Спецкурс "Большие уклонения"

Шкляев А.В.

9 октября 2017 г.

Принцип больших уклонений

Итак, ближайшее время мы с вами будем заниматься общей теорией больших уклонений. Начнем с того, что сформулируем такую известную лемму:

Лемма 5.1. (Александрова). Следующие условия равносильны:

- 1) $\mathbf{P}_n \stackrel{d}{\to} \mathbf{P}$, $n \to \infty$,
- 2) $\mathbf{P}_n(A) \to \mathbf{P}(A)$ при любых $A : \mathbf{P}(\partial A) = 0$,
- 3) $\limsup \mathbf{P}_n(F) \leq \mathbf{P}(F)$ при всех замкнутых F,
- 4) $\liminf \mathbf{P}_n(G) \geq \mathbf{P}(G)$ при всех открытых G.
- 5) $\mathbf{P}(A_{int}) \leq \liminf \mathbf{P}_n(A) \leq \limsup \mathbf{P}_n(A) \leq \mathbf{P}(A_{out})$, где A_{int} внутренность множества A, A_{out} его замыкание.

Перейдем к общему определению.

Определение 5.1. В общем случае, назовем функцию f(x) полунепрерывной снизу (сверху) в точке, если

$$\lim \inf_{x \to x_0} f(x) \ge f(x_0), \ (\lim \sup_{x \to x_0} f(x) \le f(x_0)).$$

Соответственно, полунепрерывность на множестве есть полунепрерывность в каждой точке множества. Это условие равносильно тому, что $f^{-1}(-\infty,a]$ — замкнутое множество при любом a.

Примером полунепрерывной сверху функции является [x], полунепрерывной снизу $\{x\}$.

Определение 5.2. Назовем $\phi ynkuueu$ $pocma \Lambda(x)$ неотрицательную полунепрерывную снизу функцию.

Определение 5.3. Будем говорить, что последовательность мер \mathbf{P}_n удовлетворяет ПБУ (*принципу больших уклонений*) с функцией роста Λ , если

$$-\inf_{x\in A_{int}}\Lambda(x)\leq \liminf\inf\frac{\ln\mathbf{P}_n(A)}{n}\leq \limsup\frac{\ln\mathbf{P}_n(A)}{n}\leq -\inf_{x\in A_{out}}\Lambda(x).$$

Что же это означает? Фактически, мы получаем оценки

$$\exp(-(1+\delta)\inf_{x\in A_{int}}\Lambda(x)n) \le \mathbf{P}_n(A) \le \exp(-(1-\delta)\inf_{x\in A_{out}}\Lambda(x)n)$$

при любом наперед взятом δ и достаточно больших n.

Кажется непонятным, зачем нам рассматривать разные множества в левой и правой частях. Хотелось бы поставить и там, и там одно и то же. Однако, это необходимая плата за то, что множество A достаточно общего вида.

Пример 5.1. Пусть X_i — н.о.р. бернуллиевские величины, $\mathbf{P}_n(A) = \mathbf{P}(S_n/n \in A)$. Тогда как мы докажем позднее \mathbf{P}_n удовлетворяют ПБУ. Однако, если взять в качестве A множество иррациональных чисел, то $\mathbf{P}_n(A) = 0$ при всех n, хотя $\mathbf{P}(S_n \in A)$

Нетрудно заметить, что справедливо следующая эквивалентная формулировка 1) Для любого замкнутого F

$$\lim \sup_{n \to \infty} \frac{1}{n} \ln \mathbf{P}_n(F) \le -\inf_{x \in F} \Lambda(x).$$

2) Для любого открытого G

$$\lim\inf_{n\to\infty}\frac{1}{n}\ln\mathbf{P}_n(G)\geq -\inf_{x\in G}\Lambda(x).$$

Действительно, тогда ПБУ будет следовать из этих утверждения для A_{int} и A_{out} .

С одной стороны, ПБУ похож на утверждения наподобие теоремы Петрова, но слабее их в том смысле, что рассматривается только логарифм вероятности. В теореме Петрова явно указывался множитель перед экспонентой, а из ПБУ мы можешь лишь определить функцию в экспоненте.

С другой стороны, здесь речь идет о вероятностях попадания в произвольные множества, да и не требуется никаких ограничений на рассматриваемые X. Давайте рассмотрим величину X и рассмотрим функцию $\Lambda(\theta) = \sup_h (h\theta - \ln R(h))$. Давайте посмотрим на нее на некоторых примерах.

Пример 5.2. Пусть $X_i \sim \mathcal{N}(0,1)$. Тогда $R(h) = e^{h^2/2}$,

$$\Lambda(\theta) = \sup(h\theta - \ln R(h)).$$

Функция $h\theta - \ln R(h)$ дифференцируема на всей прямой, при этом $(h\theta - \ln R(h))' = \theta - h$. Значит, $\Lambda(\theta) = \theta^2/2$, как и в теореме Петрова, но уже на всей прямой, включая 0.

Пример 5.3. Пусть $X_i \sim Cauchy$. Тогда $R(h) = \infty$ при $h \neq 0$, R(h) = 1 при h = 0. Значит $\Lambda(\theta) = 0$.

Пример 5.4. Пусть $X_i \sim exp(\lambda)$, $f_{X_1}(x) = e^{-\lambda x} \lambda I_{x>0}$.

$$R(h) = \int_0^\infty e^{hx} e^{-\lambda x} \lambda dx,$$

т.е. $\frac{\lambda}{\lambda-h}$ при $h<\lambda$ и ∞ при $h\geq\lambda$. Тогда

$$\Lambda(\theta) = \sup_{h < \lambda} (h\theta - \ln R(h)).$$

Получаем, что т.к. производная выражения под супремумом равна $\theta - (\ln R(h))' = \theta - 1/(\lambda - h)$, то при $\theta > 0$ имеем $\Lambda(\theta) = \theta \lambda - 1 - \ln \lambda \theta$, а при $\theta \leq 0$ выполнено соотношение $\Lambda(\theta) = \infty$.

На следующей лекции мы докажем, что справедлива следующая теорема Крамера

Теорема 5.1. (Крамера) Пусть S_n — случайное блуждание с $R(h) = \mathbf{E}e^{hX}$ (это матожидание всегда существует, возможно являясь бесконечным). Тогда меры $\mathbf{P}(S_n/n \in \cdot)$ удовлетворяют ПБУ с $\Lambda(x) = \sup_h (hx - \ln R(h))$.

Эта формулировка может показаться удивительной — ведь мы не накладываем на блуждание никаких условий. А как же величины с неэкспоненциальными хвостами? Ответ прост, если хвосты, скажем, степенные, то $\Lambda(x)$ окажется равной 0 (т.к. при $h \neq 0$ выражение под супремумом есть $-\infty$ аналогично тому, что было в Примере 3) и мы просто заявим, что $\ln \mathbf{P}(S_n \in A)/n \to \infty$, т.е. эти вероятности убывают медленнее чем экспоненциально.

Если предположить, что условие Крамера все же выполняется на $(0, h^+)$ и положить m^+ также как и раньше, то окажется, что при $x \in (\mu, m^+)$ $\Lambda(x)$ осталось той же, что и раньше, как мы видим из Леммы. Поэтому ничего критического не произошло и эта версия теоремы Крамера не противоречит теореме Петрова.

Перед тем как доказывать Теорему Крамера, давайте изучим функцию Л:

Лемма 5.2. 1) $\ln R$ выпукла, Λ выпуклая функция роста.

- 2) Если $D_R = \emptyset$, то $\Lambda(\theta) = 0$. Если $R(\tilde{h}) < \infty$ при некотором $\tilde{h} > 0$, то существует $\mu = \mathbf{E} X$ (возможно $\mu = -\infty$) и $\Lambda(\theta)$ при $\theta > \mu$ неубывает. Аналогично при $R(\tilde{h}) > -\infty$ при некотором $\tilde{h} < 0$, то существует $\mu = \mathbf{E} X$ (возможно $\mu = \infty$) и $\Lambda(\theta)$ при $\theta < \mu$ невозрастает. При этом $\Lambda(\mu) = 0$.
- 3) Во внутренних точках D_R $R(\cdot)$ дифференцируема и $R'(h)=\mathbf{E}X_1e^{hX_1},\ \Lambda'(\theta)=y,$ где $\Lambda(\theta)=y\theta-\ln R(y)$.

Доказательство.

1) Надо доказать, что $\ln R(h_1t_1+h_2t_2) \leq \ln R(h_1)t_1 + \ln R(h_2)t_2$ при любых положительных $t_1+t_2=1$. Но

$$R(h_1t_1 + h_2t_2) = \mathbf{E} \left(e^{h_1X_1}\right)^{t_1} \left(e^{h_2X_1}\right)^{t_2} \le \left(\mathbf{E} e^{h_1X_1}\right)^{t_1} \left(\mathbf{E} e^{h_1X_1}\right)^{t_2}$$

в силу неравенства Гельдера. Аналогичное утверждение для $\Lambda(\theta)$ следует из неравнества

$$\sup_{h} (h\theta_1 t_1 + h\theta_2 t_2 - \ln R(h\theta_1 t_1) - \ln R(h\theta_2 t_2)) \le t_1 \sup_{h} (h\theta_1 - \ln R(h\theta_1)) + t_2 \sup_{h} (h\theta_2 - \ln R(h\theta_2)).$$

To, что Λ функция роста прямо следует из определения. Тогда

$$\Lambda(\tilde{\theta}) = \sup_{h} (\tilde{\theta}h - \ln R(h)) \leq \tilde{\theta}\tilde{h} - \ln R(\tilde{h}) + \varepsilon = \lim_{\theta \to \tilde{\theta}} (\theta\tilde{h} - \ln R(\tilde{h})) + \varepsilon \leq \lim_{\theta \to \tilde{\theta}} \sup_{h} (\theta h - \ln R(h)) + \varepsilon.$$

Следовательно, $\Lambda(\tilde{\theta}) \leq \liminf_{\theta \to \tilde{\theta}} \Lambda(\theta)$, что и т.д.

Остальные части леммы будут доказаны на следующей лекции