
Lection 1. The Introduction to Nonparametric Statistics

Motivation

In first course of statistics we consider parametric statistical models. We consider a sample — a vector of 𝑛
i.i.d. random variables with some unknown cumulitive distribution function (c.d.f.). In parametric model we
have an initial assumption that the distribution belongs to some known parametric family. Sometimes this
assumption is natural. Let’s consider four typical cases:

� Finite Case.
For example, if 𝑋 takes values in the set {0, 1}, then 𝑋 has Bernoulli distribution with some parameter
𝜃 = P(𝑋 = 1). If the set 𝐴 of possible values of 𝑋 is finite, the distribution of 𝑋 can be parameterized
by |𝐴| − 1 parameters.

� On Physical Grounds.
Consider, for example, a small particle moving in a fluid and let (𝑋, 𝑌, 𝑍) be its coordinates. From physical
grounds we can say that the motion of our particle is described by the Wiener process. Therefore, the
increments of 𝑋, 𝑌 , 𝑍 are i.i.d. r.v. with gaussian distribution 𝒩 (𝜃1, 𝜃

2
2), where 𝜃1 = 0 if there’s no drift.

� On Probabilistic Grounds.
For example, if we measure some parameters with noise, we usually can approximate our observations
by gaussian random variable (due to the Central Limit Theorem). Similarly, if 𝑋𝑖 is

∑︀𝑚
𝑗=1 𝑌𝑖,𝑗, 𝑌𝑖,𝑗 —

Bernoulli r.v. with a small probability 𝑝, we can approximate 𝑋𝑖 by Poisson distribution.

� On Previous Trials.
Imagine that you start to sell a new drug and you want to predict your income. If it’s not your first
experiment, you have some information about the distribution of the sales. Sometimes this knowledge
can be represented as a functional form of distribution.

In situations described above the parametrization is natural. But in general case we have no reason to restrict
a set of possible distributions to some parametric family. So, we need to use a general nonparametric model:

𝑋1, ..., 𝑋𝑛 ∼ 𝐹, 𝐹 ∈ ℱ ,

where ℱ is some nonparametric family of distribution, for example, all distributions or all distribution with
a finite mean or all continuos distributions.

Three Problems of Nonparametric Statistics

In parametric model we consider three kinds of problems: point estimation of 𝜃, confidence estimation of 𝜃,
hypothesis testing. In nonparametric model instead of 𝜃 we use some parameter of distribution, for example,
the mean. In other words, we deal with 𝑓(𝐹 ), where 𝑓 : ℱ → R𝑘 is some functional on ℱ . So, the three kinds
of problems of nonparametric statistics are:

1. to find an estimator 𝜃(𝑋1, ..., 𝑋𝑛) for 𝑓(𝐹 ), where 𝑓 : ℱ → R𝑘 is a given functional.

2. to find a set 𝑆 = 𝑆(𝑋1, ..., 𝑋𝑛) ⊂ R𝑘 such that for every 𝐹 ∈ ℱ P𝐹 (𝑓(𝐹 ) ∈ 𝑆(𝑋1, ..., 𝑋𝑛)) = 1 − 𝛼 for
given 𝛼 ∈ (0, 1), 𝑓 : ℱ → R𝑘.

3. to test a hypothesis about 𝐹 — to find a decision rule 𝛿 : R𝑛 → {0, 1} for hypothesises 𝐻0 : 𝐹 ∈ ℱ1,
𝐻1 : 𝐹 ∈ ℱ2, where ℱ1 + ℱ2 = ℱ .

Point Estimation. Definitions

Let 𝑋1, ..., 𝑋𝑛 ∼ 𝐹 , 𝐹 ∈ ℱ , 𝑓 : ℱ → R𝑘.

Definition 1. An estimator of 𝑓(𝐹 ) is a measurable function 𝜃 : R𝑛 → R𝑘.



Definition 2. An estimator is called unbiased if E𝐹 𝜃(𝑋1, ..., 𝑋𝑛) = 𝑓(𝐹 ) for every 𝐹 ∈ ℱ .

Definition 3. A sequence of estimators 𝜃𝑛 : R𝑛 → R𝑘, 𝑛 ∈ Z, is called consistent if P𝐹 (|𝜃𝑛(𝑋1, ..., 𝑋𝑛) −
𝑓(𝐹 )| > 𝜀) → 0, 𝑛 → ∞, for every 𝐹 ∈ ℱ , 𝜀 > 0.

Definition 4. A sequence of estimators 𝜃𝑛 is called asymptotically normal if

√
𝑛
𝜃𝑛(𝑋1, ..., 𝑋𝑛)− 𝑓(𝐹 )

𝜎(𝐹 )

𝑑→ 𝑍 ∼ 𝒩 (0, 1), 𝑛 → ∞,

for some 𝜎 : ℱ → R+. The function 𝜎 is called asymptotic variance of ̂︀𝜃.
Example 1. Let 𝑓(𝐹 ) =

∫︀
R 𝑔(𝑥)𝑑𝐹 (𝑥) be a mean of 𝑔(𝑋1), ℱ𝑘 be the set of distributions with finite 𝑘-th

moment of 𝑔(𝑋1). Then the estimator 𝑔(𝑋) = (𝑔(𝑋1) + ... + 𝑔(𝑋𝑛))/𝑛 for E𝐹𝑔(𝑋) is unbiased in ℱ1 due to
linearity of expectation, consistent in ℱ1 due to law of large numbers and asymptotically normal in ℱ2 due
to central limit theorem.

Empirical Cumulative Distribution Function

Let’s begin with an estimation of c.d.f. 𝐹 (𝑥). Since 𝐹 (𝑥) = E𝐼𝑋≤𝑥 the estimator

̂︀𝐹𝑛(𝑥;𝑋1, ..., 𝑋𝑛) =
1

𝑛

𝑛∑︁
𝑖=1

𝐼𝑋𝑖≤𝑥

is a natural estimator for 𝐹 (𝑥). This estimator is called the empirical cumulative distribution function (e.c.d.f.).

1. ̂︀𝐹𝑛(𝑥; �⃗�) is an unbiased estimator since

E ̂︀𝐹𝑛(𝑥; �⃗�) =
1

𝑛

𝑛∑︁
𝑖=1

E𝐼𝑋𝑖≤𝑥 = P(𝑋1 ≤ 𝑥) = 𝐹 (𝑥).

2. ̂︀𝐹𝑛(𝑥; �⃗�) is a consistent estimator since∑︀𝑛
𝑖=1 𝐼𝑋𝑖≤𝑥

𝑛

𝑃→ E𝐼𝑋𝑖≤𝑥 = P(𝑋𝑖 ≤ 𝑥) = 𝐹 (𝑥), 𝑛 → ∞.

3. ̂︀𝐹𝑛(𝑥; �⃗�) is an asymptotically normal estimator since

√
𝑛

(︂∑︀𝑛
𝑖=1 𝐼𝑋𝑖≤𝑥

𝑛
− 𝐹 (𝑥)

)︂
=

∑︀𝑛
𝑖=1 𝐼𝑋𝑖≤𝑥 − 𝑛𝐹 (𝑥)√

𝑛

𝑑→ 𝑍 ∼ 𝒩 (0, 𝐹 (𝑥)(1− 𝐹 (𝑥)), 𝑛 → ∞.

4. By Glivenko-Cantelly theorem

sup
𝑥

| ̂︀𝐹𝑛(𝑥; �⃗�)− 𝐹 (𝑥)| 𝑎.𝑠.→ 0, 𝑛 → ∞.

5. By 4) for a.s. 𝑋1, ..., 𝑋𝑛, ... we have

̂︀𝐹 (𝑥; �⃗�)
𝑑→ 𝐹 (𝑥), 𝑛 → ∞.

By properties 1)-3) ̂︀𝐹𝑛(𝑥) is a nice estimator for 𝐹 (𝑥) as 𝑥 is fixed. However, it’s not enough for our purposes.

Properties 4)-5) shows that ̂︀𝐹𝑛(𝑥) is a nice estimator for 𝐹 (𝑥) in ℱ .

Moreover, we will prove that √
𝑛( ̂︀𝐹𝑛(𝑥; �⃗�)− 𝐹 (𝑥))

𝑑→ 𝑌 (𝑥),

where 𝑌 (𝑥) is some gaussian stochastic process. This result generalizes property 3).

2



Consistent Estimators and Weakly Continuous Functionals

We see that ̂︀𝐹𝑛(𝑥; �⃗�) is an excellent estimator for 𝐹 (𝑥). Therefore, it’s reasonable to estimate 𝑓(𝐹 ) by

𝑓(𝐹𝑛), where 𝑓 is some functional 𝑓 : ℱ → R𝑘.

Definition 5. A functional 𝑓 is called weakly continuous if 𝑓(𝐹𝑛) → 𝑓(𝐹 ) for every sequence 𝐹𝑛 of c.d.f. such

that 𝐹𝑛
𝑑→ 𝐹 , 𝑛 → ∞.

Therefore, if 𝑓 is a weakly continuous functional, then 𝑓(𝐹𝑛) is a consistent estimator of 𝑓(𝐹 ).

Example 2. The functional 𝑓1(𝐹 ) =
∫︀
R 𝑥𝑑𝐹 (𝑥) = E𝐹𝑋 is not weakly continuous. Really, consider a sequence

of c.d.f.

𝐹𝑛(𝑥) =

(︂
1− 1

𝑛

)︂
𝐹 (𝑥) +

1

𝑛
𝐼𝑥≥𝑛.

Then 𝐹𝑛
𝑑→ 𝐹 as 𝑛 → ∞ but

𝑓1(𝐹𝑛) =

(︂
1− 1

𝑛

)︂
E𝐹𝑋 +

1

𝑛
· 𝑛 =

(︂
1− 1

𝑛

)︂
E𝐹𝑋 + 1 → 𝑓1(𝐹 ) + 1.

It’s natural since 𝑋𝑛
𝑑→ 𝑋 doesn’t mean that E𝑋𝑛 → E𝑋. However, for every bounded function 𝑔 : R → R

the functional 𝑓(𝐹 ) =
∫︀
R 𝑔(𝑥)𝑑𝐹 (𝑥) is weakly continuous. Therefore,

𝑓( ̂︀𝐹𝑛) =

∫︁
R
𝑔(𝑥)𝑑 ̂︀𝐹𝑛(𝑥) =

𝑛∑︁
𝑖=1

𝑔(𝑋𝑖)
1

𝑛
= 𝑔(𝑋)

is a consistent estimator for 𝑓(𝐹 ).

Example 3. The median 𝑓2(𝐹 ) = 𝑥1/2 = 𝐹−1(1/2) = inf{𝑥 : 𝐹 (𝑥) ≥ 1/2} isn’t a weakly continuous
functional. Really, consider

𝐹𝑛(𝑥) =

⎧⎨⎩ 0, 𝑥 < 0,
1
2
− 1

𝑛
+ 2𝑥

𝑛
, 𝑥 ∈ [0, 1)

1, 𝑥 ≥ 1.
, 𝐹 (𝑥) =

⎧⎨⎩ 0, 𝑥 < 0,
1
2
, 𝑥 ∈ [0, 1),

1, 𝑥 ≥ 1.

Then 𝐹𝑛
𝑑→ 𝐹 , 𝑓2(𝐹𝑛) = 1/2, 𝑓2(𝐹 ) = 0.
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