Спецкурс "Большие уклонения"

Шкляев А.В.

5 октября 2018 г.

Принцип больших уклонений

Итак, мы забежали немного вперед и посмотрели на точные теоремы для случайных блужданий, а теперь вернемся назад и будем смотреть на то, что называют грубой асимптотикой — предельное поведение

$$\frac{1}{n}\ln \mathbf{P}(Y_n \in A), \ n \to \infty,$$

где A — некоторое измеримое множество, а Y_n — случайные элементы (величины, векторы, процессы).

Пример 5.1. Если $Y_n = S_n/n$, где $S_n = X_1 + ... + X_n$, $\mathbf{E} X_i = \mu$, X_i удовлетворяют условию $R(h) < \infty$, $A = [\theta, \infty)$, $\theta \in (\mu, m^+)$, то

$$\frac{1}{n}\ln \mathbf{P}(Y_n \in A) = \frac{1}{n}\ln \mathbf{P}(S_n \ge \theta n) \to -\Lambda(\theta)$$

в силу теоремы Петрова.

При $A = [\theta_1, \theta_2], \, \mu < \theta_1 < m^+$ верна аналогичная оценка

$$\frac{1}{n}\ln \mathbf{P}(Y_n \in A) = \frac{1}{n}\ln \mathbf{P}(S_n \ge \theta n) \to -\Lambda(\theta_1)$$

А вот, например, если $X_i \in \mathbb{Z}$, а $A = \{\theta\}$, то при целых θ асимптотика будет та же, при иррациональных вероятность будет нулевой, а при рациональных предела вероятности не будет.

Это приводит нас к соображению о том, что в точности исследовать поведение рассматриваемых мер достаточно затруднительно. К счастью, с такими же трудностями приходится сталкивать при изучении обычной слабой сходимости мер:

Пример 5.2. Пусть X_i — н.о.р., $X_i \in \mathbb{Z}$, $\mathbf{E}X_i = 0$, $\mathbf{D}X_i = \sigma^2 > 0$. Тогда

$$Y_n = \frac{S_n}{\sqrt{n}\sigma} \xrightarrow{d} Z \sim \mathcal{N}(0,1).$$

Будет ли выполнена сходимость $\mathbf{P}(Y_n \in A) \to \mathbf{P}(Z \in A)$ для любого A? Нет, если взять в качества A множество чисел вида $m/(\sigma\sqrt{k})$ для целых m, k, то левая часть равна единице, а правая нулю. В случае слабой сходимости это приводит к такому подходу:

Лемма 5.1. (Александрова). Следующие условия равносильны:

- 1) $\mathbf{P}_n \stackrel{d}{\to} \mathbf{P}$, $n \to \infty$,
- 2) $\mathbf{P}_n(A) \to \mathbf{P}(A)$ при любых $A \colon \mathbf{P}(\partial A) = 0$,
- 3) $\limsup \mathbf{P}_n(F) \leq \mathbf{P}(F)$ при всех замкнутых F,
- 4) $\liminf \mathbf{P}_n(G) \ge \mathbf{P}(G)$ при всех открытых G.
- (5) $\mathbf{P}(A_{int}) \leq \liminf \mathbf{P}_n(A) \leq \limsup \mathbf{P}_n(A) \leq \mathbf{P}(A_{out})$, где A_{int} внутренность множества A, A_{out} его замыкание.

Перейдем к общему определению.

Определение 5.1. В общем случае, назовем функцию f(x) полунепрерывной снизу (сверху) в точке, если

$$\lim \inf_{x \to x_0} f(x) \ge f(x_0), \ (\lim \sup_{x \to x_0} f(x) \le f(x_0)).$$

Соответственно, полунепрерывность на множестве есть полунепрерывность в каждой точке множества. Это условие равносильно тому, что $f^{-1}(-\infty, a]$ — замкнутое множество при любом a.

Примером полунепрерывной сверху функции является [x], полунепрерывной снизу $\{x\}$.

Определение 5.2. Назовем $\phi y n \kappa u u e u$ $p o c m a \Lambda(x)$ неотрицательную полунепрерывную снизу функцию.

Определение 5.3. Будем говорить, что последовательность мер \mathbf{P}_n удовлетворяет ПБУ (*принципу больших уклонений*) с функцией роста Λ , если

$$-\inf_{x\in A_{int}}\Lambda(x)\leq \liminf\inf\frac{\ln\mathbf{P}_n(A)}{n}\leq \limsup\frac{\ln\mathbf{P}_n(A)}{n}\leq -\inf_{x\in A_{out}}\Lambda(x).$$

Что же это означает? Фактически, мы получаем оценки

$$\exp(-(1+\delta)\inf_{x\in A_{int}}\Lambda(x)n) \le \mathbf{P}_n(A) \le \exp(-(1-\delta)\inf_{x\in A_{out}}\Lambda(x)n)$$

при любом наперед взятом δ и достаточно больших n.

Нам приходится рассматривать разные множества в левой и правой частях, как и прежде это необходимая плата за τ о, что множество A достаточно общего вида.

Нетрудно заметить, что справедливо следующая эквивалентная формулировка 1) Для любого замкнутого F

$$\lim \sup_{n \to \infty} \frac{1}{n} \ln \mathbf{P}_n(F) \le -\inf_{x \in F} \Lambda(x).$$

$$\lim \inf_{n \to \infty} \frac{1}{n} \ln \mathbf{P}_n(G) \ge -\inf_{x \in G} \Lambda(x).$$

Действительно, тогда ПБУ будет следовать из этих утверждения для A_{int} и A_{out} .

С одной стороны, ПБУ похож на утверждения наподобие теоремы Петрова, но слабее их в том смысле, что рассматривается только логарифм вероятности. В теореме Петрова явно указывался множитель перед экспонентой, а из ПБУ мы можешь лишь определить функцию в экспоненте.

С другой стороны, здесь речь идет о вероятностях попадания в произвольные множества, да и не требуется никаких ограничений на рассматриваемые X. Давайте рассмотрим величину X и рассмотрим функцию $\Lambda(\theta) = \sup_h (h\theta - \ln R(h))$. Давайте посмотрим на нее на некоторых примерах.

Пример 5.3. Пусть $X_i \sim \mathcal{N}(0,1)$. Тогда $R(h) = e^{h^2/2}$,

$$\Lambda(\theta) = \sup(h\theta - \ln R(h)).$$

Функция $h\theta - \ln R(h)$ дифференцируема на всей прямой, при этом $(h\theta - \ln R(h))' = \theta - h$. Значит, $\Lambda(\theta) = \theta^2/2$, как и в теореме Петрова, но уже на всей прямой, включая 0.

Пример 5.4. Пусть $X_i \sim Cauchy$. Тогда $R(h) = \infty$ при $h \neq 0$, R(h) = 1 при h = 0. Значит $\Lambda(\theta) = 0$.

Пример 5.5. Пусть $X_i \sim exp(\lambda), f_{X_1}(x) = e^{-\lambda x} \lambda I_{x>0}$.

$$R(h) = \int_0^\infty e^{hx} e^{-\lambda x} \lambda dx,$$

т.е. $\frac{\lambda}{\lambda-h}$ при $h<\lambda$ и ∞ при $h\geq\lambda$. Тогда

$$\Lambda(\theta) = \sup_{h < \lambda} (h\theta - \ln R(h)).$$

Так как производная выражения под супремумом равна $\theta - (\ln R(h))' = \theta - 1/(\lambda - h)$, то: 1) при $\theta < 0$ производная отрицательна, функция убывает, супремум не достигается, при $h \to \infty$ величина $h\theta - \ln \lambda + \ln(\lambda - h)$ стремится к $+\infty$.

2) При $\theta \in [0, \infty)$ экстремум достигается при $h = \lambda - \theta^{-1}$.

Следовательно, имеем $\Lambda(\theta) = \theta \lambda - 1 - \ln \lambda \theta$, а при $\theta \leq 0$ выполнено соотношение $\Lambda(\theta) = \infty$.

Задача 5.1. Найти $\Lambda(\theta)$ для а) $X_i \sim Bern(p)$, б) $X_i \sim Poiss(\lambda)$.

На следующей лекции мы докажем, что справедлива следующая теорема Крамера

Теорема 5.1. (Крамера) Пусть S_n — случайное блуждание с $R(h) = \mathbf{E}e^{hX}$ (это матожидание всегда существует, возможно являясь бесконечным). Тогда меры $\mathbf{P}(S_n/n \in \cdot)$ удовлетворяют ПБУ с $\Lambda(x) = \sup_h (hx - \ln R(h))$.

Эта формулировка может показаться удивительной — ведь мы не накладываем на блуждание никаких условий. А как же величины с неэкспоненциальными хвостами? Ответ прост, если хвосты, скажем, степенные, то $\Lambda(x)$ окажется равной 0 (т.к. при $h \neq 0$ выражение под супремумом есть $-\infty$ аналогично тому, что было в Примере 4) и мы просто заявим, что $\ln \mathbf{P}(S_n/n \in A)/n \to 0$, т.е. эти для любого $\varepsilon > 0$ и всех достаточно больших n

$$e^{-\varepsilon n} \le \mathbf{P}(S_n/n \in A) \le e^{\varepsilon n}.$$

Верхняя оценка бесполезна, а нижняя просто говорит о том, что вероятность не убывает экспоненциально.

Если предположить, что условие Крамера все же выполняется на $(0, h^+)$ и положить m^+ также как и раньше, то окажется, что при $x \in (\mu, m^+)$ $\Lambda(x)$ осталось той же, что и раньше, как мы видим из Леммы. Поэтому ничего критического не произошло и эта версия теоремы Крамера не противоречит теореме Петрова.

Перед тем как доказывать Теорему Крамера, давайте изучим функцию Л:

Лемма 5.2. 1) $\ln R$ выпукла, Λ выпуклая функция роста.

- 2) Если $D_R = \emptyset$, то $\Lambda(\theta) = 0$. Если $R(\tilde{h}) < \infty$ при некотором $\tilde{h} > 0$, то существует $\mu = \mathbf{E} X$ (возможно $\mu = -\infty$) и $\Lambda(\theta)$ при $\theta > \mu$ неубывает. Аналогично при $R(\tilde{h}) > -\infty$ при некотором $\tilde{h} < 0$, то существует $\mu = \mathbf{E} X$ (возможно $\mu = \infty$) и $\Lambda(\theta)$ при $\theta < \mu$ невозрастает. При этом $\Lambda(\mu) = 0$.
- 3) Во внутренних точках D_R $R(\cdot)$ дифференцируема и $R'(h) = \mathbf{E} X_1 e^{hX_1}$, $\Lambda'(\theta) = y$, где $\Lambda(\theta) = y\theta \ln R(y)$. Доказательство Леммы проведем на следующей лекции