
Lection 5. Robust Statistics

Let ̂︀𝐿(𝑥) = ̂︀𝐿(𝑥; 𝑓) = lim
𝜀→0

𝑓((1− 𝜀) ̂︀𝐹𝑛 + 𝜀𝛿𝑥)− 𝑓( ̂︀𝐹𝑛)

𝜀

be a Gateuax derivative of 𝑓 at the point ̂︀𝐹𝑛. If 𝐿𝐹 (𝑥) is a continuous functional of 𝐹 under the uniform
norm, then

̂︀𝜎2 =
1

𝑛

𝑛∑︁
𝑖=1

̂︀𝐿2(𝑋𝑖)

is a consistent estimator for 𝜎2(𝐹 ). Therefore,

𝑃𝐹

(︂
𝑓(𝐹 ) ∈

(︂
𝑓( ̂︀𝐹𝑛)−

𝑧1−𝛼/2̂︀𝜎√
𝑛

, 𝑓( ̂︀𝐹𝑛) +
𝑧1−𝛼/2̂︀𝜎√

𝑛

)︂)︂
→ 1− 𝛼.

This interval is called the infinitesmall jackknife interval.

Example 1. Let 𝑓(𝐹 ) =
∫︀
R 𝑎(𝑢)𝑑𝐹 (𝑢), where 𝑎 is bounded. Then

𝐿𝐹 (𝑥) = lim
𝜀→0

𝑓((1− 𝜀)𝐹 + 𝜀𝛿𝑥)− 𝑓(𝐹 )

𝜀
= 𝑎(𝑥)−

∫︁
R
𝑎(𝑢)𝑑𝐹 (𝑢).

Therefore, 𝐿𝐹 is a continuous functional of 𝐹 and

̂︀𝐿2(𝑋) =
1

𝑛

𝑛∑︁
𝑖=1

(︁
𝑎(𝑋𝑖)− 𝑎(𝑋)

)︁2
= 𝑎(𝑋)2 − 𝑎(𝑋)

2

is a consistent estimator of 𝜎2(𝐹 ). So,⎛⎝𝑎(𝑋)−
𝑧1−𝛼/2

√︁
𝑎(𝑋)2 − 𝑎(𝑋)

2

√
𝑛

, 𝑎(𝑋) +
𝑧1−𝛼/2

√︁
𝑎(𝑋)2 − 𝑎(𝑋)

2

√
𝑛

⎞⎠
is an asymptotical 1− 𝛼 confidence interval for E𝑎(𝑋).

Example 2. Consider 𝑓(𝐹 ) = 𝐹−1(1/2). Then

√
𝑛
𝑓( ̂︀𝐹𝑛)− 𝑓(𝐹 )

1
2𝑝(𝑥1/2)

𝑑→ 𝑍 ∼ 𝒩 (0, 1).

Therefore, we need to estimate 𝑝(𝑥1/2). We can’t estimate it by ̂︀𝐿(𝑋) since 𝑓 is not Hadamard differentiable

at ̂︀𝐹 .
The Jackknife Method

Let’s consider another estimator for 𝜎2(𝐹 ). Let

̂︀𝐹𝑛−1,𝑖(𝑥) = ̂︀𝐹𝑛−𝑖(𝑥;𝑥1, ...𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑛) =
1

𝑛− 1

∑︁
𝑗 ̸=𝑖

𝐼𝑥𝑗≤𝑥.

Then

𝐿 ̂︀𝐹𝑛
(𝑥𝑖) = lim

𝜀→0

𝑓
(︁
(1− 𝜀) ̂︀𝐹𝑛 + 𝜀𝛿𝑥𝑖

)︁
− 𝑓( ̂︀𝐹𝑛)

𝜀
≈

𝑓
(︁(︀

1 + 1
𝑛−1

)︀ ̂︀𝐹𝑛 − 1
𝑛−1

𝛿𝑥𝑖

)︁
− 𝑓( ̂︀𝐹𝑛)

− 1
𝑛−1

= (𝑛−1)(𝑓( ̂︀𝐹𝑛)−𝑓( ̂︀𝐹𝑛−1,𝑖)).



Therefore, it’s natural to estimate 𝜎2(𝐹 ) =
∫︀
R 𝐿

2(𝑥)𝑑𝐹 (𝑥) = 𝐷𝐹𝐿
2(𝑋) by

1

𝑛− 1

𝑛∑︁
𝑖=1

(︁
𝐿 ̂︀𝐹𝑛

(𝑥𝑖)− 𝐿 ̂︀𝐹𝑛
(𝑥)
)︁2

≈ (𝑛− 1)
𝑛∑︁

𝑖=1

(︁
𝑓( ̂︀𝐹𝑛−1,𝑖)− 𝑓( ̂︀𝐹𝑛−1,·)

)︁2
=: 𝑛𝑆2

𝑗𝑎𝑐𝑘.

So, it’s natural to use an interval

𝑓(𝐹 ) ∈
(︁
𝑓( ̂︀𝐹𝑛)− 𝑧1−𝛼/2𝑆𝑗𝑎𝑐𝑘, 𝑓( ̂︀𝐹𝑛) + 𝑧1−𝛼/2𝑆𝑗𝑎𝑐𝑘

)︁
.

This interval is called the jackknife interval. It’s often used to estimate the variance 𝐷𝐹
̂︀𝜃(𝑋1, ..., 𝑋𝑛) of an

estimator ̂︀𝜃. The jackknife estimator is

𝑆2
𝑗𝑎𝑐𝑘 =

𝑛− 1

𝑛

𝑛∑︁
𝑖=1

(̂︀𝜃(−𝑖)− ̂︀𝜃)2, ̂︀𝜃(−𝑖) := ̂︀𝜃(𝑋1, ..., 𝑋𝑖−1, 𝑋𝑖+1, ..., 𝑋𝑛), ̂︀𝜃 =
1

𝑛

𝑛∑︁
𝑖=1

̂︀𝜃(−𝑖).

Example 3. Let ̂︀𝜃(𝑋1, ..., 𝑋𝑛) = 𝑋. Then

̂︀𝜃(−𝑖) =
1

𝑛− 1
(𝑋𝑛−𝑋𝑖), ̂︀𝜃 = 𝑋.

So

𝑆2
𝑗𝑎𝑐𝑘 =

𝑆2
0

𝑛
.

It’s a natural estimator for the D𝑋.

Example 4. Consider a sample𝑋1, ..., 𝑋2𝑛+1 such that𝑋(𝑛−1) = 𝑋(𝑛) = 𝑋(𝑛+1) and let ̂︀𝜃(𝑋1, ..., 𝑋𝑛) = 𝑀𝐸𝐷.

Then ̂︀𝜃(−𝑖) = ̂︀𝜃(𝑋1, ..., 𝑋𝑛) = 𝑀𝐸𝐷 and 𝑆2
𝑗𝑎𝑐𝑘 = 0. In this situation the jackknife estimator is nonapplicable

since 𝐿𝐹 (𝑥;𝑀𝐸𝐷) is not continuous as functional of 𝐹 .

The Bootstrap

Let’s start with the following theorem (without proof):

Theorem 1. Let 𝐹 be a distribution function, 𝐹𝑛 be an empirical distribution function and 𝐹 *
𝑛 be an empirical

distribution function for c.d.f. 𝐹𝑛. Suppose, that 𝑓 is Hadamard differentiable functional, 𝜎(𝐹 ) > 0

√
𝑛
𝑓(𝐹𝑛)− 𝑓(𝐹 )

𝜎(𝐹 )

𝑑→ 𝑍 ∼ 𝒩 (0, 1).

Then

P𝐹𝑛

(︃
√
𝑛
𝑓(𝐹 *

𝑛)− 𝑓(𝐹𝑛)

𝜎(𝐹 )
≤ 𝑥

⃒⃒⃒⃒
⃒𝑋1, ..., 𝑋𝑛

)︃
→ Φ(𝑥)

for a.s. 𝑋1, ..., 𝑋𝑛, ....

Due to this theorem, we can estimate 𝜎(𝐹 ) by the use of 𝑓(𝐹 *
𝑛), 𝑓(𝐹𝑛) in the following way:

1) Draw 𝑋*
1 , ..., 𝑋

*
𝑛 from 𝐹𝑛.

2) Compute 𝐹 *
𝑛 and 𝑓(𝐹 *

𝑛).
3) Repeat steps 1), 2) k times.
4) Compute

𝜎̂2(𝐹 ) =
𝑛

𝑘

𝑘∑︁
𝑖=1

(︁
𝑓(𝐹 *

𝑛,𝑖)− 𝑓(𝐹𝑛)
)︁2

Someone can notice that 1) means ”to draw a sample 𝑋*
1 , ..., 𝑋

*
𝑛 with replacement from 𝑋1, ..., 𝑋𝑛”.

The idea of the bootstrap is very simple — we can generate samples from 𝐹𝑛 since it’s known distribution.
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Therefore, we can estimate any parameters of 𝐹𝑛 using consistent estimators. Due to Theorem (1) it’s enough

to estimate the asymptotic variance of 𝑓(𝐹𝑛).

Example 5. Now we can construct an estimator of 𝜎2
𝑀𝐸𝐷(𝐹 ). The bootstrap give us the solution:

𝜎̂2(𝐹 ) =
𝑛

𝑘

𝑘∑︁
𝑖=1

(︁
𝑓(𝐹 *

𝑛,𝑖)− 𝑓(𝐹𝑛)
)︁2

,

where 𝑓(𝐹 ) = 𝐹−1(1/2).

The method is very popular in practice because of its simplicity. However, it fails in several situations,
particularly when the rate of convergence of 𝑓 is not 𝑛−1/2:

Example 6. Consider 𝑓(𝐹 ) =
(︀∫︀

R 𝑥𝑑𝐹 (𝑥)
)︀2
, E𝑋 = 0, D𝑋 = 1. Then

𝐿𝐹 (𝑓) = 2E𝑋(𝑥− E𝑋) = 0.

Therefore, we can’t apply Theorem 1. Let’s show that the bootstrap concept fails in this situation. Really,

𝑛𝑓(𝐹𝑛)
𝑑→ 𝑍 ∼ 𝜒2

1.

By theorem 1

P

(︃
√
𝑛
𝑋

* −𝑋

𝐷𝑋
≤ 𝑥

⃒⃒⃒⃒
⃒𝑋1, ..., 𝑋𝑛

)︃
→ Φ(𝑥),

so
(
√
𝑛(𝑋

* −𝑋),
√
𝑛𝑋)

𝑑→ (𝑍1, 𝑍2) ∼ 𝒩 (0, 𝐸).

Therefore,
𝑛(𝑓(𝐹 *

𝑛)− 𝑓(𝐹𝑛)) = 𝑛((𝑋
* −𝑋)2 + 2𝑋(𝑋

* −𝑋) → 𝑍2
1 + 2𝑍1𝑍2,

where 𝑍1, 𝑍2 are independent 𝒩 (0, 1). It’s not 𝜒2
1 distribution. So, asymptotical distributions of 𝑓(𝐹𝑛) and

𝑓(𝐹 *
𝑛) can be significally different if 𝜎(𝐹 ) = 0.

Robustness

The Introduction

Another important property we consider is the robustness. Roughly, robust statistic is not affected by
outliers. For example, a sample mean is not robust because even one large outlier in the sample can change
it significally. On the other hand, a sample median is very robust statistic.

The robustness is also very important in parametric statistics, because robust statistic shows good
performance in case of small departues from the parametric model.

Let ℋ be a set of all distribution functions.

Definition 1. Consider an estimator 𝜃 = 𝑓(𝐹𝑛). The maximum bias of 𝜃 is

𝑏(𝜀) = 𝑏(𝜀;𝐹 ) = sup
𝐹∈𝑈𝜀(𝐹0)

|𝑓(𝐹 )− 𝑓(𝐹0)|,

where 𝑈𝜀(𝐹0) is a neighborhood of 𝐹0 in ℋ in some sense.

We’ll consider two cases:
1) The Levy neighborhood:

𝑈𝜀(𝐹0) = 𝑈 (𝐿)
𝜀 (𝐹0) = {𝐹 | ∀𝑡 𝐹0(𝑡− 𝜀)− 𝜀 ≤ 𝐹 (𝑡) ≤ 𝐹0(𝑡+ 𝜀) + 𝜀},

2) The contamination neighborhood

𝑈𝜀(𝐹0) = 𝑈 (𝐶)
𝜀 (𝐹0) = {𝐹 | ∃𝐻 ∈ ℋ : 𝐹 = (1− 𝜀)𝐹0 + 𝜀𝐻.}
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Example 7. Let 𝐹0(𝑥) = 𝐼𝑥≥0. Then 𝑈
(𝐶)
𝜀 (𝐹0) is the set of all distributions with 𝐹 (0) − 𝐹 (0−) ≥ 1 − 𝜀,

𝑈
(𝐿)
𝜀 (𝐹0) is the set of all distributions with 𝐹0(𝜀) − 𝐹0(−𝜀) ≥ 1 − 𝜀. For example, the c.d.f. of 𝑅[−1/4, 1/4]

belongs to 𝑈
(𝐿)
1/4 (𝐹0) but doesn’t belong even to 𝑈

(𝐶)
0.99(𝐹0).

Problem 1. In both cases 1) and 2) find the smallest 𝜀 such that 𝐹max(𝑋,𝑌 ), 𝑋, 𝑌 ∼ 𝑅[0, 1] belongs to the
𝜀-neighborhood of 𝐹𝑋

Example 8. Consider 𝑓(𝐹 ) =
∫︀
R 𝑥𝑑𝐹 (𝑥). Then,

𝑏(𝐶)(𝜀) = sup
𝐻∈ℋ

⃒⃒⃒⃒∫︁
R
𝑥𝑑((1− 𝜀)𝐹 (𝑥) + 𝜀𝐻(𝑥))−

∫︁
R
𝑥𝑑𝐹 (𝑥)

⃒⃒⃒⃒
= 𝜀 sup

𝐻∈ℋ

⃒⃒⃒⃒∫︁
R
𝑥𝑑𝐻(𝑥)−

∫︁
R
𝑥𝑑𝐹 (𝑥)

⃒⃒⃒⃒
= ∞

for every 𝐹 . Obviously, 𝑏(𝐶)(𝜀) ≤ 𝑏(𝜀)(𝐹 ) = ∞.

Example 9. Let 𝐹𝜀,𝐻(𝑥) = (1− 𝜀)𝐹 (𝑥) + 𝜀𝐻(𝑥). Consider 𝑓(𝐹 ) = 𝐹−1(1/2) be a median, 𝐹−1(𝑥) = inf{𝑢 :
𝐹 (𝑢) ≥ 𝑥}. Then,

𝑏(𝐶)(𝐹 ) = sup
𝐻∈ℋ

⃒⃒
𝐹−1
𝜀,𝐻(1/2)− 𝐹−1(1/2)

⃒⃒
The smallest possible value for the 𝐹−1

𝜀,𝐻(1/2) is 𝐹
−1
(︁

1−2𝜀
2(1−𝜀)

)︁
, the largest is 𝐹−1

(︁
1

2(1−𝜀)

)︁
. Therefore,

𝑏(𝐶)(𝐹 ) = max

(︂
𝐹−1(1/2)− 𝐹−1

(︂
1− 2𝜀

2(1− 𝜀)

)︂
, 𝐹−1

(︂
1

2(1− 𝜀)

)︂
− 𝐹−1(1/2)

)︂
.

Similarly,

𝑏(𝐶)(𝐹 ) = max

(︂
𝐹−1(1/2)− 𝐹−1

(︂
1− 2𝜀

2(1− 𝜀)

)︂
, 𝐹−1

(︂
1

2(1− 𝜀)

)︂
− 𝐹−1(1/2)

)︂
+ 𝜀.

The Asymptotic Breakdown Point

Definition 2. The asymptotic breakdown point of 𝑓 at 𝐹0 is

𝜀* = 𝜀*(𝐹0, 𝑓) = 𝜀*(𝐹0, 𝜃) = sup{𝜀 : 𝑏(𝜀) < 𝑏(1)}.

The 𝑏(1) is the worst value of 𝑓(𝐹 )− 𝑓(𝐹0), so, roughly speaking, the breakdown point give as the limiting
fraction of outliers the estimator can cope with.

Example 10. For the mean 𝜃 = 𝑋 we have 𝑏(1) = ∞, 𝑏(𝜀) = ∞ for every 𝜀 > 0. Therefore, 𝜀*(𝐹0, 𝑋) = 0.

For the median 𝜃 = 𝑀𝐸𝐷(𝑋) we have 𝑏(1) = ∞, 𝑏(𝜀) < ∞ for every 𝜀 < 1/2. Therefore, 𝜀*(𝐹0,𝑀𝐸𝐷) = 1/2.
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