+\alpha}},
$$

in a large sector bisected by the direction $\theta$, where (Fischler-R., 2016) the coefficients

$$
c_{\rho, \alpha, i, n}(\theta) \in \mathbf{S} .
$$

(ii) (Fischler-R., 2019) Let $\xi \in \mathbf{G}$. There exists an E-function $F(z)$ and a finite set $S$ such that for any $\theta \in(-\pi, \pi) \backslash S, \xi$ is one of the $c_{\rho, \alpha, i, n}(\theta)$ of the expansion of $F(z)$ in a large sector bisected by $\theta$.

## Asymptotic expansions of confluent hypergeometric series

Theorem 3
Let $\theta \in(-\pi, \pi) \backslash\{0\}$, and $f(z)$ be a confluent hypergeometric series ${ }_{p} F_{p}(z)$ with rational parameters. Then,

$$
f(z) \sim \sum_{\rho \in\{0,1\}} e^{\rho z} \sum_{\alpha \in \mathbb{Q}} \sum_{i \in \mathbb{N}} \sum_{n=0}^{\infty} c_{\rho, \alpha, i, n}(\theta) \frac{\log (z)^{i}}{z^{n+\alpha}}
$$

in a large sector bisected by the direction $\theta$ where (Fischler-R., 2019) the coefficients

$$
c_{\rho, \alpha, i, n}(\theta) \in \mathbf{H} .
$$

It is a consequence of Barnes and Wright's classical results, with refinements coming from the theory of Meijer's $G$-function.

## Proof of Theorem 1 in the case $p=q$

Let $\xi \in \mathbf{G}$.
By Theorem 2(ii), there exist an $E$-function $F(z)$ and a finite set $S$ such that for any $\theta \in(-\pi, \pi) \backslash S, \xi$ is a coefficient of the expansion of $F(z)$ in a large sector bisected by $\theta$.

Assume that Siegel's question has a positive answer (in the case $p=q$ ).
There exist ${ }_{p} F_{p}(z)$ hypergeometric series $f_{1}, \ldots, f_{n}$ with rational parameters, algebraic numbers $\lambda_{1}, \ldots, \lambda_{n}$, and a polynomial $P \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$, such that

$$
F(z)=P\left(f_{1}\left(\lambda_{1} z\right), \ldots, f_{n}\left(\lambda_{n} z\right)\right)
$$

Choose $\theta \in(-\pi, \pi) \backslash S$ such that $\theta+\arg \left(\lambda_{i}\right) \notin \pi \mathbb{Z}$ for every i. By Theorem 3, the expansion of each $f_{i}\left(\lambda_{i} z\right)$ in a large sector bisected by $\theta$ has coefficients in $\mathbf{H}$. The same holds for $F(z)$ because $\mathbf{H}$ is a $\overline{\mathbb{Q}}$-algebra.

Such an expansion being unique, the coefficient $\xi$ belongs to $\mathbf{H}$.

