1 Asymptotic Normality

1.1 Delta Method
Asymptotic Normality of MLE

Let ¢(u,v) be a function and let v = f;(F") be the unique solution of

= /Rw(u, v)dF(u) = 0. (1)

This equation is closely related with the optimization problem

/R@Z(u,v)ng(u) — min, (u,v) = %1/1(%1)) (2)

More accurately, every solution of (2) is a solution of (1). So, if the problem (2) has an unique solution, then
it’s f(F') and it’s natural to estimate it by f(F},).

Example 1. Consider a parametric model: X; ~ Fy, where Fy is a continuous distribution with density
function p(z;0), 0 € ©, where © is open subset of R.
Consider the problem (2) for ¥ (u,v) = Inp(u;v). Then we need to find a minimal value of

/Rlnp(u;v)p(u;@)du - /Rlnp(u;ﬁ)p(u;e)du = /Rln iézzzgp(uﬁ)du > In (/R zEZ: Zip(u;@)du) = 0.

Therefore, 0 is the unique solution of our problem. So, it’s natural to estimate 6 by f(ﬁn)

I=f(F): -3 mp(Xih) =
=1

It’s a maximal likelihood estimator for 6.

To prove asymptotically normality of 0 we need to find Lp(D; fy). Consider F' +eD and let

LoD o) — ting LF D) = Fu(F).

e—0 £

By definition,
fo(F+eD) = { /@DuvdF +€/¢uvdD—0}

so, fy = ( e Jp ¥(u,v)dD( )), where v = fy(F' +¢D). If ¢ is the differentiable with respect to v, then

qb;l (—5/Rw(u,v)dD(u)) = gb}l(O) — egb;l(()) /Rzp(u, fo(F))dD(u) 4+ o(e), € = 0.
Therefore,
Le(Ds £3) = ~6(0) [ 0(u,0)dD(a).

Since
1 1

O(0p (1) fu 2t (u,v)dF (u)

Suppose that ¥ (u,v) is differentiable with respect to v and

9
/R (s v)dF () £ 0.

op () =

b5 (1)



Then gb}l is differentiable and
U fulF)
fR (u,v)dF (u )‘_f(F)

Formally, we need to assume some regularity conditions to show that f, is Hadamard differentiable.
Particularly, for MLE

ZInp(z;0)

bt == J 3z mp(; O)p(; 0)de
and
02(F> fR( Inp(z; 9)) p(z; Q)da;.
(f]R 59z Inp(; 0)p(x; Q)dﬁ)
Since,
: o [ P@O) p(es0) — (Bp0)t 9t
 agz P Ot ) = /R T p(z;6)dr = 75 /Rp(l‘,e)dx -
/(%lnp(z 9)) p(x; 0)dr = —/ (%lnp(a: 6)) p(z;0)dx
and 2 1 1
o(F) = .

Jo (S p(z;0)° p(a; 0)dz  1(0)

where 1(0) is a Fisher’s information. Therefore, MLE is an asymptotically normal estimator.

Confidence Intervals

Using asymptotically normal estimators, we can construct asymptotical confidence intervals. Really, if

— Z ~ N(0,1),

then

P (f(F) S (”ﬁﬂ—wﬁjf@m%ﬁ”)) .

However, we don’t know o(F). If o is a weakly continuous functonal of F, we can use o(F,) instead of o(F),
since

()
o(F)

(f(F) € (f(ﬁn) — Zl—a/N(F)’f(ﬁn) n Z1-a/2U(F)>>

1.

The confidence interval

Vn v
is an asymptotical confidence interval of the confidence level 1 — «. It is called delta-method interval.
Obviously, .
_ % ST R(Xy) B o?(p).
i=1
However, we don’t know Lp(z). Therefore, we need to estimate Lp(z). Let

L(x) = L(z; f) = lim F((1=&)E, +¢6,) — f(E,)

e—0 g




be a Gateuax derivative of f at the point F,. If Ly(z) is a continuous functional of F under the uniform
norm, then

is a consistent estimator for o2(F). Therefore,
- Z1fa/23 fa zlfa/Qa—\
P, F)e F,) — , f(F, —1—a.
e (e (18 - 227 (R + 2227) ) 51—
This interval is called the inﬁnitesmall jackknife interval.

Example 2. Let f(F) = [, a(u . Then

Lo(x) = lim L= +20) = J(F) —a(x)—/Ra(u)dF(u).

e—0 £

Therefore, Lr is a continuous functional of F' and

n

T2(x) = %Z (a(x) — (X)) = (X — a(X)

i=1

is a consistent estimator of o(F). So,

5102\ AKX — a(X)
Jn

a(X) -

is an asymptotical 1 — « confidence interval for Ea(X).

Example 3. Consider f(F) = F~'(1/2). Then

Gl B ZIE) o 4 o),

1
2p(z12)

Therefore, we need to estimate p(z;,2). We can’t estimate it by E( ) since f is not Hadamard differentiable
at F.

The Jackknife Method

Let’s consider another related estimator for o%(F). Let

~ ~ ]_
Fn,1’7;<l') = Fn,,L'(.T;l'l, L1, Lt ,.I'n) = n—1 E I:Ejgm'
i#i

Then

~

Fla=o)F +ed,) = f(F)  fQ+2) F— 2500 ) — f(F) L
L (2;) = lim ( ) ~ <( ) ) = (n=1)(f(Fn)~f(Fu14))-

e—0 g — Ll

Therefore, it’s natural to estimate 0*(F) = [, L*(z)dF (z) = DpL*(X) by

L Z (Ls, @) - Ta@) =~ (-1 Z (FFross— FBr))” = n2



So, it’s natural to use an interval

f(F) e (f(ﬁn) — Z1—a/25jack f(ﬁn) + Zlfa/2Sjack> .

-~

This interval is called the jackknife interval. It’s often used in practice for estimating variance Dpf(X7, ..., X,,)
of an estimator 6. The jackknife estimator is

n—1x~~- . Zo 2 . -~ = 1
szaclc = Z(&(—z) —0)?, (=) = 0(Xy, ..., Xi1, Xiga, o, X)), 0= = 29(—1)-

n - -
=1 =1

~

Example 4. Let 6(X,,..., X,,)) = X. Then

n—1

So

It’s a natural estimator for the DX.

~

Example 5. Consider a sample X, ..., X5,41 such that X,_1) = X(») = X(n41) and let (X4, ..., X,,) = MED.

o~ o~

Then §(—i) = 0(Xy, ..., X,) = MED and S%,., = 0. In this situation the jackknife estimator is nonapplicable

since Lp(x; M ED) is not continuous as functional of F.



