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Nematic liquid crystals (or oriented fluids) represent the media that are characterized by the
elasticity of the orientation of the long axes of molecules. The surface tension at the interface
between such media also exhibits certain anisotropic prOperties associated with the internal
orientation of the media. In this case, the surface tension may distort the parallel orientation of
lines inside a volume even in the free (equilibrium) state of the oriented fluid. A review of
theoretical models of the surface tension in liquid crystals and certain experimental results was
presented in [1].

In this paper, we carry out an analytical and numerical analysis of the equilibrium problem

for a nematic liquid-crystal droplet suspended in an ordinary isotropic fluid. We demonstrate
how the orientation of the easy axis affects the droplet shape. When the direction of the easy axis
is close to the normal, the droplet is typically oblate, whereas, when the axis is close to the
tangent to the surface, the droplet is extended along the symmetry axis. For intermediate values
of the surface-orientation angles. the droplet exhibits conical peaks on its poles.
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1. INTRODUCTION

Nematic liquid crystals (or oriented fluids) represent the media that are characterized by the
elasticity of the orientation of the long axes of molecules. The surface tension at the interface
between such media also exhibits certain anisotropic properties associated with the internal orien-
tation of the media. In this case, the surface tension may distort the parallel orientation of lines
inside a volume even in the free (equilibrium) state of the oriented fluid. A review of theoretical
models of the surface tension in liquid crystals and certain experimental results was presented in [1].

In this paper, we carry out an analytical and numerical analysis of the equilibrium problem
for a nematic liquid-crystal droplet suspended in an ordinary isotropic fluid. We demonstrate how
the orientation of the easy axis affects the droplet shape. When the direction of the easy axis is
close to the normal, the droplet is typically oblate, whereas, when the axis is close to the tangent
to the surface. the droplet is extended along the symmetry axis. For intermediate values of the
surface-orientation angles, the droplet exhibits conical peaks on its poles.

2. THE BASIC VARIATIONAL EQUATION

Within the Oseen-Frank model, the equilibrium of a liquid-crystal droplet can be described on
the basis of the L.I. Sedov variational equation [2].

Suppose that A(z?) is a unit vector field of the orientation of a medium and z* are the Eulerian
coordinates of points, i = 1,2,3. Supposing that the state of the continuum is isothermal, we
assume that the volume and surface densities of the free energy are given by the following scalar
functions:

Fy(gij, A, Vid),  Fs(4'mn),

where g;;, Ai and V;A’ are the components of the metric tensor, vector A, and its covariant
derivative, respectively, and n is a unit outward normal to the surface. Due to the scalar nature of
the functions Fy and Fs. the essential arguments of these functions are scalars that consist of the
above components. In particular, Fs depends only on A, = Ain,.

Consider the equilibrium of an oriented fluid droplet that occupies a certain Lagrangian vol-
ume V bounded by the surface S and is immersed into an isotropic fluid. Both fluids are assumed
to be incompressible, have identical constant densities p, and be situated in the gravitational field
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with the potential U(z*). Then the following relation holds:

) (/(Fv-i—p(l—A))d'ro-i—/FSda) :6/pUd7'0+/pe<5mndo,
S Vo S

Vo

where p is the internal pressure used as a Lagrange multiplier in the incompressibility condition,
A = det(0z'/0¢9), pe = pU + const is the external pressure, and Vj is the invariable volume.
Independently varying the positions z*(£P) of the particles of the medium under constant La-
grangian variables £P, the orientation filed A of the medium under the condition |[A| =1, and the
pressure, we obtain the following system of equilibrium equations and boundary conditions:

oFy OFy
. _ — j j . ) =
Vip+ Fy - pU) =0, (5] — A 4y) (M] v (av,-Aa)) 0, (1)
in the volume V and
. - . OFy dFg
p{nj = V0% — peni, (6% — AT Ag) (BViAj n; + IL. nj> =0, (2)
.- . OF; . . dF
i _ 1 1 V i i S

on the surface S; here, pji is the stress tensor introduced by Ericksen, and ¢, is the tensor of surface
tensions. The surface covariant derivative V,, o = 1,2, is calculated by the metric ang = gijzgmé,

where ¥, = Oz'/9u® are the tangent vectors and u® are the Lagrangian coordinates on the surface.
By virtue of equations (1), the following standard equilibrium equation of continuum mechanics
is valid [2]:
Vipji +pV;U =0.

The first equation in (1) defines the pressure: p = pU — Fy + const. Later, the pressure can be
eliminated in order to give an independent formulation of the problem of orientation distribution
and the droplet shape. ‘

When there are edges (or peaks) on the droplet surface that are not specially formed by the
suspension- or support-tvpe external conditions, we should adopt the balance condition for the
linear forces,

(0i"Ma)+ + (0i°mq)- =0,

that are calculated on both sides of the edge; here m are the corresponding external normals to
the edge that lie on the surface. Since there is a term containing a normal to the surface in (3), in
the general case. the linear force contains a tearing component, which is not characteristic of the
surface tension of isotropic fluids.

By the second vector condition in (2), the first condition reduces to the single scalar relation

d*Fs _ ;dFs

N dFg
dA2 T dA,

"dAn

A%V 4, =bg<F5—A >+p De

where b,g = niVaxg is the second fundamental tensor of the surface. This result is associated with

the fact that the theory does not depend on the choice of the surface coordinates u® and allows
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one vary actually only one function describing the surface configuration, for example, in Eulerian
coordinates.
If we take a vector product of the second equation in (1) multiplied by A, we obtain the equation

that is equivalent to the equation for the internal angular momentum of the medium [3].
Frequently, it is assumed that Fs depends on Ap rather than on A,, where B is a unit vector
that specifies the direction of the so-called easy-orientation axis, which makes an angle w with the
normal to the surface. Typically, Fs is a decreasing function of Ap?, and we can assume that
0 < w < /2. Varying the orientation of B for given A and n, we obtain that |Ap| attains its
maximum when the vector B lies in the plane of vectors A and n and closer to the straight line

directed along A. In this case,
|Ap| =sinwy/1 — A2 + cosw|An]. (4)

3. THE EQUILIBRIUM OF A DROPLET

Consider the functional
E=/de7'+/F5da, B
v S

where V is the variable volume (dr = Adrp). ,

The variation of functional (5) in the class of functions A*(z¥) satisfying the second equation
in (1), as well as in the class of shapes of the surface S for a given volume V' and under the boundary
conditions (2) (after eliminating the pressures p and p.), is equal to zero. The preservation of the
volume given by V = [sr,do = Vj, where r is a radius vector, can be added to functional (5)
with the Lagrange multiplier A. In addition, we should take into account the preservation of the
coordinate of the droplet volume center given by [sr?>ndo = 0.

Consider a simple version of the theory, the so-called one-constant approximation, when

1 L 1
Fy = SKViA;V'AT,  Fs=a+38(1- 45",

where K, o, and 3 are positive constants.

Depending on the physical and chemical treatment of the contact surface, the orders of mag-
nitudes of the above constants (for example, for the MBBA [4]) are as follows: K ~ 6pN,
a ~ 0.04 N/m, and 8 ranges from 1078 to 1073 N/m. The characteristic radius of the liquid-crystal
droplet (a radius when a droplet can be interpreted as a single crystal) is Rg ~ 107" m. Thus, we
can construct two dimensionless parameters, €, = 3/a ~ 1071-10"7 and e = BRo/K ~ 10-1074,
and employ these parameters to simplify the equations.

When 3 = 0, the isoperimetric minimum problem for the functional E for a given V' has a
unique solution, A = const, and the droplet has a spherical shape. When 8 > 0, because ¢ Is
small, the problem of the droplet shape can always be linearized with respect to the deviations
from sphere. In this case, if e2 < 1 (weak anisotropy of the surface tension), the equations for
the droplet shape and the orientation distribution become completely linear; therefore, they can
be solved virtually independently; one just should check the agreement of signs that is necessary

to minimize functional (3).
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In the case of strong anisotropy, when €3 > 1, one has to solve nonlinear equations (1) (but
with a given value of |4, | = cosw on the sphere [5]) in order to determine the volume distribution
of the orientation to the zero-order approximation, which, typically, is a final result of the solution.
Then, the droplet shape is determined from the known values of the Ericksen stress tensor on the
sphere. In this paper, we consider the case of weak anisotropy, which allows direct determination
of the droplet shape.

We will seek the solution in the class of functions possessing the symmetry of the fundamental
state. The value of F increases as the order of symmetry decreases. Then, in the spherical
coordinates 7, 6, , the contravariant components of the orientation vector and the normal vector
to the droplet surface r = R(6) are expressed as

A=<COSX31_HZ<. ) n=<w_&9)_

e )0 VvR? + R?
Introduce the function u = @+ x(r, 8) defined as the angle between the symmetry axis of the droplet
and the vector A. Then, by the symmetry of the basic solution with respect to the equatorial plane,
the function R(6) is even and u(r,6) is odd with respect to the variable z = m/2 — 0.

Taking into account (4), we can rewrite the functional E + AV as

T R . 9 B
E+AV=WK//(r2u3+u%,+3¥> sin 0 dr do
= sin“ #

+ Qﬂ/R\/Rz + R2 (a + gsin2 (w— h(g))) sin6 do + ?g—)‘ / R3sinddé, (6)
0 ] 0

¢ =6 —u — arctan(R'/R),

where u, and ug are the partial derivatives with respect to r and 6, respectively; here, we introduced
the periodic sawtooth function h = arccos |4,|: h(¢) = [¢| for ¢ € [-m/2; /2] with the period =.

To take into account the nondifferentiability of the function A({) in the neighborhood of arbi-
trary points ¢ = # (that are not close to 0, 7/2, or m) during subsequent linearization of the term
containing this function, we should formulate certain boundary conditions at the salient points,
such as the absence of linear or concentrated external forces on the droplet surface. In accordance
with the symmetry properties of the desired solution, it is sufficient to solve the linearized problem
only in the domain 0 < r < Ry, 0 <6 < 7/2.

Suppose that the basic solution corresponds to u = 0 and R = Ry. Introduce the following
dimensionless variables (that are of order unity in magnitude):

r R — Ry U
TIZ'E)') y(x): isO ) ’UJ(’I‘,IE)-:‘E'2‘.

Then, retaining in (6) the quadratic terms in £; and €3 as the highest terms and varying this
functional, we obtain the following equation for the orientation angle for 0 < z < 7/2:

2 (wgcosz)y w .
(r*wr )r, + cos T cos2z 0, (™
1. T
wr, (1, z) =§Sln2($+w)7 w(ry,0) = w 7‘1,§> =0.
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Redefining A\, we have the following equation for the shape of the droplet surface:
1
(y cosz) = (2y + A1) cosz — 3 cos(3z + 2w). (8)

Using the linearized isoperimetric condition f07r /2 ycoszdzr = 0, one can determine \; from equa-

tion (8). For the smooth droplet surface, we have
1 .
AL =— g(sm 2w + cos2w) .
When there are edges on the surface, the following quantity should be continuous:
e
(y + 3 sin2(z + w)) cosz;

this quantity is proportional to the radial component of the total linear force on a given side of the
edge. Hence, when the parameter w is constant, the droplet surface is everywhere smooth, except,
possibly, the poles. When the function y(z) is bounded and there are no concentrated forces on
the poles of the droplet, the analysis of the asymptotic behavior of the solution to (8) as z — /2
shows that there exist conical peaks with y' = %sin 2w for almost every w.

Let us present the exact solutions to equations (7) and (8). Let w = 0; i.e., let the axis of easy
orientation coincide with the normal. Then,

L

1
w=w = Zr% sin 2z, y=1y = —(3cos2z —1). (9)

Thus, the shape of the droplet represents an oblate ellipsoid of revolution. The minimum of
functional (6) is guaranteed by the fact that the variables w and y'(z) have correlated (opposite)
signs on the circle r; = 1. A similar solution exists for w = 7/2. In this case, the signs of w and y
in (9) are simply reversed. The surface shape represents an oblong ellipsoid.

It is convenient to determine the distribution of orientation lines (interpreted as the lines of flow
of the vector field A(z')) inside the droplet in the meridian plane ¢ = 0 by using the cylindrical
coordinates r, = rsinf, = = r cos 8:

dre

=t =~ = . 10
P anu X u = 2w (10)

Using solution (9), we obtain

€922
r. = Cexp (i:ﬁ)

for w = 0 and w = /2, respectively; here, the constant C € [0, 1]. In the first case, the orientation
lines move away from the symmetry axis as z increases, whereas in the second, they approach the
symmetry axis.

In the general case, the solution is sought in the following form:

w = wj €Os 2w + ws sin 2w, y = Y1 €0S 2w + Y2 sin2w;
thus, the determination of the functions ws and ya reduces to the solution of equations (7) and (8)

for w = 7 /4.
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4. DETERMINATION OF THE DROPLET SHAPE AND
ORIENTATION FOR w = /4

When w = 7/4, equation (8) is rewritten as
’ ' 1 L.
(y'cosz) = 2y—6 cosx+§sm3x;

we solved this equation numerically for the following boundary conditions at the ends of the inte-
gration interval: y'(0) = 0 and y/(7/2) = 1/2.

Calculations were performed by the standard sweep method. The accuracy of calculations was
checked by verifying the volume-preservation condition, which was fulfilled with a relative error
of 10~*. The results of calculating the droplet shape for w = m/4 in the cylindrical coordinates
normalized by Ry are illustrated in Fig. 1. For clearness, the graph is represented for £; = 1.
Figure 2 demonstrates the droplet shape in the meridian section. Because of the symmetry, we
reproduce only a quarter of the section. For comparison, Fig. 2 also demonstrates the graph of a
circle corresponding to the case of isotropic surface tension.

To determine the orientation of the medium for w = m/4, equation (7) is solved subject to the
boundary conditions wy,(1,z) = 3cos2z and w(ry,0) = w(r;,7/2) = 0. Let w = —Wy(ry, ).
Then, the solution is reduced to the axially symmetric solution of the Neumann problem inside
the ball r; < 1, || < m/2 for the Laplace equation (in the function W’) subject to the boundary
condition W, (1,z) = 61' — X|sin2z|. Using the expansion of W in terms of spherical functions of

even order and retaining the first two terms, we obtain

1024r§(-2sin2z+7sin4z)+.... (11)

1 .
w= ET% sin 2z +

To determine the lines of flow of the field A(z*) in the plane ¢ = 0, we apply equation (10),
which, in view of the smallness of €3, can be rewritten as

dre _ R0C52w ( % z) , z=RyCtanc, r:(0) = RoC'. (12)

-5 B) )
dz Ccos= x cos T
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Substituting expression (11) into equations (12), performing the integration, and eliminating z,

15e2 (16 2 2> 2) z
— 14+ 2 (= -9 -2
Te ROC'< + 556 (45 +5C 27 )21 ), 21 R

we obtain

The corresponding orientation lines represent W-shaped curves that have minima at z = 0
and two maxima at 2? = %C’? + %. The maxima lie inside the droplet when C' < 0.846, which
corresponds to the angles given by |z| > 32.2°.

Thus, the obtained results on the determination of the droplet shape and the distribution of
internal orientation for w = /4, together with formulas (9), corresponding to the case w = 0, allow
us to give the complete solution of the problem for any value of w. In particular, for all w € (0,7/2),
the droplet has conical peaks on its poles in the approximation considered.
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