Закончим первую половину курса мы более общим фактом, чем теорема Крамера. Итак, пусть $\vec{Z}_n \in \mathbb{R}^d$ — случайные векторы, $R_n(\vec{h}) = Ee^{(\vec{h},\vec{Z}_n)}$. Пусть найдется неотрицательная функция $R(\vec{h})$ (возможно с бесконечными значениями), т.ч.

$$\ln R(\vec{h}) = \lim_{n \to \infty} \frac{1}{n} \ln R_n(n\vec{h}),$$

причем $R(\vec{h})$ конечна в окрестности нуля. Пусть $\Lambda(\vec{\theta}) = (\vec{\theta}, \vec{h}) - \ln R(\vec{h})$.

Как и прежде, нам понадобится лемма:

Лемма 8.1. 1) Функция R гладкая выпуклая ф-ия, Λ выпуклая ф-ия роста.

2) Если найдется h: $\operatorname{grad} \ln R(\vec{h}) = \vec{\theta}$, то $\Lambda(\vec{\theta}) = (\vec{\theta}, \vec{h}) - \ln R(\vec{h})$.

Доказательство части 2) и второй половины 1) повторяет уже проведенные доказательства для теоремы Крамера. Выпуклость R следует из выпуклости $R_n = R_{Z_n}$.

Назовем функцию Λ существенно гладкой, если D_{Λ}^{int} непусто, Λ дифференцируема в этом множестве, $|grad\Lambda(\vec{\theta})|$ сходится к бесконечности при $\vec{\theta} \to \vec{\theta_0}, \ \vec{\theta_0}$ на границе D_{Λ}^{int} . Тогда

Теорема 8.1. (Гартнер-Эллис). Если Λ существенно гладкая, непрерывная снизу функция, то $P(\vec{Z_n} \in A)$ удовляет ПБУ с $\Lambda(\vec{\theta})$.

Пример 8.1. Если $\vec{Z}_n = \vec{S}_n/n$, то $R_{\vec{Z}_n}(\vec{h}n) = R_{\vec{X}_1}^n(\vec{h})$, откуда $R(\vec{h}) = R_{\vec{X}_1}(\vec{h})$ и мы получаем теорему Крамера с дополнительным условием $R(\vec{h})$ конечна в окрестности нуля.

Пример 8.2. . Пусть $Z_n = S_{N_n}$, где $S_n = X_1 + ... + X_n$, X_i н.о.р., а N_n не зависит от них и удовлетворяет $\frac{1}{n} \ln R_{N_n}(\lambda) \to f(\lambda)$. Тогда $\frac{1}{n} Z_n$ удовлетворяет ПБУ с $\Lambda(\theta) = \sup(h\theta - f(\ln R_{X_1}(h)))$. Действительно,

$$\frac{1}{n}\ln R_{S_{N_n}/n}(nh) = \frac{1}{n}\ln \left(\sum_{k=0}^{\infty} P(N_n = k)E\exp(hS_k)\right) = \frac{1}{n}\ln R_{N_n}(\ln R_{X_1}(h)) \to f(\ln R_{X_1}(h)).$$

Из теоремы Гартнера-Эллиса следует искомое утверждение.

Пример 8.3. В частности, если N_n — сумма n Poiss(1) н.о.р. случайных величин (иначе говоря, пуассоновский процесс в точке n), то $f(\lambda) = e^{e^{\lambda} - 1}$.

Задача 8.1. Пусть $X_1,...,X_n,...$ — гауссовская стационарная последовательность с нулевым средним и ковариационной функцией R(i), т.е. $(X_1,...,X_k)$ при любом k гауссовский вектор с нулевым средним и ковариацией $cov(X_i,X_{i+j})=R(j)$. Предположим, что R удовлетворяет условию

$$\sum_{i=-n}^{n} (1 - |i|/n)R(i) \to R, \ n \to \infty.$$

Тогда S_n/n удовлетворяют ПБУ с $\Lambda(\theta) = R\theta^2/2$.

Замечание. Можно заметить, что

$$\Lambda(\vec{\theta}) \leq \liminf \Lambda_n(\vec{\theta}),$$

т.к.

$$\Lambda(\vec{\theta}) = \sup_{\vec{r}} ((\vec{h}, \vec{\theta}) - \ln R(\vec{h})) \le \liminf_{\vec{r}} \sup_{\vec{r}} (\vec{h}, \vec{\theta}) - n^{-1} \ln R(\vec{h}n) = \liminf_{\vec{r}} \Lambda_n(\vec{\theta}).$$

Может возникнуть подозрение, что $\Lambda(\vec{\theta}) = \lim \Lambda_n(\vec{\theta})$. Но это не так. Для примера можно рассмотреть $Z_n = 1/n$. Тогда $R_n(h) = e^{h/n}$, R(h) = 1, $\Lambda_n(\theta) = \infty$, $\Lambda(\theta) = \infty$, $\Lambda(\theta) = \infty$, $\Omega(\theta) = \infty$, $\Omega(\theta) = \infty$.

Докажем нашу теорему. Для простоты будем доказывать для $D_R = \mathbb{R}^d$ (в этом случае условие существенной гладкости не требуется).

1) Итак, докажем оценку сверху, т.е. для любого замкнутого F покажем, что

$$\limsup \frac{1}{n} \ln P(\vec{Z}_n \in F) \le -\inf_{\vec{\theta} \in F} \Lambda(\vec{\theta}).$$

1.1) Докажем оценку для компактного F. Для окрестности $U_{\delta}(\vec{\theta})$

$$P(Z_n \in U_{\delta}(\vec{\theta})) \le Ee^{(\vec{h}n, \vec{Z}_n)} \exp\left(-\inf_{\vec{y} \in U_{\delta}(\vec{\theta})} (\vec{h}, y)\right) \le R_n(n\vec{h})e^{-n(\vec{h}, \vec{x})}e^{\delta|\vec{h}|n}.$$

При любом $\varepsilon > 0$ для каждого $\vec{\theta} \in F$ найдутся $\delta = \delta(\vec{\theta}), \vec{h}$, такие что $\delta|\vec{h}| < \varepsilon, \Lambda(\vec{\theta}) \le (\vec{\theta}, \vec{h}) - \ln R(\vec{h}) + \varepsilon$. Для каждой точки $\vec{\theta} \in F$ рассмотрим $U_{\delta(\vec{\theta})}(\vec{\theta})$. Тогда мы имеем покрытие компакта F такими окрестностями, из которого можно выбрать конечное подпокрытие, центры окрестностей которого мы назовем $\vec{\theta}_i, i \le N$. Имеем

$$\lim \sup_{n \to \infty} \frac{1}{n} \ln P(\vec{Z}_n \in U_{\delta(\vec{\theta})}(\vec{\theta})) \le 2\varepsilon - \Lambda(\vec{\theta}).$$

Рассмотрим покрытие компакта F открытыми шарами с центрами $\vec{\theta_i}$ и радиусами $\delta(\vec{\theta_i})$. Выбирая из него конечное подпокрытие, имеем

$$\limsup_{n \to \infty} \frac{1}{n} \ln P(\vec{Z}_n \in F) \le 2\varepsilon - \inf_{\vec{\theta} \in F} \Lambda(\vec{\theta}).$$

Отсюда для компактного F имеем верхнюю оценку.

1.2) Получим ее для любого замкнутого множества F.

Как и прежде, нам нужно разобраться с оценками вероятностей $P(Z_{n,i}>M)$, где $Z_{n,i}-i$ -я координата \vec{Z}_n , пользуясь соотношением

$$P(\vec{Z}_n \in F) \le P(\vec{Z}_n \in F \cap [-M, M]^n) + P(\exists i : Z_{n,i} > M) + P(\exists i : Z_{n,i} < -M)$$

В силу неравенства Маркова при $\vec{e}_i = (0, ...0, 1, 0, ...0)$

$$P(Z_{n,i} > M) \le Ee^{nZ_{n,i}}e^{-nM} = R_n(n\vec{e_i})e^{-nM},$$

откуда

$$\lim \sup_{n \to \infty} \frac{1}{n} \ln P(Z_{n,i} > M) \le -M + \ln R(\vec{e_i}).$$

В силу произвольности M имеем требуемую оценку сверху аналогично тому, как это было сделано в многомерной теореме Крамера.

2) Докажем нижнюю оценку, т.е. для любого открытого G покажем, что

$$\liminf_{n \to \infty} \frac{1}{n} \ln P(\vec{Z}_n \in G) \ge -\inf_{\vec{\theta} \in G} \Lambda(\vec{\theta}).$$

Как и прежде, достаточно доказать, что при любых $ec{x}$ и всех достаточно малых δ

$$\liminf \frac{1}{n} \ln P(\vec{Z}_n \in U_{\delta}(\vec{x})) \ge -\Lambda(\vec{x}).$$

(2.1) Допустим, что найдется супремум $\Lambda(\vec{x})$ достигается при некотором \vec{h} . Тогда $grad(\ln R(\vec{h})) = \vec{x}$ и

$$P(\vec{Z}_n \in U_{\delta}(\vec{x})) = \int_{U_{\delta}(\vec{x})} P(\vec{Z}_n \in d\vec{y}) = e^{-n(\vec{h},\vec{x})} R_n(n\vec{h}) \int_{U_{\delta}(\vec{x})} e^{-n(\vec{h},\vec{y}-\vec{x})} P(\vec{Z}_n^{(n\vec{h})} \in d\vec{y}) \ge e^{-n(\vec{h},\vec{x})} R_n(n\vec{h}) e^{-|\vec{h}|\delta} P(\vec{Z}_n^{(n\vec{h})} \in U_{\delta}(\vec{x})).$$

Раньше мы пользовались для оценки последней вероятности 3БЧ, но теперь последовательность Z более сложная. Оценим ее снизу следующим образом:

$$P(\vec{Z}_n^{(n\vec{h})} \in U_{\delta}(\vec{x})) = 1 - P(\vec{Z}_n^{(n\vec{h})} \notin U_{\delta}(\vec{x})) \ge 1 - \left(\sum_{i=1}^d \left(P(\vec{Z}_{n,i}^{(n\vec{h})} - x_i > \delta d^{-1/2}) + P(\vec{Z}_{n,i}^{(n\vec{h})} - x_i < -\delta d^{-1/2})\right)\right).$$

В силу неравенства Маркова при любом $\tilde{h}>0$

$$P(\vec{Z}_{n,i}^{(n\vec{h})} - x_i > \delta d^{-1/2}) \le \frac{Ee^{n\tilde{h}Z_{n,i}^{(nh)}}}{e^{n\tilde{h}(x_i + \delta d^{-1/2})}} = \frac{R_n(n(\tilde{h}\vec{e_i} + \vec{h}))}{R_n(n\vec{h})e^{n\tilde{h}(x_i + \delta d^{-1/2})}}$$

И

$$\limsup_{n \to \infty} \frac{1}{n} \ln P(\vec{Z}_{n,i}^{(n\vec{h})} - x_i > \delta d^{-1/2}) \le \ln R(\tilde{h}\vec{e_i} + \vec{h}) - \ln R(\vec{h}) - \tilde{h}x_i + \delta d^{-1/2}.$$

Ho $\ln R(\tilde{h}\vec{e_i}+\vec{h}) - \ln R(\vec{h}) - \tilde{h}(e_i, grad \ln R(\vec{h}) = o(\tilde{h}),$ откуда при достаточно малом \tilde{h} величина $\limsup_{n \to \infty} \frac{1}{n} \ln P(\vec{Z}_{n,i}^{(n\vec{h})} - x_i > \delta d^{-1/2})$ отрицательна, а значит $P(\vec{Z}_n^{(n\vec{h})} \in U_{\delta}(\vec{x})) \to 1, \ n \to \infty$. Таким образом,

$$\liminf_{n \to \infty} \frac{1}{n} \ln P(\vec{Z}_n \in U_{\delta}(\vec{x})) \ge \Lambda(\vec{x}) - |\vec{h}|\delta,$$

откуда в силу произвольности δ имеем требуемое.

2.2) Как и в теореме Крамера предположим, что супремум в определении Λ недостижим. Тогда рассмотрим $\vec{X}_n = \vec{Y}_n + \vec{Z}_n$, $\vec{Y}_n \sim \mathcal{N}(0, E/(Mn))$ и не зависит от \vec{Z}_n , где M — некоторый параметр, E — единичная матрица. Тогда

$$\ln R_{\vec{X}_n}(n\vec{h}) = \ln R_n(n\vec{h}) + \frac{n}{2M}|\vec{h}|^2 \ge \ln R_n(n\vec{h})$$

И

$$\ln \tilde{R}(\vec{h}) = \lim_{n \to \infty} \frac{1}{n} \ln R_{X_n}(n\vec{h}) = \ln R(\vec{h}) + \frac{n}{2M} |\vec{h}|^2 \ge \ln R(h), \ \tilde{\Lambda}(\vec{\theta}) \le \Lambda(\vec{\theta}),$$

где $\tilde{\Lambda}(\vec{\theta}) = \sup_{\vec{h}} ((\vec{\theta}, \vec{h}) - \ln \tilde{R}(\vec{h}))$. При этом $\ln R(\vec{h}) \geq (\vec{h}, \vec{\mu})$, где $\vec{\mu} = grad \ln R(\vec{0})$, существующий в силу дифференцируемости $\ln R$. , а значит

$$(\vec{h}, \vec{x}) - \ln \tilde{R}(\vec{h}) \le (\vec{h}, (\vec{x} - \vec{\mu})) - \frac{1}{2M} |\vec{h}|^2 \to -\infty,$$

 $h \to \infty$. Следовательно, супремум в $\tilde{\Lambda}(\vec{\theta})$ достижим в конкретной точке \vec{h} , удовлетворяющей условию $\vec{x} = \operatorname{grad} \ln \tilde{h}(\vec{h})$. В силу 2.1)

$$\liminf_{n \to \infty} \frac{1}{n} \ln P(\vec{X}_n \in U_{\delta/2}(\vec{x})) \ge -\tilde{\Lambda}(\vec{x}) \ge -\Lambda(\vec{x}).$$

При этом

$$P(\vec{Z}_n \in U_{\delta}(\vec{x})) \ge P(\vec{X}_n \in U_{\delta/2}(\vec{x})) - P(|\vec{Y}_n| > \delta/2).$$

Модуль вектора больше $\delta/2$ только если одна из координат больше по модулю $\delta/(2\sqrt{d})$. Значит

$$P(|\vec{Y}_n| > \delta/2) \le 2d \left(1 - \Phi\left(\frac{\delta^2 \sqrt{nM}}{2d}\right)\right).$$

В силу соотношения

$$\Phi(x) \sim \frac{1}{\sqrt{2\pi x}} e^{-x^2/2},$$

имеем $\limsup_{n\to\infty}\frac{1}{n}\ln P((Y_1+...+Y_n)/n>\delta/2))\leq -M\delta^2/(2d)$. Аналогично рассуждениям пункта 1.2), отсюда следует требуемое утверждение.

a