Глава 2

Lection 2. Consistency and Asymptotically Normality

Example 1. We show that the median $f_2(F) = F^{-1}(1/2)$ is not a weakly continuous functional. Does $f_2(\widehat{F}_n)$ converge to $f_2(F)$? Let F be a c.d.f. of $X \sim Bern(1/2)$. Then

$$
\widehat{F}_n^{-1}\left(\frac{1}{2}\right) = \begin{cases} 1, & \#\{i: X_i = 1\} > n/2, \\ 0, & \#\{i: X_i = 1\} \le n/2. \end{cases}, \quad F^{-1}\left(\frac{1}{2}\right) = 0.
$$

We see that

$$
\mathbf{P}\left(\left|f_2(\widehat{F}_n)-f_2(F)\right|>1/2\right)=\mathbf{P}(S_n\geq n/2)\to 1-\Phi\left(0\right)=\frac{1}{2}.
$$

Therefore, $f_2(\widehat{F}_n)$ is not consistent for $f_2(F)$.

However, if $F(x_{1/2} + \varepsilon) > 1/2$ for every $\varepsilon > 0$ then f_2 is weakly continuous and $f_2(\widehat{F}_n)$ is consistent. Really, a) Suppose that $F(x_{1/2}) = 1/2$. Then $F(x_{1/2} - \varepsilon) < 1/2$ or every $\varepsilon > 0$ and

$$
F_n(x_{1/2} + \varepsilon) > 1/2, \quad \widehat{F}_n(x_{1/2} - \varepsilon) < 1/2,
$$

for all *n* large enough, where $F_n \stackrel{d}{\to} F$, $n \to \infty$. So $F_n^{-1}(1/2) \in [x_{1/2} - \varepsilon, x_{1/2} + \varepsilon]$ and $F_n^{-1}(1/2) \to x_{1/2}$ as $n\to\infty.$

b) Suppose that $F(x_{1/2}) > 1/2$. Then $F(x_{1/2} - \varepsilon) < 1/2$ for every $\varepsilon > 0$ and

$$
F_n(x_{1/2}) > 1/2
$$
, $F_n(x_{1/2} - 0) < 1/2$

for all *n* large enough *n*. Similarly, $f(F_n) \to f(F)$ as $n \to \infty$. Therefore,

$$
f(\widehat{F}_n) = \widehat{F}_n^{-1}(1/2) = \begin{cases} X_{(k)}, & n = 2k, \\ X_{(k+1)}, & n = 2k+1. \end{cases}
$$

is consistent for $x_{1/2}$. Similarly,

$$
MED = \begin{cases} X_{(k)}, & n = 2k, \\ X_{(k+1)}, & n = 2k+1. \end{cases}
$$

is consistent for $f_2(F) = (F^{-1}(1/2) + F^{-1}(1/2+0))/2$ as $F(x_{1/2} + \varepsilon) > F(x_{1/2} - 0)$ for every $\varepsilon > 0$.

Delta Method

As we see in previous section an estimator $f(\hat{F}_n)$ is consistent for $f(F)$ as the functional f is weakly continuous. Can we find a sufficient condition for asymptotic normality of $f(\hat{F}_n)$?

Definition 1. Let \mathcal{D} be linear space generated by the set of all distribution functions, $f : \mathcal{F} \to \mathbb{R}^k$ is a

functional. The *Gateaux derivative* of f at point F in direction $D \in \mathcal{D}$ is defined by

$$
L_F(D) := \lim_{\varepsilon \to 0} \frac{f(F + \varepsilon D) - f(F)}{\varepsilon}.
$$

Definition 2. The functional f is called Hadamard differentiable at F if there exists $L_F: \mathcal{D} \to \mathbb{R}^k$ such that for any $\varepsilon_n \to 0$ and $\{D, D_1, ...\} \subset \mathcal{D}$: $\sup_x |D_n(x) - D(x)| \to 0, n \to \infty$, $F_n + \varepsilon n D_n \in \mathcal{F}$

$$
\lim_{n \to \infty} \left(\frac{f(F + \varepsilon_n D_n) - f(F)}{\varepsilon_n} - L_F(D_n) \right) = 0
$$

Definition 3. An influence function of the functional f is defined by

$$
I_F(x) := L_F(\delta_x - F) = \lim_{\varepsilon \to 0} \frac{f((1 - \varepsilon)F + \varepsilon \delta_x) - f(F)}{\varepsilon},
$$

where $\delta_x(u) = I_{u \geq x}$ is the c.d.f. of x.

Theorem 1. Let f be Hadamard differentiable functional on \mathcal{F} . Then $f(\hat{F}_n)$ is an asymptotical normal estimator for $f(F)$ with $\sigma^2(F) = \int_{\infty}^{\infty} I_F(x)^2 dF(x)$.

Example 2. Consider $f_1(F) = \int_{\mathbb{R}} a(x) dF(x) = \mathbf{E}_F a(X)$, where a is continuous function. Then

$$
L_F(D) = \lim_{\varepsilon \to 0} \left(\frac{f(F + \varepsilon D) - f(F)}{\varepsilon} \right) = \int_{\mathbb{R}} a(x) dD(x).
$$

Therefore,

$$
\lim_{n \to \infty} \left(\frac{f(F + \varepsilon_n D_n) - f(F)}{\varepsilon_n} - L_F(D_n) \right) = \int_{\mathbb{R}} a(x) dD_n(x) - \int_{\mathbb{R}} a(x) dD_n(x) = 0
$$

and f_1 is Hadamard differentiable. The influence function I_f is equal to

$$
\lim_{\varepsilon \to 0} \frac{(1-\varepsilon) \int_{\mathbb{R}} a(u) dF(u) + \varepsilon \int_{\mathbb{R}} a(u) d\delta_x(u) - \int_{\mathbb{R}} a(u) dF(u)}{\varepsilon} =
$$

$$
\int_{\mathbb{R}} a(u) d\delta_x(u) - \int_{\mathbb{R}} a(u) dF(u) = a(x) - \mathbf{E}_F a(X).
$$

Therefore,

$$
\sigma^{2}(F) = \int_{\mathbb{R}} (a(x) - \mathbf{E}_{F}a(X))^{2} dF(x) = \mathbf{D}_{F}a(X).
$$

So, the Central Limit Theorem is a particular case of the Functional Delta Method.