Weak convergence and statistics

Weak convergence of e.c.d.f.

Consider F,(z) = L3 Ixi<o- Let’s prove the following result.
Theorem 1. 1. Let X; be R[0,1]. Then

Vi(Ey(z) = x) 5 W)
in D[0,1].
2. Let X; ~ F, where F is continuous d.f. Then

Vi(E,(z) = F(z)) % WO,
in D(R).
Proof. 1. Let X; ~ R[0,1].

(a) The finite-dimensional convergence of Y, (t) to W has been proved at the end of the previous lection
(b) To prove the tightness of {P(Y,, € -), n > 1} we need to estimate E(Y,,(t) — Y, (5))*(Ya(r) — Y,.(¢))?,
s <t <r,since
E(Y,(t) = Ya(s)*(Ya(r) — Ya(t))?
-2

P([Ya(t) = Yn(s)| > &, [Ya(r) = Ya(t)] > &) <

Let & = IXiG(s,t] — (t — S), Ny = IXie(t,r} — (T — t). Then

E(Y,(t) = Ya(s))*(Ya(r) = Ya(t))* = %E(& +o &)+ ) = Z E&&mm-

If 4 € {ju ka l}; then E&fﬂ?}ﬂ]z = Eszng]kT]l = 0. Therefore,
> EBGGma =4 E(Em)E (&) + Y EEZEn; + Z E¢n

0,5,k,1 1<j iF£]
2n(n — 1) (E&m)? + n(n — DEGEn; + nEEn].
Obviously,
E&im = Elxeealxienn — (t—s)(r—t) = —(t —s)(r —t), (E&m)® < (t—s)(r —t)
ES = Elx e — (t—8)? = (t—5)(1 = (t—s)), Eni = (r—t)(1 — (r — 1)),

EGEn < (t—s)(r—1t), B&in = (1= (t —5))*(r —)*(t — s) +
(t—s)(1—(r—1))2(r—t)+(t—s5%(r—1t)>*1—r—s)<3(t—s)(r—t).

Thus,
E(Y,(t) = Ya(s))(Ya(r) = Ya(t)* < 6(t = s)(r — ) < 6(r — 5)™

2. Suppose that X; ~ F(x), where F' is continuous. Then
1 < o
= g;]&'ét —ZIY<F =P(X <t)=PR<F (1)),

where R ~ R[0,1]. Therefore, Y,,(t) =
functional f(G) = G(F(t)). If G, —
Therefore

Y, (F(t)), where Y, (t) is defined as in Part 1). Consider the
G in (D[0,1], p2), where G € CI0,1], then f(G,) — f(G).



It’s interesting that the theorem is true for discontinuous F' too.

Theorem 2 (Skorohod Representation Theorem). Suppose that P, < P, where P are measures on S,S,
where S is a separable space, S = B(S). Then there exist random elements X,, X, defined on a common
probability space (Q, F,P), such that P(X, € A) =P,(A), P(X € A) =P(A), X, = X a.s.

We left it without the proof.

Delta method 2.0

Theorem 3 (Delta Method 2.0). Let X,,, Y be random elements, X,, : Q@ — S, where S is a separable metric

space with Borel o-algebra, F € S, r, — oo and suppose that r, (X, — F) LY. Let f be an Hadamard
differentiable functional. Then

ra(F(X0) = F(E) 5 [i(Y),
where f1.(Y) is a Gatevaz derivative of f at F in the direction Y.

Proof. Due to the Representation Theorem there exist X, 4 X, Y 4

(X, — F) 23 Y.

Then

ra(f() — f(F)) = LI = D)) = T g gy

n

due to the definition of Hadamard differentiability. Therefore,

ra(F(X0) = F(F) S Y

Particularly,
A d
Vi(f(F) = F(F) = fr(Wag).-
Similarly,

\/H(f(ﬁm ém) - f(F> G)) i) f},G(Wlo,F(t)a \/aWQO,G(t))a

as n,m — oo, n/m — a € (0,1), WP, W are independent Brownian Bridges.

Delta Method and Delta Method 2.0

This subsection is not necessary for the exams
Why fr(Wpy) ~ N(0,0%(F))? Nonformally,

(W) /n YW,

An integral above is a limit of
m

0
Z xz WF(I1+1 WF(.Z’l))7

=1
where z; = (i — 1)/m. Then EY,, = 0 and

Ccov Ym, Ym Z Z f},;‘ z; fF (AZWF — Az FWl)(A]WF — Aj FWl) = Z]F(xi>IF(xj)a/i,j7

i=1 j=1 %,J

where A;f = f(x;41) — f(z;). Since
am = E(A1WF - AzF W1)2 - (AZF)2, CLiJ = E(AIWF - AZF Wl)(AjWF — AJF Wl) = —<A1F)<A]F),



we have

oo (¥, V) = (Z(f’p<6m>>2AiF> - (Z f;(%)AiF) = [ o)

=1

High Order Derivatives

o () -

Theorem 4 (Generalized Delta Method). Let S be a separable metric space, X,,, Y — random elements in S,
F €S, r, — oo and suppose that r,(X, — F) LY. Let f be a functional, satisfying the following conditions:

1) f(F+t(G— F))EQ():O as j=1,...,k for every G,
2) f(F + G = I p(G) = f(F+tG)EY as G, — G, 1, — 0.

Then L (V)
) = S S

Proof. Consider Xn < X, vy

Then

i (f(Xn) = F(F)) =it o f(F 4 8K = F))EY =

k1)

a.s. as n — oo, where &, € [0,7!]. Therefore,

rE F(Xn) = f(F) 5




