Weak convergence of Empirical Distribution

Space of right-continuous functions

Definition 1. Let D[0,1] be a set of right-continuous functions:

$$D[0,1] = \{f : [0,1] \to \mathbb{R} : \forall t \in [0,1) \ f(t+) = f(t), \ \forall t \in (0,1] \ \exists \ f(t-)\}.$$

Space D[0,1] equipped with the uniform metric is not separable since $\rho(\delta_x, \delta_y) = 1$ for every x, where $\delta_x(u) = I_{u>x}$. Thus we need another metric on D[0,1] instead of uniform metric.

Definition 2. Let $f, g \in D[0, 1]$ and Λ be the set of strictly increasing, continuous mappings λ of [0, 1] onto itself, $\lambda(0) = 0, \lambda(1) = 1$. Then

 $\rho(f,g) = \inf\{\varepsilon: \ \exists \lambda \in \Lambda: \ \forall x \in [0,1] \ |f(\lambda(x)) - g(x)| \leq \varepsilon, \ |\lambda(x) - x| \leq \varepsilon\}.$

The topology defined by metric ρ is called the *Skorohod topology*.

Firstly, let's prove that ρ is a metric. Really,

- 1. Obviously, $\rho \ge 0$ and $\rho(f,g) = 0$ iff f = g.
- 2. Since $\lambda \in \Lambda$ there exists $\lambda^{-1} \in \Lambda$ and $\sup |\lambda(x) x| = \sup |\lambda^{-1}(x)|$. Therefore, $\rho(g, f) = \rho(f, g)$.
- 3. For every $\lambda_1, \lambda_2 \in \Lambda$ we have

$$\sup_{x} |\lambda_{2}(\lambda_{1}(x)) - x| \leq \sup_{x} |\lambda_{2}(\lambda_{1}(x)) - \lambda_{1}(x)| + \sup_{x} |\lambda_{1}(x) - x| = \sup_{x} |\lambda_{2}(x) - x| + \sup_{x} |\lambda_{1}(x) - x|.$$

Thus for every $f, g, h, \lambda_1, \lambda_2$ such that $\sup_x |f(\lambda_2(x)) - g(x)| \le \varepsilon_1$, $|\lambda_2(x) - x| \le \varepsilon_1$, $\sup_x |g(\lambda_1(x)) - h(x)| \le \varepsilon_1$, $|\lambda_1(x) - x| \le \varepsilon_1$ we have $\sup_x |\lambda_2(\lambda_1(x)) - x| \le \varepsilon_1 + \varepsilon_2$ and

$$\sup_{x} |f(\lambda_2(\lambda_1(x))) - h(x)| \le \sup_{x} |f(\lambda_2(\lambda_1(x))) - g(\lambda_1(x))| + \sup_{x} |g(\lambda_1(x)) - h(x)| \le \varepsilon_1 + \varepsilon_2.$$

Therefore, $\rho(f,h) \le \rho(f,g) + \rho(g,h)$.

Example 1. Let $f = \delta_u$, $g = \delta_v$, $u < v \in [0, 1]$. Let's prove that $\rho(\delta_u, \delta_v) \leq v - u$. For u > 0 consider

$$\lambda(x) = \begin{cases} v \frac{x}{u}, & x < u, \\ 1 - (1 - v) \frac{(1 - x)}{(1 - u)}, & x \ge u. \end{cases}$$

Then $g(\lambda(x)) = f(x)$, $\sup |\lambda(x) - x| = u - v$. Therefore, $\rho(\delta_u, \delta_v) \leq v - u$. On the other hand, if $|\lambda(x) - x| < u - v$, then

$$g(\lambda(u)) \le g(v-0) = 0 = f(u) - 1 \le f(u) - (u-v).$$

Thus $\rho(\delta_u, \delta_v) = v - u$.

Space of right-continuous functions

Space $(D[0,1], \rho)$ is a separable space but it's not complete.

Example 2. Let $f_n(x) = I_{[1/2,1/2+1/n)}$. Then $\rho(f_n, f_m) < \left|\frac{1}{n} - \frac{1}{m}\right|$ and $\{f_n\}$ is fundamental in $(D[0,1],\rho)$. But it isn't convergent.

Thus another metric is considered:

$$||\lambda|| = \sup \left| \ln \frac{\lambda(x) - \lambda(y)}{x - y} \right|, \ \lambda \in \Lambda_0,$$

1. Let

where $\Lambda_0 = \{\lambda \in \Lambda : ||\lambda|| < \infty\}.$

2. Let

$$\rho_0(f,g) = \inf\{\varepsilon: \exists \lambda \in \Lambda_0: \forall x \in [0,1] | f(\lambda(x)) - g(x)| \le \varepsilon, ||\lambda|| \le \varepsilon\}.$$

Since $||\lambda|| = ||\lambda^{-1}||$ and $||\lambda_2(\lambda_1)|| \le ||\lambda_2|| + ||\lambda_1||$ it's a metric on D[0, 1]. Metrics ρ_0 and ρ are topological equivalent, but the space $(D[0, 1], \rho_0)$ is complete (we don't prove this fact).

Weak convergence in D[0,1]

Let's remind the definition and main properties of weak convergence.

Definition 3. We say that a sequence $\{X_n\}$ of stochastic processes in D[0,1] weakly converges to the process X, and we write $X_n \xrightarrow{d} X$, if

 $\mathbf{E}f(X_n) \to \mathbf{E}f(X)$

for every continuous (with respect to ρ_0) and bounded mapping $f: D[0,1] \to \mathbb{R}$.

Theorem 1. The following conditions are equivalent:

1. $X_n \xrightarrow{d} X$. 2. $\mathbf{P}(X_n \in A) \xrightarrow{d} \mathbf{P}(X \in A)$ for every $A : \mathbf{P}(X \in \partial A) = 0$, where ∂A is

Theorem 2. If $X_n \xrightarrow{d} X$ and f is continuous (with respect to ρ_0) mapping $f : D[0,1] \to \mathbb{R}$, then $f(X_n) \xrightarrow{d} f(X)$. Moreover, the condition of continuity of f can be weakened to $\mathbf{P}(X \in C_f) = 0$, where C_f is the set of discontinuities of f.

Definition 4. We say that X_n converges to X in the sense of finite-dimensional distributions and we write $X_n \xrightarrow{f.d.} X$, if $(X_n(t_1), ..., X_n(t_k)) \xrightarrow{d} (X(t_1), ..., X(t_k))$ for every $t_1, ..., t_k \in [0, 1]$.

The weak convergence is stronger than the convergence in the sense of finite-dimensional distributions:

Example 3. Consider the sample space (Ω, \mathcal{F}, P) , where $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}([0, 1])$, $P = \lambda$ — Lebesque measure. Let

$$X_n = \begin{cases} n\omega, & \omega \in \left[0, \frac{1}{n}\right], \\ 2n - n\omega, & \omega \in \left[\frac{1}{n}, \frac{2}{n}\right], \\ 0, & \omega \ge \frac{2}{n}. \end{cases}$$

Then $(X_n(t_1), ..., X_n(t_k) \stackrel{d}{=} (0, ..., 0)$ for any $t_1, ..., t_k \in [0, 1]$ and large enough n. Therefore, $X_n \stackrel{f.d.}{\to} X$, where X(t) = 0 for every $t \in [0, 1]$. However,

$$1 = \mathbf{E} X_n \not\to \mathbf{E} X = 0,$$

so $X_n \not\xrightarrow{d} X$.

Definition 5. The set \mathcal{P} of probability measures is called to be *weakly sequentially compact* if for every sequence $P_n \in \mathcal{P}$ there exists a weakly convergent subsequence P_{n_k} .

Lemm 1. Let $X_n \xrightarrow{f.d.} X$. Then $X_n \xrightarrow{d} X$ iff $\{\mathbf{P}_{X_n}\}$ is a weakly sequentially compact set.

Proof. Obviously, a weakly convergent sequence X_n is a weakly sequentially compact set. Let us prove that if $\{\mathbf{P}_{X_n}\}$ is a weakly sequentially compact set, $X_n \xrightarrow{f.d.} X$, then $X_n \xrightarrow{d} X$. Assume the converse. Then $X_n \xrightarrow{d} X$. Thus there exists $\varepsilon > 0$, $A \in \mathcal{B}(\mathbb{R}^{[0,1]}) : \mathbf{P}(X \in \partial A) = 0$ and n_k such that

$$|\mathbf{P}(X_{n_k} \in A) - \mathbf{P}(X \in A)| > \varepsilon.$$

Let $\mathbf{P}_{X_{n_{k_l}}}$ be a convergent subsequence of $\mathbf{P}_{X_{n_k}}$, so $X_{n_{k_l}} \xrightarrow{d} Y$ for some Y. Therefore, $X_{n_{k_l}} \xrightarrow{f.d.} Y$ and $X \stackrel{d}{=} Y$. Thus

$$\mathbf{P}(X_{n_{k_l}} \in A) \to \mathbf{P}(X \in A), \text{ but } \left| \mathbf{P}(X_{n_{k_l}} \in A) - \mathbf{P}(X \in A) \right| > \varepsilon.$$

The contradiction proves the lemma.

Definition 6. We say that the family of probability measures \mathcal{P} on D[0,1] is tight if for every $\varepsilon > 0$ there exists a compact set $K_{\varepsilon} \subset D[0,1]$ such that $\mathbf{P}(K_{\varepsilon}) \geq 1 - \varepsilon$ for every $\mathbf{P} \in \mathcal{P}$.

Theorem 3. (Yu. V. Prohorov). Let S be a complete separable space. Then a set P of measures on S is weakly sequentially compact iff P is tight.

Therefore, $X_n \xrightarrow{d} X$ iff $X_n \xrightarrow{f.d.} X$ and $\{P_{X_n}\}$ is tight.

The following theorem is proved in Billingsley, "Convergence of probability measures" (Theorem 15.6).

Theorem 4. Let $X_n() \in D[0,1]$ be a sequence of stohastic processes. Suppose that there exists $\gamma > 0$, $\alpha > 1$ and nondecreasing continuous function G on [0,1] such that

$$\mathbf{P}(|X_n(t) - X_n(s)| \ge \varepsilon, |X_n(r) - X_n(t)| \ge \varepsilon) \le \frac{1}{\varepsilon^{2\gamma}} \left(G(r) - G(s)\right)^{\alpha},$$

for every s < t < r; then $\mathbf{P}(X_n() \in \cdot)$ is tight.