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Nonsymmetric Forms of Envelopes of Relativistic Magnetic Stars1
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Abstract—Within the framework of a previously proposed relativistic model of a magnetized perfectly
conducting material surface without internal stresses, an axisymmetrical equilibrium problem is considered
of the rotation of a stellar envelope, supported by a radial hypersonic stellar wind in a given central
gravitational field and dipole magnetic field. In the absence of either the magnetic field or the stellar wind,
the equations have an explicit solution; in the general case the solution is obtained numerically. Of special
interest are the envelope shapes asymmetric with respect to the equator (relative to the direction of the
dipole), which have the greatest stability, in particular, bottle-shaped structures.
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1. INTRODUCTION

The photographs of planetary nebulae, recently
obtained with the help of high-resolution telescopes,
have revealed the existence of different layered struc-
tures consisting of gas-dust envelopes around
stars [1].

In connection with the investigation of astrophys-
ical objects with strong magnetic field, the analysis
of stationary spatial configurations of thin conductive
envelopes, apart from the conventional theory of flat
plasma discs [2], is of interest. The possible (and, in
some cases, even dominating) action of stellar wind
should also be taken into account.

A study of the shapes of such relativistic objects as
neutron stars, galactic nuclei, white and black holes is
also of interest. In the Newtonian approximation the
problem is considered in [3, 4].

2. EXTERNAL FIELDS

For the description of the electromagnetic field of
a massive magnetic dipole in general relativity, the
Bonnor solution to the electrovacuum equations with
two Killing vectors [5] can be used, but it is easier to
construct anew the field of a magnetic dipole in the
Schwarzschild metric

ds2 = (1 − 2m/r) dt2 − (1 − 2m/r)−1 dr2

− r2
(
dθ2 + sin2 θ dϕ2

)
,
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where m is the mass of a star; the speed of light c and
the gravitational constant G are taken to be equal to
unity.

The corresponding solution of the Maxwell equa-
tions

∇jF
ij = 0, Fij = ∇iAj −∇jAi

for the vector potential Ai of the electromagnetic field
(i = 0, 1, 2, 3) in the Schwarzschild metric has the
form

Aϕ = −3M sin2 θ

4m3

(
m2 +

r2

2
ln(1 − 2m/r) + mr

)
,

where M is the magnitude of the dipole. The remain-
ing components of Ai are zero. In solving the problem
of dynamical equilibrium of a material envelope we
restrict ourselves to the domain r > 2m.

The components of the tensor Fij are

Frϕ = −3M sin2 θ

4m3

(
r ln(1 − 2m/r) + 2m

r − m

r − 2m

)
,

Fθϕ = −3M sin θ cos θ

2m3

×
(

m2 +
r2

2
ln(1 − 2m/r) + mr

)
.

The stellar wind is considered to be stationary,
spherically symmetric and hypersonic. This assump-
tion is connected with the neglect of the wind’s ther-
mal pressure and, possibly, if the wind is a conducting
plasma, of the Lorentz force exerted on the wind. The
action of a stellar wind with the rest mass density ρ
and 4-velocity wi is determined by the equations

∇i(ρwi) = 0, wk∇kw
i = 0, wiwi = 1,
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whose solution in the metric (1) yields

ρwr =
Q

4πr2
, wr =

(
w2
∞

1 − w2
∞

+
2m
r

)1/2

,

wt =
1

(1 − 2m/r)
√

1 − w2
∞

,

where Q is the strength of the wind source and w∞ is
the radial 3-velocity at infinity.

3. EQUATIONS OF AN ENVELOPE

Let the spatial part of the equations of motion for a
cold envelope have the form

(
σuα∇αui + jkF

ik − kρwiwknk

)

⊥li
= 0,

∇α(σuα) = 0, 4πji = [Fij ]nj. (1)

Here σ is the surface density of the envelope rest
mass, ui is the 4-velocity, ni is the 4-normal to the
envelope, nini = −1, uiui = 1, niui = 0; the deriva-
tive ∇α (α = 0, 1, 2) is connected with the inter-
nal geometry of the envelope. The jump [Fij ]nj

corresponds to a self-frozen-in magnetic field of the
envelope, k is the envelope’s momentum absorption
coefficient. Absorption of rest mass by the envelope is
neglected. The subtler question of energy absorption
is also left out of our consideration; the vector of the
observer’s reference frame is li = δi

t.
The derivation of the equations is connected with a

study of the three-dimensional structure of a thin en-
velope, when the internal magnetic field is supposed
to be linearly distributed across the width of the en-
velope and is being continuously sewn together with
the external field, which obeys the Maxwell equations
and, in turn, slightly differs from the given field of the
central dipole.

By virtue of an infinite conductivity inside the en-
velope, the equality uiFij = 0 holds. This leads to
independence of the Lagrangian variables F̂µ3, where
µ = 1, 2 are longitudinal indices, and hence the vari-
ables’ jump is time-independent.

4. STATIONARY ROTATION
OF THE ENVELOPE

Let us consider the problem of stationary rotation
of an axisymmetric envelope with azimuth current.
Let the 4-velocity of the envelope have the form

(ui) =
(1, 0, 0, ω)

√
1 − 2m/r − r2 sin2 θ ω2

,

where the functions r = r(θ) and ω = ω(θ) determine
the shape of the envelope and the distribution of its

angular 3-velocity, respectively. The surface density
σ and the component jϕ of the current are also func-
tions of the angle θ.

The vector of normal is

(ni) =
(0, 1,−r′, 0)

√
1 − 2m/r + r′2/r2

.

In the stationary axisymmetric case, the continu-
ity equation as well as the ϕ projection of Eq. (1),
together with the aforementioned freezing-in con-
ditions (Section 3) are satisfied identically. There
remain two equations involving four functions of the
angle θ, so in this case, of course, different statements
of the problem are possible. Let us dwell on the fol-
lowing one. We shall consider σ and ω to be constant.

If we introduce the dimensionless parameters

µ = w2
∞/c2, δ =

ω2r3
g

Gm
, ε =

(
kQc

4πGσm

)2

,

the length scale rg = 2Gm/c2, the dimensionless
variable r1 = r/rg and the quantity j1 =
3jϕM/(r5

gω
2σc) (further on the index “1” is omitted),

then the equations for envelope’s shape assume the
form

j

r4
f1(r) +

2r sin2 θ

2r − 2 − δr3 sin2 θ
= 0, (2)

1 − 1
r

+
r′2

r2

=
ε(µ/(1 − µ) + 1/r)

(1 − 1/r)2

(
1 − 1

r
− δ2

2
r2 sin2 θ

)2

× f2
1 (r)

[
(1 − δr3 sin2 θ)f1(r) − 2δr4 sin2 θf2(r)

]2 , (3)

where

f1(r) = 1 + 2r2 ln (1 − 1/r) + 2r,

f2(r) = r ln (1 − 1/r) +
r − 1/2
r − 1

.

Eq. (2) is the θ-projection of Eq. (1); Eq. (3) is
obtained by eliminating j from the radial equation.

5. EXACT SOLUTIONS

A. In the absence of rotation (δ = 0), Eq. (3) as-
sumes the form

r′ = ±r

(
εµ

1 − µ
− 1 +

1 + ε

r

)1/2

and has the following family of solutions:
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Fig. 1. Nonrotating envelopes (δ = 0; (a) µ = 0.3, ε = 1, (b) µ = 0.5, ε = 1, (c) µ = 0.7, ε = 1) and a double bottle in the
absence of a stellar wind ((d) ε = 0, δ = 0.1).
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Fig. 2. Nonsymmetric envelopes for µ = 0.1, ε = 10, δ = 10−3. Dashed lines, boundaries of the domain of existence; S1, S2,
separatrices. On the left, equatorial zone in the vicinity of r = 1.

1. for (1 + ε)µ > 1:

2
√
−r∗√

ε + 1
ln

√
r +

√
r − r∗√

r0 +
√

r0 − r∗
= ±θ,

where

r∗ =
(ε + 1)(1 − µ)
1 − µ(ε + 1)

, r0 = r(0);

2. for (1 + ε)µ = 1:

2(
√

µr −√
µr0) = ±θ;

3. for (1 + ε)µ < 1:

2
√

r∗√
ε + 1

(
arcsin

√
r

√
r∗

− arcsin
√

r0√
r∗

)
= ±θ,

and also the family envelope, the spherical envelope

r = r∗. (4)

In the first case all envelopes are bounded by the
sphere (4), in the remaining cases the envelopes do
not extend to infinity. In Fig. 1a–1c, the three corre-
sponding types of envelopes are shown in cylindrical
coordinates: rc = r sin θ, z = r cos θ. On this plane,
all envelopes are perpendicular to the circle r = 1,
begin and end on either the axis z or the circle r = 1,
or the envelope curve (4).

B. In the absence of a stellar wind (ε = 0), the
shape of the envelope is determined by the algebraic
equation

δ sin2 θ = f1(r)/
(
r3f1(r) + 2r4f2(r)

)
,

which gives double-bottle forms extending to infinity
(Fig. 1(d)).
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6. NUMERICAL RESULTS

In the general case (ε �= 0, δ �= 0), the shape of the
envelope is obtained by integrating Eq. (3). Some of
the shapes are shown in Fig. 2. As in the nonrelativis-
tic case [4], there exist nonsymmetric bottle-shaped
envelopes extending to infinity.

A special feature of the relativistic case is that in
the plane (rc; z) the existence domain has, along with
an outer boundary, a crescent-shaped lacuna in the
vicinity of r = 1. In case δ � 1, the distance between
the lacuna and the sphere r = 1 is of the order δ, and
the thickness of the lacuna on the equator is of the
order of δ3/2

√
(1 − µ)/ε.

A significant peculiarity of the problem is the ex-
istence of two separatrices S1 and S2 (Fig. 2) which
arise in the neighborhood of the equator and go to
the infinity along the outer boundary of the existence
domain. The separatrices are the most stable forms of
envelopes: analogous forms are evidenced, as a rule,
in symmetric pairs, in some planetary nebulae (e.g.,
the Ant, Butterfly and Cat’s Eye nebulae [1]).

Stability of the envelopes in the neighborhood of
r = 1 needs an additional investigation.
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