1 Asymptotic Normality

1.1 Delta Method

Definition 1. The functional f is called Hadamard differentiable at F' if there exists a linear functional
Lr : D — R¥ such that for any ¢, — 0 and {D, Dy,...} C D :sup, |D,(x)—D(x)| = 0,n — oo, F,,+enD,, € F

<f(F+5nDn) _f(F>
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- LF(D”)) =0

We'll consider D = {F — G, F,G € F}.
Definition 2. The influence function of functional f is defined by

In(2) = Lp(0, — F) = lim L= F +20:) = J(F)

where 0, (u) = I,>, is the c.d.f. of z.

Theorem 1. Let f be Hadamard differentiable functional on F. Then f(ﬁn) s an asymptotical normal
estimator for f(F) with o*(F) = [ Ip(x)*dF ().

We’ll prove the theorem later.

Lemm 1. Particularly, let g : R™ — R be a smooth function, fi,...,f, be Hadamard differentiable functionals.
Then

dg(fr(FF+xD), ..., fu(F + 2D S
v a=0 =1 A= (A (F) e (F))
Jloxaszameavcmeo. By definition,
df (F + xD)
Lr(D;f) = )
F( ) f) dr 0
Then (1) is a consequence of chain rule. O

2 Some applications

2.1 Covariance estimation

Now consider some applications:

Example 1. Let (X;,Y;) be i.i.d. random vectors with d.f. F'(z,y) and let

vydF(z,y) — /
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:UdF(x,y)/ ydF (z,y),
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where F = {F(z,y) : [ *dF(z,y) < 00, [g, y>dF(z,y) < co}. Consider fi(F) = EXY. Then

fi(F +e,Dy) — f1(F)

En

== LF(Dn)7

where

Le(Dy) = /R wvdD, (u,0)

Therefore, f(F') is Hadamard differentiable with

Ip(z,y; f1) = Lp(6py — F) = /11&2 wod(yy(u,v) — F(u,v)) = vy — /RuvdF(u,v).



Similarly,

[F($7y7 f2) :‘T_/ UdF<u7U)> IF($7y7 fS) :y_/ vdF(u,v),

R2 R2
where fo(F) = EX, f3(F) = EY. Let g(x,y,2) = = — yz. Then due to (1) f(F) = cov(X,Y) =
g(f1(F), fo(F), f3(F)) is Hadamard differentiable functional with

Ip(z; f) = Lp(0z, f1) = [3(F)Lr (0, f2) — f2(F)Lp(0s, f3) = 2y — Ep XY —
(x —EpX)ErY — (y — EpY)EpX = (r — EpX)(y — ErY) — cov(X,Y).

Therefore, f(F,) = XY — XY is asymptotically normal estimator for cov(X,Y) with
0*(F) = Ep(z — EpX)*(y — EpY)? — (cov(X,Y))?.

Example 2. Let (X;,Y;) be i.i.d. random vectors with d.f. F'(x,y) and let

_ cov(X,Y)
) = VDrXDgY '
Denote
[iF) =cov(X,Y), [fo(F) =Dp(X), f3(F)=Dp().

Then

Le(D: f) = Le(D; 1)  [H(F)Lr(Dsfo) | [i(F)Lr(D; f3)

P U DpXDrY  2./(DrX)PDsY | 2./ (DpY DX
Here

Ip(0:; 1) = (2=EpX)(y=EpY)—cov(X,Y), Ip(ds; fo) = (#=EpX)’~DpX, Ip(0:; f3) = (y—ErY)*~DpY.
Therefore,

Ip(z; f) =2y — %COI‘I‘(X, Y) (7 +3°),
where 2 —EsX  _ y—Eu

z Y
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Sample quantile

Example 3. Suppose that F is a set of absolutely continious distributions with p.d.f. p(z), such that p(z,) >
0, p(z) is continuous in some neighborhood of x,, where z, — a-quantile of F. Consider f(F) = F~!(«),
f(F) =z, as F € F. Let’s prove that the sample quantile

F(Fn) = F (a) = Xjan)
is an asymptotical normal estimator for z,. Really,

F. . (xq) = (1 —¢)F(u) 4+ €, (u) = { (1(1??);67 iz 2 i’

Then for every z and € small enough
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We have

lm F (1“:)8— F(a) _ (Fl (1 o u))

where p is the probability density function of F'. Similarly,
FH(e=5) - F1(1/2) a-—1
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Therefore,

o? a—1)? (1-a)a

2(F) = ——dF(z o= 17 r) = -——5—
()= /:p>ma p(ma)2dF( )+/m<ma p(Ta)? 4F () p(Ta)? '

So, the sample quantile is an asymptotically normal estimator of z,/, with asymptotic variance o?(F). The
proof of Hadamard differentiability can be found in the Appendix.



