Лекция 12

Неравенства для субмартингалов.

Сходимость субмартингалов

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$ и заданную на нем фильтрацию $\{\mathcal{F}_n, n \in \mathbb{N}_0\}$.

Определение 1. Неотрицательная целочисленная случайная величина τ (с возможным значением $+\infty$) называется марковским моментом относительно фильтрации $\{\mathcal{F}_n, \ n \in \mathbb{N}_0\}$, если для каждого $n \in \mathbb{N}_0$ событие $\{\tau \leq n\}$ принадлежит \mathcal{F}_n .

Лемма 1. Если τ — марковский момент, то $\{\tau < n\} \in \mathcal{F}_{n-1}$ при $n \in \mathbb{N}$ и $\{\tau = n\} \in \mathcal{F}_n$ при $n \in \mathbb{N}_0$. Наоборот, если τ — неотрицательная целочисленная случайная величина и для каждого $n \in \mathbb{N}_0$ событие $\{\tau = n\}$ принадлежит \mathcal{F}_n , то τ — марковский момент.

Доказательство. Поскольку $\{\tau < n\} = \{\tau \le n-1\}$ и $\{\tau \le n-1\} \in \mathcal{F}_{n-1}$, то $\{\tau < n\} \in \mathcal{F}_{n-1}$. Далее,

$$\{\tau = n\} = \{\tau \le n\} \setminus \{\tau \le n - 1\}$$

и $\{\tau \leq n\} \in \mathcal{F}_n$, $\{\tau \leq n-1\} \in \mathcal{F}_n$, поэтому $\{\tau = n\} \in \mathcal{F}_n$. Докажем вторую часть утверждения. Заметим, что

$$\{\tau \le n\} = \bigcup_{k=0}^{n} \{\tau = k\}.$$

Пусть $k \in \{0, 1, \dots, n\}$. Поскольку $\{\tau = k\} \in \mathcal{F}_k$ и $\mathcal{F}_k \subset \mathcal{F}_n$, то $\{\tau = k\} \in \mathcal{F}_n$. Следовательно, $\bigcup_{k=0}^n \{\tau = k\} \in \mathcal{F}_n$ и, значит, $\{\tau \leq n\} \in \mathcal{F}_n$. Лемма доказана.

Пример 1. Пусть $\{X_n, n \in \mathbb{N}_0\}$ — случайная последовательность, согласованная с фильтрацией $\{\mathcal{F}_n, n \in \mathbb{N}_0\}$, а B — произвольное борелевское множество. Пусть τ — момент первого достижения множества B последовательностью $\{X_n, n \in \mathbb{N}_0\}$. Поскольку

$$\{\tau = n\} = \{X_0 \in \overline{B}\} \{X_1 \in \overline{B}\} \dots \{X_{n-1} \in \overline{B}\} \{X_n \in B\} \in \mathcal{F}_n,$$

то по лемме 1 τ – марковский момент относительно фильтрации $\{\mathcal{F}_n,\ n\in\mathbb{N}_0\}$.

Случайная величина, равная постоянной, является марковским моментом; если τ и σ — марковские моменты, то таковыми являются случайные величины $\tau + \sigma$, $\min(\tau, \sigma)$, $\max(\tau, \sigma)$ (эти утверждения докажите сами).

Определение 2. Для марковского момента τ введем σ -алгебру

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \leq n \} \in \mathcal{F}_n$$
для каждого $n \in \mathbb{N}_0 \}$.

Введенная σ -алгебра называется σ -алгеброй событий, наблюдаемых до случайного момента τ .

Лемма 2. Пусть τ – марковский момент и событие $A \in \mathcal{F}_{\tau}$, тогда $A \cap \{\tau < n\} \in \mathcal{F}_{n-1}$ при $n \in \mathbb{N}$ и $A \cap \{\tau = n\} \in \mathcal{F}_n$ при $n \in \mathbb{N}_0$. Наоборот, если событие A таково, что $A \cap \{\tau = n\} \in \mathcal{F}_n$ для каждого $n \in \mathbb{N}_0$, то $A \in \mathcal{F}_{\tau}$.

Доказательство. Пусть au – марковский момент и событие $A \in \mathcal{F}_{ au}$, тогда

$$A \cap \{\tau < n\} = A \cap \{\tau \le n - 1\} \in \mathcal{F}_{n-1},$$

$$A \cap \{\tau = n\} = (A \cap \{\tau \le n\}) \setminus (A \cap \{\tau \le n - 1\}) \in \mathcal{F}_n.$$

Если $A\cap \{\tau=k\}\in \mathcal{F}_k$ для каждого $k\in \mathbb{N}_0,$ то $A\cap \{\tau=k\}\in \mathcal{F}_n$ для $k\in \{0,\dots,n\},$ где $n\in \mathbb{N}_0,$ и, следовательно,

$$A \cap \{\tau \le n\} = \bigcup_{k=0}^{n} A \cap \{\tau = k\} \in \mathcal{F}_n.$$

Значит, $A \in \mathcal{F}_{\tau}$. Лемма доказана.

Лемма 3. Если τ и σ – марковские моменты, причем $\tau \leq \sigma$, то $\mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma}$.

Доказательство. Пусть $A \in \mathcal{F}_{\tau}$, тогда при $n \in \mathbb{N}_0$

$$A \cap \{\sigma = n\} = A \cap (\{\sigma = n\} \cap \{\tau \le n\}) = (A \cap \{\tau \le n\}) \cap \{\sigma = n\} \in \mathcal{F}_n$$

(здесь учтено, что $A \cap \{\tau \leq n\} \in \mathcal{F}_n$). Следовательно, по лемме $2 \ A \subset \mathcal{F}_\sigma$. Лемма доказана.

Следующий результат, установленный Дубом, называется *теоремой об остановке*. Будем говорить, что случайная величина ξ ограничена сверху, если п.н. $\xi \leq K$, где K – некоторая постоянная.

Теорема 1. Пусть $\{X_n, n \in \mathbb{N}_0\}$ – мартингал, пусть τ и σ – ограниченные марковские моменты, причем $\tau \leq \sigma$. Тогда

$$\mathbf{E}(X_{\sigma} \mid \mathcal{F}_{\tau}) = X_{\tau}.$$

Доказательство. Пусть п.н. $\sigma \leq K$, где $K \in \mathbb{N}$. Тогда

$$\mathbf{E}|X_{\sigma}| = \sum_{n=0}^{K} \mathbf{E}(|X_n|; \ \sigma = n) \le \sum_{n=0}^{K} \mathbf{E}|X_n| < +\infty.$$

Таким образом, определено условное математическое ожидание $\mathbf{E} \, (X_{\sigma} \mid \mathcal{F}_{\tau})$. Случайная величина X_{τ} измерима относительно σ -алгебры \mathcal{F}_{τ} (при $x \in \mathbb{R}$ и $n \in \mathbb{N}_0$ событие $\{X_{\tau} \leq x\} \cap \{\tau = n\}$ совпадает с событием $\{X_n \leq x\} \cap \{\tau = n\}$, принадлежащим \mathcal{F}_n). Осталось доказать, что для произвольного события $A \in \mathcal{F}_{\tau}$

$$\mathbf{E}(X_{\sigma}; A) = \mathbf{E}(X_{\tau}; A). \tag{1}$$

Сначала рассмотрим случай, когда $\sigma - \tau \le 1$. Тогда

$$\mathbf{E}(X_{\sigma} - X_{\tau}; A) = \sum_{n=0}^{K} \mathbf{E}(X_{\sigma} - X_{\tau}; A \cap \{\tau = n\}) =$$

$$= \sum_{n=0}^{K} \mathbf{E} (X_{\sigma} - X_{\tau}; A \cap \{\tau = n\} \cap \{\sigma = n\}) +$$

$$+ \sum_{n=0}^{K-1} \mathbf{E} (X_{\sigma} - X_{\tau}; A \cap \{\tau = n\} \cap \{\sigma = n + 1\}) =$$

$$= \sum_{n=0}^{K-1} \mathbf{E} (X_{n+1} - X_n; A \cap \{\tau = n\} \cap \{\sigma = n + 1\})$$

(здесь учтено, что если событие $\{\tau=n\}\cap \{\sigma=n\}$ произошло, то $X_{\sigma}-X_{\tau}=X_n-X_n=0$; а если событие $\{\tau=n\}\cap \{\sigma=n+1\}$ произошло, то $X_{\sigma}-X_{\tau}=X_{n+1}-X_n$). Заметим, что

$$A \cap \{\tau = n\} \cap \{\sigma = n + 1\} = A \cap \{\tau = n\} \cap \overline{\{\sigma = n\}} \in \mathcal{F}_n,$$

поскольку $A\cap \{\tau=n\}\in \mathcal{F}_n$ (см. лемму 2) и $\overline{\{\sigma=n\}}\in \mathcal{F}_n$ (см. лемму 1). Положим $B=A\cap \{\tau=n\}\cap \{\sigma=n+1\}$. Учитывая, что $\{X_n\}$ – мартингал, находим, что $\mathbf{E}(X_{n+1};\ B)=\mathbf{E}(X_n;\ B)$ при $n\in \mathbb{N}_0$ и, следовательно,

$$\mathbf{E}(X_{n+1} - X_n; A \cap \{\tau = n\} \cap \{\sigma = n+1\}) = 0.$$

Таким образом, $\mathbf{E}(X_{\sigma} - X_{\tau}; A) = 0$ и соотношение (1) доказано.

Теперь рассмотрим общий случай. Введем марковские моменты $\rho_n=\min\left(\sigma,\tau+n\right)$ при $n\in\{0,\ldots,K\}$ (ясно, что $\rho_0=\tau,\,\rho_K=\sigma$). Заметим, что $\rho_n\leq\rho_{n+1}\leq\rho_n+1$ при каждом $n\in\{0,\ldots,K-1\}$, поэтому по лемме 3 $A\in\mathcal{F}_{\rho_n}$ при $n\in\{0,\ldots,K\}$ и по доказанному

$$\mathbf{E}\left(X_{\rho_{0}};\ A\right) = \mathbf{E}\left(X_{\rho_{1}};\ A\right) = \ldots = \mathbf{E}\left(X_{\rho_{K}};\ A\right).$$

Откуда, замечая, что $\mathbf{E}\left(X_{\rho_0};\ A\right)=\mathbf{E}\left(X_{\tau};\ A\right)$ и $\mathbf{E}\left(X_{\rho_K};\ A\right)=\mathbf{E}\left(X_{\sigma};\ A\right)$, получаем (1). Теорема доказана.

Следствие 1. Если $\{X_n, n \in \mathbb{N}_0\}$ – мартингал и выполнены условия теоремы 1, то $\mathbf{E}X_{\tau} = \mathbf{E}X_{\sigma}$.

Замечание 1. Если $\{X_n, n \in \mathbb{N}_0\}$ – субмартингал и выполнены условия теоремы 1 на марковские моменты τ и σ , то $\mathbf{E}(X_\sigma \mid \mathcal{F}_\tau) \geq X_\tau$ и, значит, $\mathbf{E}X_\sigma \geq \mathbf{E}X_\tau$.

Следствие 2. Случайная последовательность $\{X_n, n \in \mathbb{N}_0\}$, согласованная с фильтрацией $\{\mathcal{F}_n, n \in \mathbb{N}_0\}$, является мартингалом относительно этой фильтрации тогда и только тогда, когда для любой неубывающей последовательности ограниченных марковских моментов τ_1, τ_2, \ldots последовательность $\{X_{\tau_n}, \mathcal{F}_{\tau_n}, n \in \mathbb{N}_0\}$ является мартингалом. Аналогичный результат справедлив для субмартингалов.

Пример 2. Пусть $\varkappa_1, \varkappa_2, \ldots$ – независимые одинаково распределенные случайные величины, причем $\mathbf{E}\varkappa_1 := a \in \mathbb{R}$. Введем случайное блуждание $S_0 = 0, \ S_n = \sum_{i=1}^n \varkappa_i, \ n \in \mathbb{N}$. Пусть τ – ограниченный марковский момент относительно естественной фильтрации $\mathcal{F}_n = \sigma \{S_0, \ldots, S_n\}, \ n \in \mathbb{N}_0$. Тогда справедливо mondecomeo Banba

$$\mathbf{E}S_{\tau} = a\mathbf{E}\tau. \tag{2}$$

В самом деле, положим $\widetilde{S}_n = S_n - na$ при $n \in \mathbb{N}_0$. Последовательность $\left\{\widetilde{S}_n, \ n \in \mathbb{N}_0\right\}$ является случайным блужданием с нулевым сносом и, следовательно, является мартингалом. Поэтому по следствию 1

$$\mathbf{E}\widetilde{S}_{\tau} = \mathbf{E}\widetilde{S}_0 = 0. \tag{3}$$

Поскольку $\mathbf{E}\widetilde{S}_{\tau} = \mathbf{E}(S_{\tau} - \tau a) = \mathbf{E}S_{\tau} - a\mathbf{E}\tau$, то из (3) следует (2).

Пример 2. Пусть $\varkappa_1, \varkappa_2, \ldots$ – независимые одинаково распределенные случайные величины, пусть существует такое $\lambda \in \mathbb{R} \setminus \{0\}$, что $\mathbf{E} \exp(\lambda \varkappa_1) := a < +\infty$ (условие Крамера). Введем случайное блуждание $S_0 = 0, S_n = \sum_{i=1}^n \varkappa_i, n \in \mathbb{N}$. Пусть τ – ограниченный марковский момент относительно естественной фильтрации $\mathcal{F}_n = \sigma \{S_0, \ldots, S_n\}, n \in \mathbb{N}_0$. Тогда справедливо фундаментальное тождество Вальда

$$\mathbf{E}\frac{e^{\lambda S_{\tau}}}{a^{\tau}} = 1. \tag{4}$$

В самом деле, последовательность $\left\{e^{\lambda S_n}/a^n,\ n\in\mathbb{N}_0\right\}$ является мартингалом. Поэтому по следствию 1

$$\mathbf{E} \frac{e^{\lambda S_{\tau}}}{a^{\tau}} = \mathbf{E} \frac{e^{\lambda S_0}}{a^0} = 1,$$

что доказывает (4).

Установим ряд неравенств для субмартингалов, принадлежащих Дубу и называемых максимальными и минимальными. Пусть $\{X_n, n \in \mathbb{N}_0\}$ - случайная последовательность. Положим

$$M_n = \max_{0 \le k \le n} X_k, \quad M_n^* = \max_{0 \le k \le n} |X_k|, \quad L_n = \min_{0 \le k \le n} X_k.$$

Теорема 2. Пусть $\{X_n, \mathcal{F}_n, n \in \mathbb{N}_0\}$ – субмартингал, тогда при $n \in \mathbb{N}$, u > 0

$$u\mathbf{P}(M_n \ge u) \le \mathbf{E}(X_n; M_n \ge u) \le \mathbf{E}X_n^+,$$
 (5)

$$u\mathbf{P}(L_n < -u) < -\mathbf{E}X_0 + \mathbf{E}(X_n; L_n > -u) < -\mathbf{E}X_0 + \mathbf{E}X_n^+.$$
 (6)

Доказательство. Положим $\tau=\min\{k\geq 0: X_k\geq u\}\land n$. Заметим, что τ – марковский момент, причем $\tau\leq n$. По замечанию 1 $\mathbf{E}X_{\tau}\leq \mathbf{E}X_n$, поэтому

$$\mathbf{E}X_n \ge \mathbf{E}(X_{\tau}; \ M_n \ge u) + \mathbf{E}(X_{\tau}; \ M_n < u) \ge$$
$$\ge u\mathbf{P}(M_n \ge u) + \mathbf{E}(X_n; \ M_n < u).$$

Следовательно,

$$u\mathbf{P}(M_n > u) < \mathbf{E}X_n - \mathbf{E}(X_n; M_n < u) = \mathbf{E}(X_n; M_n > u) < \mathbf{E}X_n^+$$

т.е. соотношение (5) установлено.

Докажем соотношение (6). Положим $\tau = \min\{k \geq 0: X_k \leq -u\} \land n$. По замечанию 1 $\mathbf{E}X_{\tau} \geq \mathbf{E}X_0$, поэтому

$$\mathbf{E}X_0 < \mathbf{E}(X_{\tau}; L_n < -u) + \mathbf{E}(X_{\tau}; L_n > -u) <$$

$$\leq -u\mathbf{P}(L_n \leq -u) + \mathbf{E}(X_n; L_n > -u).$$

Следовательно,

$$u\mathbf{P}(L_n \le -u) \le -\mathbf{E}X_0 + \mathbf{E}(X_n; L_n > -u) \le -\mathbf{E}X_0 + \mathbf{E}X_n^+,$$

т.е. соотношение (6) установлено. Теорема доказана.

Следствие 3. Пусть $\{X_n, \mathcal{F}_n, n \in \mathbb{N}_0\}$ – мартингал $u \mathbf{E} |X_n|^p < +\infty$ при $n \in \mathbb{N}_0$ для некоторого $p \ge 1$. Тогда при $n \in \mathbb{N}, u > 0$

$$\mathbf{P}\left(M_{n}^{*} \geq u\right) \leq u^{-p} \mathbf{E} \left|X_{n}\right|^{p}.$$

Доказательство. Поскольку $\{|X_n|^p\,,\mathcal{F}_n,\ n\in\mathbb{N}_0\}$ – субмартингал, то по теореме 2

$$\mathbf{P}\left(M_{n}^{*} \geq u\right) = \mathbf{P}\left(\max_{0 \leq k \leq n} |X_{k}|^{p} \geq u^{p}\right) \leq u^{-p}\mathbf{E}\left|X_{n}\right|^{p}.$$

Следствие доказано.

Пример 4. Пусть $\varkappa_1, \varkappa_2, \ldots$ – независимые одинаково распределенные случайные величины, причем $\mathbf{E}\varkappa_1=0, \ \mathbf{E}\varkappa_1^2:=\sigma^2\in(0,+\infty)$. Введем случайное блуждание $S_0=0, \ S_n=\sum_{i=1}^n \varkappa_i, \ n\in\mathbb{N}$. Последовательность $\{S_n, \ n\in\mathbb{N}_0\}$ – мартингал относительно естественной фильтрации, причем $\mathbf{E}S_n^2=n\sigma^2<+\infty$ при $n\in\mathbb{N}_0$. В силу следствия 3

$$\mathbf{P}\left(\max_{0 \le k \le n} |S_k| \ge u\right) \le n\sigma^2/u^2.$$

Это – известное неравенство Колмогорова для случайных блужданий.

Установим еще одно неравенство Дуба для числа пересечений полосы. Пусть $\{X_n, n \in \mathbb{N}_0\}$ – случайная последовательность и $a, b \in \mathbb{R}$, причем a < b. Введем марковские моменты

$$\tau_1 = \min \{ n \ge 0 : X_n \le a \}, \ \sigma_1 = \min \{ n > \tau_1 : X_n \ge b \},$$

$$\tau_2 = \min \{ n > \sigma_1 : X_n \le a \}, \ \sigma_2 = \min \{ n > \tau_2 : X_n \ge b \}$$

и т.д. Положим при $n \in \mathbb{N}_0$

$$\beta_n\left(a,b\right) = \left\{ \begin{array}{ll} 0, & \text{если } \sigma_1 > n; \\ \max\left\{m: \sigma_m \leq n\right\}, & \text{если } \sigma_1 \leq n. \end{array} \right.$$

Другими словами, $\beta_n(a,b)$ является числом пересечений последовательностью $\{X_0,X_1,\ldots\}$ полосы (a,b) снизу вверх до момента времени n.

Теорема 3. Пусть $\{X_n, \mathcal{F}_n, n \in \mathbb{N}_0\}$ – субмартингал, тогда

$$\mathbf{E}\beta_{n}\left(a,b\right) \leq \frac{\mathbf{E}\left(X_{n}-a\right)^{+}}{b-a} \leq \frac{\mathbf{E}X_{n}^{+}+\left|a\right|}{b-a}.$$

 \mathcal{A} оказательство. Ясно, что величина $\beta_n\left(a,b\right)$ для последовательности $\{X_0,X_1,\ldots\}$ совпадает с соответствующей величиной $\widetilde{\beta}_n\left(0,b-a\right)$ для последовательности $\left\{\widetilde{X}_0,\widetilde{X}_1,\ldots\right\}$, где $\widetilde{X}_n=\left(X_n-a\right)^+$. Последовательность

 $\left\{ \widetilde{X}_{0},\widetilde{X}_{1},\ldots\right\}$ также является субмартингалом, поскольку функция $f\left(x
ight) =\left(x-a\right) ^{+},\,x\in\mathbb{R},$ выпукла вниз и не убывает.

Поэтому достаточно показать, что если $\{X_n, \mathcal{F}_n, n \in \mathbb{N}_0\}$ – неотрицательный субмартингал, то при b>0

$$\mathbf{E}\beta_{n}\left(0,b\right) \le \frac{\mathbf{E}X_{n}}{b}.\tag{7}$$

Положим $\gamma_k = I\left\{ \tau_m < k \leq \sigma_m$ для некоторого $m \in \mathbb{N} \right\}$ при $k \in \mathbb{N}$. Докажем, что

$$b\beta_n(0,b) \le \sum_{k=1}^n (X_k - X_{k-1}) \gamma_k.$$
 (8)

Действительно,

$$\sum_{k=1}^{n} (X_k - X_{k-1}) \gamma_k = \sum_{k=1}^{\tau_1} + \sum_{k=\tau_1+1}^{\sigma_1} + \sum_{k=\sigma_1+1}^{\tau_2} + \sum_{k=\tau_2+1}^{\sigma_2} + \sum_{k=\sigma_2+1}^{\tau_3} + \dots,$$

причем

$$\sum_{k=1}^{\tau_1} (X_k - X_{k-1}) \gamma_k = \sum_{k=1}^{\tau_1} (X_k - X_{k-1}) \cdot 0 = 0,$$

$$\sum_{k=\tau_1+1}^{\sigma_1} (X_k - X_{k-1}) \gamma_k = \sum_{k=\tau_1+1}^{\sigma_1} (X_k - X_{k-1}) = X_{\sigma_1} - X_{\tau_1} \ge b,$$

$$\sum_{k=\sigma_1+1}^{\tau_2} (X_k - X_{k-1}) \gamma_k = \sum_{k=\sigma_1+1}^{\tau_2} (X_k - X_{k-1}) \cdot 0 = 0,$$

$$\sum_{k=\tau_2+1}^{\sigma_2} (X_k - X_{k-1}) \gamma_k = \sum_{k=\tau_2+1}^{\sigma_2} (X_k - X_{k-1}) = X_{\sigma_2} - X_{\tau_1} \ge b,$$

$$\sum_{k=\tau_2+1}^{\tau_3} (X_k - X_{k-1}) \gamma_k = \sum_{k=\tau_2+1}^{\tau_3} (X_k - X_{k-1}) \cdot 0 = 0$$

и т.д., что и доказывает (8). Далее, при $k \in \mathbb{N}$ по лемме 1

$$\{\gamma_k = 1\} = \bigcup_{m=1}^{\infty} (\{\tau_m < k\} \setminus \{\sigma_m < k\}) \in \mathcal{F}_{k-1}.$$

Поэтому из (8) находим, что

$$b\mathbf{E}\boldsymbol{\beta}_{n}\left(0,b\right) \leq \sum_{k=1}^{n} \mathbf{E}\left[\left(X_{k} - X_{k-1}\right)\gamma_{k}\right] =$$

$$= \sum_{k=1}^{n} \mathbf{E}\left[\gamma_{k}\left(\mathbf{E}\left(X_{k} \mid \mathcal{F}_{k-1}\right) - X_{k-1}\right)\right] \leq \sum_{k=1}^{n} \mathbf{E}\left(\mathbf{E}\left(X_{k} \mid \mathcal{F}_{k-1}\right) - X_{k-1}\right) =$$

$$= \sum_{k=1}^{n}\left(\mathbf{E}X_{k} - \mathbf{E}X_{k-1}\right) = \mathbf{E}X_{n} - \mathbf{E}X_{0} \leq \mathbf{E}X_{n},$$

т.е. требуемое соотношение (7) установлено. Теорема доказана.

Используем полученный результат для доказательства *теоремы сходи*мости субмартингалов, установленной Дубом. Но сначала докажем следующее утверждение, полезное для нахождения пределов почти наверное.

Лемма 4. Пусть ξ и η – случайные величины, заданные на $(\Omega, \mathcal{F}, \mathbf{P})$. Пусть $\mathbf{P}(\xi < a < b < \eta) = 0$ для произвольных чисел a и b таких, что a < b. Тогда n.н. $\xi \geq \eta$.

Доказательство. Нетрудно понять, что $\{\xi < \eta\} = \bigcup \{\xi < r_n < s_n < \eta\}$, где объединение берется по всем таким парам рациональных чисел (r_n, s_n) , что $r_n < s_n$. По условию леммы $\mathbf{P}(\xi < r_n < s_n < \eta) = 0$ для каждой пары (r_n, s_n) , следовательно, вероятность объединения счетного множества этих событий также равна 0. Итак, $\mathbf{P}(\xi < \eta) = 0$ и, значит, $\mathbf{P}(\xi \ge \eta) = 1$. Лемма доказана.

Теорема 4. Пусть $\{X_n, \mathcal{F}_n, n \in \mathbb{N}_0\}$ – субмартингал $u \sup_{n \in \mathbb{N}_0} \mathbf{E} |X_n| < +\infty$. Тогда п.н. существует $\lim_{n \to \infty} X_n := X$, причем $\mathbf{E} |X| < +\infty$.

Доказательство. Для произвольных $a,b\in\mathbb{R}$ (a< b) последовательность $\{\beta_n\left(a,b\right),\ n\in\mathbb{N}_0\}$ не убывает, следовательно, существует $\lim_{n\to\infty}\beta_n\left(a,b\right):=\beta\left(a,b\right)$. В силу теоремы 3

$$\mathbf{E}\beta_n\left(a,b\right) \le \frac{\mathbf{E}X_n^+ + |a|}{b-a}$$

и, следовательно, по теореме о монотонной сходимости

$$\mathbf{E}\beta\left(a,b\right) = \lim_{n \to \infty} \mathbf{E}\beta_{n}\left(a,b\right) \leq \limsup_{n \to \infty} \frac{\mathbf{E}X_{n}^{+} + |a|}{b - a} \leq \frac{\sup_{n \in \mathbb{N}_{0}} \mathbf{E}\left|X_{n}\right| + |a|}{b - a}.$$

Таким образом, п.н. $\beta(a,b) < +\infty$ и, значит, $\mathbf{P}(\beta(a,b) = +\infty) = 0$. Если же

$$\liminf_{n \to \infty} X_n < a < b < \limsup_{n \to \infty} X_n,$$

то $\beta(a,b) = +\infty$. Следовательно,

$$\mathbf{P}\left(\liminf_{n \to \infty} X_n < a < b < \limsup_{n \to \infty} X_n\right) \le \mathbf{P}\left(\beta\left(a, b\right) = +\infty\right) = 0. \tag{9}$$

Из (9) по лемме 4 следует, что п.н. $\liminf_{n\to\infty}X_n\geq \limsup_{n\to\infty}X_n$, т.е. существует п.н. $\lim_{n\to\infty}X_n:=X$. По лемме Фату

$$\mathbf{E}\left|X\right| \leq \liminf_{n \to \infty} \mathbf{E}\left|X_n\right| \leq \sup_{n \in \mathbb{N}_0} \mathbf{E}\left|X_n\right| < +\infty.$$

Теорема доказана.

Следствие 4. Пусть $\{X_n, \mathcal{F}_n, n \in \mathbb{N}_0\}$ – неотрицательный супермартингал. Тогда п.н. существует $\lim_{n\to\infty} X_n := X$, причем $\mathbf{E}X < +\infty$.

Доказательство. Последовательность $\{-X_n, \mathcal{F}_n, n \in \mathbb{N}_0\}$ – субмартингал. Ясно, что $\mathbf{E} \, |X_n| = \mathbf{E} X_n \leq \mathbf{E} X_0$ при $n \in \mathbb{N}_0$ и, значит, $\sup_{n \in \mathbb{N}_0} \mathbf{E} \, |-X_n| < +\infty$. Следовательно, по теореме 4 существует п.н. $\lim_{n \to \infty} (-X_n) := (-X)$, причем $\mathbf{E} \, |-X| < +\infty$. Утверждение доказано.

Пример 5. Пусть $\{Z_n,\ n\in\mathbb{N}_0\}$ – ветвящийся процесс Гальтона-Ватсона и $m:=\mathbf{E}Z_1\in(0,+\infty)$. Как известно, последовательность $\{Z_n/m^n,\ n\in\mathbb{N}_0\}$ является мартингалом относительно естественной фильтрации. По следствию 4 существует п.н. $\lim_{n\to\infty} Z_n/m^n:=Y$. Ясно, что $\{Y>0\}\subset \{T=+\infty\}$. Если $m\le 1$, то, напомним, $\mathbf{P}(T=+\infty)=0$ и, значит, $\mathbf{P}(Y>0)=0$, т.е. Y=0 п.н. Если m>1, то, напомним, что $\mathbf{P}(T=+\infty)>0$. Можно показать, что в этом случае $\mathbf{P}(Y>0)=\mathbf{P}(T=+\infty)$ и, значит, $\mathbf{P}(Y>0)>0$.