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The inertial migration of particles in a dilute suspension flow through the entry region of a plane
channel �or a circular pipe� is considered. Within the two-fluid approach, an asymptotic one-way
coupling model of the dilute suspension flow in the entry region of a channel is constructed. The
carrier phase is a viscous incompressible Newtonian fluid, and the dispersed phase consists of
identical noncolloidal rigid spheres. In the interphase momentum exchange, we take into account the
drag force, the virtual mass force, the Archimedes force, and the inertial lift force with a correction
factor due to the wall effect and an arbitrary particle slip velocity. The channel Reynolds number is
high and the particle-to-fluid density ratio is of order unity or significantly larger unity. The solution
is constructed using the matched asymptotic expansion method. The problem of finding the
far-downstream cross-channel profile of particle number concentration is reduced to solving the
equations of the two-phase boundary layer developing on the channel walls. The full Lagrangian
approach is used to study the evolution of the cross-flow particle concentration profile. The inertial
migration results in particle accumulation on two symmetric planes �an annulus� distanced from the
walls, with a nonuniform concentration profile between the planes �inside the annulus� and
particle-free layers near the walls. When the particle-to-fluid density ratio is of order unity, an
additional local maximum of the particle concentration on inner planes �an inner annulus� is
revealed. The inclusion of the corrected lift force makes it possible to resolve the nonintegrable
singularity in the concentration profile on the wall, which persisted in all previously published
solutions for the dilute suspension flow in a boundary layer. The numerical results are compared to
the tubular pinch effect observed in experiments, and a qualitative analogy is found.
© 2008 American Institute of Physics. �DOI: 10.1063/1.3032909�

I. INTRODUCTION

The problem of inertial migration of particles in suspen-
sion flows has received considerable attention from the sci-
entific community over the past 50 years because of its im-
portance in a wide range of applications. Examples of
particulate flows involving migration phenomena arise in
many disciplines, from small-scale biomechanics �transport
of corpuscles in blood vessels� toward large-scale environ-
mental fluid mechanics �atmospheric dusty-gas flows�, in-
cluding many mesoscale industrial applications �e.g., trans-
port and migration of proppant particles in oil wells or
hydraulic fractures�.

Most theoretical papers focus on evaluating the inertial
lift force that causes lateral migration of particles in shear
flows of a viscous fluid under different conditions �effects of
the particle slip, rotation, and oscillation, and effects of the
presence of a rigid boundary and gravitational settling�.1 Se-
gre and Silberberg2 showed that neutrally buoyant particles
suspended in a Poiseuille flow at low channel Reynolds num-
bers through a tube migrate in the cross-flow direction to-
ward a steady position at 0.6 of the tube radius from the axis.
Using the method of matched asymptotic expansions,

Saffman3 obtained the lift force on a small sphere moving
with a nonzero slip velocity parallel to an unbounded linear
shear flow. This result was found in the strong shear limit,
when the particle Reynolds numbers based on the slip veloc-
ity Us and the shear rate G, Res=2�Us� /� and ReG

=4�2G� /�, are both small and related as Res /ReG
1/2�1.

Here, � is the particle radius, and � and � are fluid density
and viscosity. Asymptotic solutions in the inner region on the
length scale � and the outer region on the length scale
LSaff= �� /�G�1/2�� were obtained. It was demonstrated that
the lift force is caused by a nonzero transverse component of
the outer disturbance flow at the particle center.

Subsequent studies extended this result to take into ac-
count the effects of either a nonzero slip parameter �
=Res /ReG

1/2 or the presence of a rigid impermeable wall. Cox
and Hsu4 calculated the migration velocity of a particle sedi-
menting in a stagnant fluid bounded by a plane wall.
Asmolov5 and McLaughlin6 extended Saffman’s analysis to
the case of an unbounded flow when � takes finite nonzero
values. Additionally, Asmolov5 and McLaughlin7 addressed
the wall effect and obtained the inertial lift force for the case
when a particle moves parallel to a flat rigid wall in a linear
shear flow at distances that are large compared to the particle
radius. The migration velocity was tabulated7 as a function
of the slip parameter and the distance from the wall scaled by
LSaff. The approximate formulas for the dependence of the
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migration velocity on the slip parameter � were proposed by
Asmolov8 and Mei.9

The inertial migration of a non-neutrally buoyant par-
ticle translating parallel to the walls within a channel flow
was investigated at finite10,11 and large12 channel Reynolds
numbers Re. At large Re, the wall effect is important in
near-wall layers of the thickness d Re−1/2, where the migra-
tion velocity is close to that calculated for a linear wall-
bounded flow.5,7 The wall effect can be neglected within the
core of the flow, and the disturbance flow can be treated as
unbounded. However, the inertial lift in this region differs
from the predictions for a linear flow5,6 because of the effect
of curvature of the Poiseuille velocity profile.

A relatively smaller number of papers are devoted to
studying the evolution of the particle concentration profile as
a result of inertial migration of particles in suspension flows,
when both the carrier fluid and the particles are considered
within the continuum approach. Continuum modeling of the
fluid-particle boundary layer was reviewed by Marble13 and
Osiptsov.14 A two-continua model of the dusty-gas boundary
layer on a flat plate was presented for the case when only the
Stokes force is taken into account.15 It was shown16 that the
cross-flow profile of particle number concentration contains
a nonintegrable singularity on the wall, i.e., the number con-
centration of particles grows infinitely as the wall is ap-
proached and the integral of particle concentration over the
cross-flow coordinate diverges near the wall. It was
demonstrated16 that in the vicinity of a nonintegrable singu-
larity the mean distance between particles is not large com-
pared to the particle radius. Hence, the medium of particles is
not dilute and the interparticle interactions should be taken
into account in the vicinity of the singularity. However, in
the case when the particle number concentration tends to
infinity, but the singularity is integrable, the mean distance
between particles remains significantly larger than the par-
ticle radius and the basic assumption of the dilute suspension
model is valid.16

The cross-flow particle migration due to the classical
Saffman lift force was studied for dusty-gas flows in a chan-
nel using the Lagrangian approach17 and in a boundary layer
using the Eulerian approach.18 Foster et al.18 also presented a
survey of more recent advances in continuum modeling of
dilute suspension flows. The correction to the lift due to a
nonzero value of the slip parameter was taken into account
for boundary-layer flows over a flat plate8 and around a blunt
body.19 The dusty-gas flow in a near-wall jet was studied by
Duck et al.20 However, all the numerical results for the cross-
flow profile of particle number concentration in dilute sus-
pension flows over a flat wall still contain a nonintegrable
singularity on the wall. Foster et al.18 suggested that includ-
ing the classical Saffman force may not remove the singular-
ity, and a weakly nondilute model is required in order to
resolve the singular behavior of particle concentration.

Another important phenomenon peculiar to the motion
of a dilute suspension of small noninteracting particles is a
possible intersection of particle trajectories and a formation
of folds in the pressureless particulate continuum.21,22 In the
cases when the particle trajectories intersect, there form re-
gions, where two different Lagrangian points of the particu-

late medium are present at the same Eulerian point of space.
In the motion of a pressureless medium of noninteracting
particles, the trajectories intersect due to the particle inertia.
Examples of flows with intersecting particle trajectories can
be found in, but not limited to, the cases when there is a
strongly nonuniform lift force exerted on a particle, or con-
verging flow of the suspending fluid, or a reflection of par-
ticles from a solid surface, or an impact of two particle-laden
jets. Experimental evidence of particle trajectory intersec-
tions in dilute suspension flows has been revealed in a vari-
ety of different fluid-dynamical configurations. For example,
in the problem of aerodynamic focusing of small particles in
a carrier gas flow through a narrow confining channel par-
ticle trajectories cross at a certain common focal point on the
symmetry axis of the channel;23 see also the pioneering ex-
perimental work on aerodynamic focusing by Israel and
Friedlander.24 The aerodynamic focusing concept is based on
particle inertia and the Stokes drag from the carrier phase.24

Recently, this concept was extended and the Saffman lift
force on lagging particles in a convergent flow was shown to
cause the cross-flow particle migration, which enhances
focusing.23 Crossing trajectories have also been observed in
the experiments on a grid-generated turbulence in dilute
suspensions.25,26 In the case of a particle-laden flow through
a channel, particle trajectories intersect due to particle reflec-
tion from the channel walls, which has been observed in
experiments.27 Numerical simulations of dusty-gas flows
through confining nozzles28 and around blunt bodies29,30 also
reveal the origin of crossing particle trajectories due to the
particle reflection from rigid surfaces. For both experimental
and numerical evidences of crossing particle trajectories, see
also the review on erosion of rigid surfaces by particle
impact.31 In the cases described above, a multilayer structure
forms in the particulate medium, where two or more initially
different parts of the particulate continuum are superim-
posed, resulting in a fold.

The modified Lagrangian approach was proposed29 for
calculating particle concentration field in the presence of in-
tersecting trajectories. The method is based on integrating
particle motion equations along particle trajectories and find-
ing the concentration field from the continuity equation in
Lagrangian form. The parts �or layers� of the fold can only
be distinguished in Lagrangian variables, because the cross-
ing trajectories have different Lagrangian coordinates but the
same Eulerian coordinates at the point of intersection. In
addition, the boundary of the region with intersecting trajec-
tories �the boundary of the fold� can easily be found from the
condition that the Jacobian of the Eulerian–Lagrangian trans-
formation is zero, i.e., the Jacobian changes sign on the
boundary of the fold. The work by Slater and Young30 dis-
cussed advantages and drawbacks of Eulerian methods in
comparison with Lagrangian methods to calculate particle
concentration fields. The comparison was conducted on an
example of a dusty-gas flow around a cylinder in the pres-
ence of intersecting trajectories due to the particle rebound
from the cylinder surface. It was suggested that the Lagrang-
ian methods are preferable in the case of crossing particle
trajectories, because the problem for an Eulerian method is
ill posed in the region of trajectory intersections. The work
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by Healy and Young32 presented a comparison of the full
Lagrangian method proposed by Osiptsov29 with another La-
grangian method for calculating particle concentration fields.
The study discussed the issue with calculating particle con-
centration in the presence of crossing particle path lines. Sev-
eral examples were considered, including particle motion in
an inviscid dusty-gas stagnation-point flow and also an invis-
cid gas-particle flow over a cylinder. The work concluded32

that the full Lagrangian method29 is preferable, as it can
handle several types of concentration singularity and has a
significant potential for dramatic reductions in computational
time and improvements in accuracy compared to traditional
approach.

The objective of the present work is to construct an
asymptotic model of the inertial migration of rigid noncol-
loidal particles in a dilute suspension flow through the entry
region of a channel. We use the two-fluid approach to mod-
eling of suspension flows, where each phase, particles and
fluid, is treated as a continuum. The proper expression for the
lift force exerted on a particle in a bounded shear flow is an
essentially important component of the present study. It will
be shown that including the correction to the lift due to the
wall effect and a nonzero slip parameter makes it possible to
resolve the nonintegrable singularity in the concentration
profile within the dilute suspension model. In order to calcu-
late the particle concentration and velocity fields, the full
Lagrangian approach29 is used, which can be applied even in
the cases of intersection of particle trajectories and formation
of singularities in the particle concentration field, when any
Eulerian method fails to provide a correct solution.18,29,30

This paper is organized as follows. Section II presents
the formulation of a problem of the dilute suspension flow in
the entry region of a channel. In Sec. III, we derive
asymptotic equations governing the dilute suspension flow in
a boundary layer on the length scale of particle velocity re-
laxation. In Sec. IV, the equations of the flow on the length
scale of overlapping of boundary layers are presented. The
matching conditions are derived. In Sec. V, the full Lagrang-
ian approach for calculating particle concentration fields is
described. Section VI presents the numerical results for par-
ticle trajectories and the cross-flow particle concentration
profile in comparison with existing experimental data and
theoretical results. A summary of the results and concluding
remarks are given in Sec. VII.

II. FORMULATION OF THE PROBLEM

We consider a two-dimensional steady flow of a dilute
suspension of noncolloidal rigid particles in the entry region
of a plane channel or a circular pipe. The carrier phase is an
incompressible Newtonian fluid. The particles are rigid
spheres of constant radius. The ratio of the particle substance
density to the fluid density is of the order of unity or signifi-
cantly larger unity. The velocity relaxation length of a Stokes
particle is of the order of the channel width. The volume
concentration of particles is small, so the chaotic motion of
particles and interactions between particles are neglected.
Channel walls are rigid, impermeable, and smooth. The
channel Reynolds number based on the mean flow velocity

and the channel half-width is assumed to be high, but sub-
critical, so the flow is assumed to be laminar. Gravity is
neglected, because we consider an entry region of a vertical
pipe or a horizontal section of a vertical plane channel. At
the inlet section of the channel, the profiles of fluid and par-
ticle velocity and the particle number concentration are uni-
form and the particle slip velocity is zero. The flow is con-
sidered in the channel entry region, where the boundary
layers develop on the channel walls and the Poiseuille veloc-
ity profile of the carrier fluid is being established. The goal of
this work is to construct an asymptotic model of the inertial
migration of particles and to study the evolution of the cross-
flow particle concentration profile in the entry region of a
channel. In what follows, we will describe the details of the
problem formulation and present the equations of the model.

The suspension flow is considered within the two-fluid
approach based on the concept of two interpenetrating and
interacting continua.33 Within this approach, a two-phase
system is treated as a combination of two continua, where
one continuum is related to the carrier fluid and another to
suspended particles. As a basis for mathematical modeling of
the suspension flow, we will use the asymptotic two-fluid
model of a dilute suspension,13 in which the particle volume
concentration c is negligibly small: c→0. The carrier phase
is characterized by the substance density �, molecular vis-
cosity �, and the local velocity v= �u ,v�. The suspended par-
ticles have radius � and substance density �s

0. To describe the
motion of particles, we introduce the particulate continuum
with local velocity vs= �us ,vs� and local density �s=mns.
Here, m is the mass of a single particle and ns is the particle
number concentration. Hereinafter, the subscript s denotes
parameters related to the particulate phase, the superscript 0
denotes parameters related to the particle substance rather
than to the particulate medium, and the superscript � denotes
dimensional parameters at the channel inlet section. Since
the relative volume of the particulate phase is neglected, the
local density and viscosity of the carrier fluid are equal to its
constant substance density � and molecular viscosity �. We
assume that the ratio of the particle substance density to the
fluid density �=�s

0 /� is of order unity or significantly larger
unity. Additionally, it is an assumption that the characteristic
mass load of particles defined as 	=�s

� /�=c�� is negligibly
small �	→0� even in the case of a dusty-gas flow. In what
follows, it will be shown that in this case the feedback effect
of particles upon the carrier fluid can be neglected, and the
suspension flow is governed by the so-called one-way cou-
pling model.13 We will consider separately two cases when
the particle-to-fluid density ratio is of order unity �suspen-
sion flows� or significantly large unity �dusty-gas flows�. In
the case of a dusty-gas flow, although the density ratio � is
significantly larger unity ��103�,13 the volume concentration
of particles c� is sufficiently small �
10−4� �Ref. 16� that
justifies the assumption of a small mass load 	.

It is assumed that the medium of particles is dilute and
the Brownian motion, collisions, and interactions between
particles are neglected. These assumptions make it possible
to simplify significantly the conservation laws and to formu-
late the relations for the momentum exchange between the
phases on the basis of formulas for the forces exerted on a
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single particle. The assumption that the particulate medium
is collisionless allows us to neglect internal stresses in the
continuum description of the particulate medium.

We introduce the Cartesian coordinate system Oxy fitted
to the channel, with the x- and y-axes directed along and
normal to the channel walls �Fig. 1�. The origin of the coor-
dinate system is located at the inlet on the channel wall.

The equations of the two-fluid model for a dilute suspen-
sion flow are written in the dimensional form as follows:33

div v = 0, div��svs� = 0,

�1�
��v��v = − �p + ��v − nsfs, m�vs��vs = fs.

Here, fs is the total hydrodynamic force exerted on a single
particle from the suspending fluid. The term −nsfs on the
right-hand side of the Navier–Stokes equation represents the
feedback effect of particles upon the carrier fluid. We assume
that the momentum exchange between the carrier fluid and
particles is due to the drag force, the lift force, the
Archimedes force, and the virtual mass force:

fs = Fdrag + Flift + FArch + Fvm,

where

Fdrag = 6����v − vs�D, FArch =
4

3
��3�

dv

dt
,

Fvm =
2

3
��3��dv

dt
−

dvs

dt
� , �2�

D = 1 +
1

6
Res

2/3, ReG =
4��2

�

�u

�y
, Res =

2��v − vs��
�

.

Here, the drag force is given by the widely used Schiller–
Nauman formula,34 also known as the Klyachko formula,
which is an empirical extension of the Stokes drag �valid in
the range 0
Res
103�.34 In the expression for the virtual
mass force, the total derivative is taken along the fluid
streamline.35 Here, we neglect gravity force, assuming that
the ratio of the gravity force to the drag force is small com-
pared to unity:

2�s
0�2g

9�U
� 1.

The lift force is written as

Flift = cl��,Yp�FSaff,

FSaff = 6.46�2	��	
 �u

�y

�u − us�sign� �u

�y
�j ,

�3�

� = �us − u�� �

�

�u

�y
�−1/2

= 
Res

ReG
1/2 ,

Yp = y/LSaff = y� �

�

�u

�y
�1/2

.

Here, j is the unit vector of the y-axis; � is positive when the
particles lead the fluid and negative otherwise. The correc-
tion factor to the lift force accounts for a finite nonzero value
of the slip parameter and the wall effect. It will be shown
below that the migration of particles essentially takes place
in the near-wall regions, where the effect of the curvature of
the fluid velocity profile can be neglected.12 Hence, we can
use the results for the lift in a linear shear flow bounded by a
single wall.5–7

It will be shown below that in the present problem for-
mulation the particles lead the fluid, so ��0. To fit the nu-
merical data for wall-bounded flows in the case ��0, we
propose the following expression:

cl = cl
�����1 − n���exp�− m���Yp�� ,

n = 1 +
1.77�

cl
� , m = 0.453 + 0.139�1.93.

The approximation of the numerical results for an un-
bounded flow is given by8

cl
� = �1 + 0.581�2 − 0.439���3 + 0.203�4�−1.

The formula for cl
� agrees well with the numerical data.5,6

This formula is also in a good agreement with the fit pro-
posed by Mei,9 and a comparison is illustrated in Fig. 1 of
the paper by Asmolov.19 When Yp→� �the particle distance
from the wall is significantly larger than the Saffman length
LSaff�, the correction factor cl is positive and tends to cl

�. In
the limit Yp→0 �the distance to the wall is small compared
to LSaff but still large compared to the particle radius ��,
the lift coefficient cl is negative and tends to the value
cl

0=−1.77� predicted by Cox and Hsu.4 Thus, the lift force
changes sign on a certain line distanced from the wall, so
that particles are repelled from the wall at short distances and
pushed toward it at large. Since the lift force is proportional
to the particle slip velocity, the particles migrate across
streamlines as long as there is a nonzero interphase slip.
Hence, the particles may not fully accumulate on the equi-
librium line �where the lift force is zero� before the inter-
phase slip vanishes due to the drag force and the phase ve-
locity relaxation is complete.

At the inlet section of the channel �x=0�, we assume the
following conditions: the velocities of fluid and particles are
equal, the velocity profile of the fluid �and, hence, of the
particles� is uniform, and the particle number concentration
is constant across the channel. On the channel walls, the
no-slip condition is specified for the carrier phase. Thus, the
boundary conditions can be written in the form

FIG. 1. The sketch of the flow pattern in the channel entry region, where the
Poiseuille velocity profile is being established. Arrows: the carrier phase
velocity, dashed lines: boundary layers.
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x = 0: u = us = U, v = vs = 0, �s = �s
�,

�4�
y = 0,2d: u = v = 0.

Here, U is the velocity of the fluid and the particulate me-
dium at the inlet section, and d is the channel half-width.
Equations for the particulate phase are hyperbolic with the
characteristics being particle trajectories. Hence, these equa-
tions do not require boundary conditions on the surfaces
other than the channel inlet, where the particle trajectories
start.

In what follows, we assume that the channel Reynolds
number based on the parameters of the carrier flow and the
channel half-width is significantly larger unity:

Re =
�Ud

�
, � =

1

Re
� 1.

Since the fluid velocity profile at the inlet is uniform and the
channel Reynolds number is high, the boundary layers are
formed on the channel walls. The present problem formula-
tion is a generalization of the problem of a dusty-gas flow
through a channel,17 which accounts for the following addi-
tional complications. The effects of the order-unity density
ratio are governed by the Archimedes and the virtual mass
forces, which were neglected in the case when the particle-
to-fluid density ratio is significantly larger unity �dusty-gas
flow17�. The effects of a boundary on the particle migration
are accounted for via the correction factor to the lift force �to
resolve the nonintegrable singularity in the cross-flow profile
of particle number concentration, which appeared in the ear-
lier models of the two-phase boundary layer15–18�.

We consider the flow on two different length scales �Fig.
1�: �i� the characteristic velocity relaxation length of a Stokes
particle l=mU /6���, and �ii� the characteristic length of
overlapping of the boundary layers L=d2U� /�.36 The phase
velocity relaxation length scale l defines the region, where a
thin boundary layer is formed on the channel wall. Inside the
boundary layer, the fluid velocity decreases abruptly due to
the no-slip condition on the wall. The particles which ini-
tially had a zero slip velocity move faster than the fluid �due
to the particle inertia�, until the interphase slip vanishes due
to the drag force and the velocity relaxation is complete. In
the core of the flow, the fluid velocity profile and the particle
concentration profile are uniform and the particle slip veloc-
ity is zero. The length scale L is the characteristic length, on
which the boundary-layer thickness attains the channel half-
width, the boundary layers on the upper and lower walls
merge �see Fig. 1�, and the carrier phase velocity profile
develops into that given by the Poiseuille law. We assume
that the ratio of the channel half-width d to the velocity
relaxation length scale of a Stokes particle l is of order unity:
�=d / l�1. Then the characteristic length of overlapping of
the boundary layers L is significantly larger than the particle
velocity relaxation length scale l, since L / l=� /��1, as
�→0.

Using the method of matched asymptotic expansions,37

we will construct an asymptotic solution to the problem in
the limit �→0.

III. EQUATIONS OF THE FLUID-PARTICLE
BOUNDARY LAYER

In this section, we will write, in dimensionless form, the
system of equations governing the suspension flow over the
velocity relaxation length scale l �Fig. 1�, which for spherical
particles can be rewritten as

l =
2�s

0U�2

9�
.

The dimensionless variables are introduced by the formulas

x� = lx, y� = ly, u� = Uu, v� = Uv, p� = �U2p ,

�5�
us� = Uus, vs� = Uvs, �s� = �s

��s, ns� = ns
�ns.

The dimensional variables are denoted by a prime, when it is
needed to distinguish them from the dimensionless variables.
The flow in a channel is symmetrical with respect to the
centerline; hence we will consider only the domain between
the centerline and a channel wall. Because the velocity pro-
file of the carrier fluid is convex with a single local maxi-
mum on the channel centerline, in the region considered the
shear rate is positive: �u /�y�0. In addition, in dimension-
less variables it can easily be shown that the particle number
concentration is equal to the density of the particulate me-
dium: ns=�s.

17 Thus, in what follows by �s we will also
understand the nondimensional particle number concentra-
tion. Substituting Eq. �5� into Eqs. �1�–�4�, we obtain the
following system of dimensionless equations:

div v = 0, div��svs� = 0, �v��v = − �p + ���v − 	�sfs,

�vs��vs =
2�

2� + 1
�D�v − vs� + �cl	�u

�y
�u − us�j�

+
3

2� + 1
�v��v , �6�

� =
�

�Ud
, � =

d

l
, � =

6.46

2	2�
	 �

�s
0 .

In the dimensionless form, boundary conditions �4� are re-
written as

x = 0: u = us = �s = 1, v = vs = 0, y = 0,2�: u = v = 0.

�7�

Summarizing the assumptions stated in Sec. II, we deal with
the following asymptotic limit in terms of the governing di-
mensionless parameters:

� = 1/Re → 0, � = d/l � 1, � = �s
0/� � 1, c → 0,

Res → 0, ReG → 0, � = Res/	ReG � 1.

The other dimensionless groups entering into the problem
formulation can be expressed in terms of these parameters.
Taking into account that 	→0, we neglect the feedback term
on the right-hand side of the Navier–Stokes equation for the
carrier fluid �6�. The procedure used to find an asymptotic
solution of Eqs. �6� and �7� in the limit �→0 is similar to
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that for the problem of a boundary layer on a flat plate. We
separate the flow domain into two regions: the outer region
�the core of the flow� and the inner region �the thin boundary
layer developing along the channel wall�. The outer solution
is the uniform free stream: u=us=�s=1, v=vs=0, and p
=const. We seek the inner solution in the form of asymptotic
series in the powers of ��, retaining only the leading terms:

y = ����1/2�, u = u2�x,��, v = ����1/2v2�x,�� ,

p = p2�x,��, us = us2�x,�� , �8�

vs = ����1/2vs2�x,��, �s = �s2�x,�� .

Hereinafter, the subscripts of the variables indicate the num-
bers of corresponding asymptotic domains shown in Fig. 2.

Substituting these formulas into Eq. �6� and retaining
only the leading terms, we obtain �the subscript 2 is omitted
for simplicity�:

�y

�x
+

�v
��

= 0,
��sus

�x
+

��svs

��
= 0, u

�u

�x
+ v

�u

��
=

�2u

��2 ,

�p

��
= 0, us

�us

�x
+ vs

�us

��
= Fsx,

Fsx =
2�

2� + 1
D0�u − us� +

3

2� + 1
�u

�u

�x
+ v

�u

��
� ,

us
�vs

�x
+ vs

�vs

��
= Fs�,

�9�

Fs� =
2�

2� + 1
�D0�v − vs� + �0cl	 �u

��
�u − us��

+
3

2� + 1
�u

�v
�x

+ v
�v
��

� ,

cl��,x,�� = cl
��1 − n exp�− m1���

�

x1/4�� ,

m1 = m
	���0�
����1/4 , � =

�u − us�
����1/4 , �0 =

6.46

12	4 18�
Res0

3/2��s
0

�
�1/4

,

D0 = 1 +
1

6
Res0

2/3�u − us�2/3, Res0 =
2�U�

�
.

Here, the last terms on the right-hand sides of the momentum
equations for the particulate phase correspond to the virtual
mass and Archimedes forces. In the strong shear limit ���1�
and at a significantly large particle-to-fluid density ratio ��
�1�, the terms with the virtual mass and Archimedes forces
are negligible, the correction factor to the lift force tends to
unity �cl→1�, and the equations of the particulate phase tend
to those for a dusty-gas flow.17 In addition, ���0� stands for
the derivative of the Blasius function.36 An additional sim-
plification comes from the fact that the outer flow is uniform,
so the pressure gradient is zero in the boundary layer. Bound-
ary conditions �7� take the form

x = 0: us = �s = 1, vs = 0,

�10�
� = 0: �u = v = 0, � → �: u → 1.

IV. EQUATIONS ON THE LENGTH SCALE
OF OVERLAPPING OF THE BOUNDARY LAYERS

In this section, we will consider the flow on the charac-
teristic length scale of overlapping of the boundary layers
L=d2U� /� �Fig. 1�. Nondimensional variables are intro-
duced as follows:

x� = LX, y = dY�, u� = Uu3, v� = �d/L�Uv3,

p� = �U2p3, us� = Uus3, vs� = �d/L�Uvs3, �11�

�s� = �s
��s3, ns� = ns

�ns.

The dimensionless variables describing the flow in this re-
gion are denoted by the subscript 3 �see Fig. 3�. Substituting
these formulas into Eqs. �1�–�4� and retaining only the lead-
ing terms, we obtain the following equations:

�u3

�X
+

�v3

�Y
= 0, us3

��s3

�X
+ vs3

��s3

�Y
= 0,

u3
�u3

�X
+ v3

�u3

�Y
= −

dp3

dX
+

�2u3

�Y2 ,
dp3

dY
= 0,

�12�
u3 − us3 = 0, v3 − vs3 = 0,

FIG. 2. Different asymptotic domains: �1� entry region, �2� boundary layer,
�3� region of overlapping of boundary layers, �4� lower sublayer, and �5�
far-downstream region. Symbol ⇔ denotes asymptotic matching of solu-
tions in adjacent domains.

FIG. 3. �Color online� Particle trajectories in the boundary layer for cor-
rected lift force, �→�, �0=5 �a� and 10 �b�
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X = 0: u3 = 1, v3 = 0, �s3 = 1; Y = 0, 2: u3 = v3 = 0.

From Eq. �12�, we find that the phase velocities are equal to
within the leading order in this region, and hence the phase
velocity relaxation is complete. The boundary conditions at
the channel inlet section are derived from the condition of
asymptotic matching with the uniform stream at fixed Y and
X→0. The continuity equation for the dispersed phase can
be rewritten in the form of the material derivative of the
particle number concentration along the fluid streamlines:

d�s3

dt
= 0,

dX

dt
= u3,

dY

dt
= v3.

From this equation with boundary conditions �12�, we find
that the particle number concentration is constant along the
fluid streamlines: �s3=1. Equations of the fluid motion �12�
coincide with the formulation of the problem of a viscous
incompressible flow in the entry region of a plane channel.
An approximate solution to this problem is known.36 The
constant cross-flow particle concentration �s3=1 is not a uni-
formly valid asymptotics of the solution of Eq. �12�, since
near the channel wall a thin sublayer forms, where the par-
ticle number concentration deviates from unity due to the
inertial migration of particles, which takes place upstream in
the boundary layer. This lower sublayer is asymptotically
thinner than the channel half-width.

In general, the entire flow domain in the entry region of
a channel can be split into five asymptotic domains �Fig. 2�:
�1� the region of a uniform free stream, where the parameters
are the same as in the inlet section �the fluid velocity and
particle concentration profiles are uniform and the particle
slip velocity is zero�, �2� the boundary layer on the channel
wall, where the fluid velocity profile is nonuniform, particles
lead the fluid, the particle slip velocity is finite compared to
the fluid velocity, and hence the migration due to the lift
force results in a nonuniform particle concentration profile,
�3� the region of overlapping of the boundary layers, where
the flow velocity profile attains that given by the Poiseuille
law, the particle slip velocity is negligible, and the particle
concentration profile is uniform, �4� the lower sublayer,
where the fluid velocity profile is linear, the particle slip
velocity is negligible, and the particle concentration is non-
uniform, and finally, �5� the far-downstream region �X�1�,
where the parameters of fluid and particles are independent
of the longitudinal coordinate X, the fluid velocity is given
by the Poiseuille law, and the particle concentration is non-
uniform over the entire channel half-width.

Next, we derive equations governing the suspension flow
in the lower sublayer �region 4, Fig. 2�. The new stretched
variables are introduced as

u3 = ��/��1/4u4�X,z�, v3 = ��/��1/2v4�X,z� ,

Y = ��/��1/4z, us3 = ��/��1/4us4�X,z� , �13�

vs3 = ��/��1/2vs4�X,z�, �s3 = �s4�X,z� .

The exponents of the leading terms are chosen in accordance
with the conditions of asymptotic matching with the solu-
tions in adjacent asymptotic regions. Below, it will be shown

explicitly that the particle trajectories in the lower sublayer
behave like X1/4, which is in accord with the exponents of the
leading terms in the above asymptotic expansions. Here and
in what follows, we denote the variables corresponding to
the flow in the lower sublayer by the subscript 4 �Fig. 2�.
Substituting expansions �13� into �12� and retaining only the
leading terms, we obtain

�u4

�X
+

�v4

�z
= 0,

�2u4

�z2 = 0,
�p4

�z
= 0,

u4
��s4

�X
+ v4

��s4

�z
= 0, u4 = us4, v4 = vs4, �14�

z = 0: u4 = v4 = 0, z → �: u4 = u3�Y=0.

The solution of Eq. �14� is u4=G�X�z, v4=G��X�z2 /2, and
�s4 is constant along the streamlines of the carrier phase.
Thus, the fluid velocity profile is linear, the particle slip ve-
locity is negligible, hence the lift force is zero according to
formula �3�, and the value of the particle number concentra-
tion, which enters into the lower sublayer, is then transferred
without changing along the fluid streamlines. The concentra-
tion profile is stretched in this region, because the fluid
streamlines diverge. The condition of asymptotic matching
of the velocity in the lower sublayer �region 4, Fig. 2� u4

with the velocity in the region of overlapping of boundary
layers �region 3, Fig. 2� u3 is written in the form


 �u4

�z



z→�

=
 �u3

�Y



Y=0
.

From this formula, we find the function G�X�

G�X� =
 �u3

�Y



Y=0
.

In the lower sublayer, the constant value of �s4 is transferred
along the streamlines of the carrier phase, which are given by
the equation for the stream function �=z	G�X�=const. This
means that the particle number concentration �s4, being con-
stant along the streamlines, can be considered as dependent
on the stream function � only, i.e., �s4=�s4���. The function
�s4��� should be determined from the condition of
asymptotic matching with the solution of the boundary-layer
problem �9� and �10� expressed in terms of the stream func-
tion. Since the particle number concentration is shown to be
nonuniform in a thin near-wall layer, where the velocity pro-
file is linear, then upstream, in the boundary layer, the mi-
gration also occurs in a thin near-wall layer, where the ve-
locity profile is linear. This is why we stated above that no
correction to the lift force is needed to account for the qua-
dratic profile of the carrier flow. In addition, as the inner
longitudinal coordinate x tends to infinity inside the bound-
ary layer, the particle velocity relaxation completes and
hence the lift force vanishes according to Eq. �3�, so the
particles no longer migrate across fluid streamlines. Thus, the
particles become frozen into the fluid, and the particle con-
centration depends on the stream function only.

We will now describe asymptotic matching of solutions
for the particle concentration profile between regions 2 and 5
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through region 4 �Fig. 2�. After matching the solutions in
adjacent asymptotic regions and excluding region 4, we will
derive the matching condition for the solutions in regions 2
and 5.

In order to match the solutions for the particle concen-
tration in regions 2 and 4, we should find the asymptotics of
the solution in region 4 as X→0 and in region 2 as x→�.
Then, the condition of matching is the equality of these
asymptotics.37 The asymptotics of the function G�X� as
X→0 is given by36

G�X� =
���0�
	X

.

Taking into account this formula, we write the equation for a
streamline �=z	G�X�=const in the limit X→0 as

� =
z	���0�

X1/4 = const, X → 0. �15�

Since it is shown above that ��	G�X� and G�X��1 /	X,
there appears the exponent of 1

4 in Eq. �15�. We will now
rewrite the expression for the stream function in terms of the
inner variables � and x specified inside region 2 �Fig. 2�.
From the formulas for the length scales chosen to normalize
the variables in the boundary layer �8� and in the lower su-
blayer �11� and �13�, we find

� =
�

x1/4 =
z

X1/4 .

Here, � is the notation for the stream function in the inner
variables of region 2 �Fig. 2�. Equation �15� implies that it is
convenient to match the solutions for the particle concentra-
tion in the variables �x ,�� and �X ,��, for the fixed magni-
tudes of stream functions � �region 2, Fig. 2� and � �region
4, Fig. 2� as X→� and X→0, respectively. In this
asymptotic matching, X is the outer coordinate tending to
zero, and x is the inner coordinate tending to infinity, since
there is a relation between these coordinates obtained from
the expressions for the length scales: X=�x /�. Hence, we
can represent the condition of asymptotic matching of the
solutions for the particle concentration in regions 2 and 4 in
the form

�s4����X→0 = �s2�x,���x→�, � = �	���0� . �16�

We introduce the notation

�s2
lim��� = lim

x→�
�s2�x,��

for the asymptotic profile of the particle concentration, which
should be determined from the solution of Eqs. �9� and �10�
in the variables �x ,��. Matching condition �16� gives the
value of the particle concentration at the entry to the lower
sublayer.

Then, according to the solution of Eq. �14�, the value of
particle concentration is transferred without changing along
the streamlines of the carrier fluid throughout region 4 �Fig.
2�. In other words, in the entire region 4 the particle concen-
tration depends on the stream function � only. This makes it
possible to track the particle concentration through region 4

�Fig. 2� and to determine the particle concentration distribu-
tion far downstream in region 5 at X→� from the matching
condition with region 2 at X→0 �16�. As X→�, we have
G�X�=3.36 Hence, the equation of streamlines takes the form
�=z	3=const, as X→�. In the far-downstream region 5
�Fig. 2�, the Poiseuille velocity profile is fully established
and the fluid streamlines are straight lines parallel to the
channel walls �z=const�. From this equation and the relation
between the transverse coordinates z and Y �13�, it follows
that the solutions in regions 4 and 5 should be matched as-
ymptotically at the fixed � and Y:

�s4����X→� = �s5�Y�, Y	3��

�
�1/4

= � .

Finally, eliminating the variables of region 4 �Fig. 2�, from
Eq. �16� we obtain the matching condition for solutions in
the boundary layer �region 2� and in the far-downstream
zone �region 5�

�s5�Y� = �s2
lim���, Y = �� �

�
�1/4����0�

3
�1/2

. �17�

Thus, using the method of matched asymptotic expansions,
we have found the relation between the far-downstream
cross-channel concentration profile and the concentration
profile in the boundary layer. Excluding the lower sublayer
�region 4, Fig. 2�, we reduced the problem of determining the
cross-channel particle concentration profile �s5�Y� in the far-
downstream region to finding the large-x asymptotics �s2

lim���
of the solution to the fluid-particle boundary-layer Eqs. �9�
and �10�.

V. THE FULL LAGRANGIAN APPROACH
FOR CALCULATING PARTICLE VELOCITY
AND CONCENTRATION PROFILES

In this section, we will present the method for solving
the equations of the two-phase boundary layer �9� and �10�
�region 2, Fig. 2�. The problem of finding the carrier flow
velocity profile is separated from the problem of determining
the particle velocity and concentration �one-way coupling
model�. The velocity field of the carrier fluid is determined
from the well-known solution to the Blasius problem of the
boundary layer on a flat plate.36

When the velocity field of the carrier fluid is found, we
can determine the particle velocity and concentration fields.
In order to do so, we will use the full Lagrangian approach,29

which is based on integrating the particle equations of mo-
tion along individual particle trajectories and finding particle
concentration from the continuity equation in the Lagrangian
form. The discussion of this method and comparison with
another method can be found in the paper by Healy and
Young.32 In the full Lagrangian approach, the particle equa-
tion of motion is integrated along discrete particle trajecto-
ries. The particle velocity field is then obtained by repeated
application of this procedure for a large number of trajecto-
ries, which altogether cover the flow domain with a detailed
Lagrangian mesh. An examination32 of the full Lagrangian
approach29 suggests that it has a number of advantages as
compared to Eulerian methods. In particular, the full La-
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grangian method allows finding the solution in the case when
particle trajectories intersect and a fold of the Lagrangian
volume of particulate medium forms. Under these condi-
tions, any Eulerian method would fail to provide a
solution.18,29,30 In addition, the full Lagrangian method re-
duces the CPU time by orders of magnitude �thereby allow-
ing the calculation of complex three-dimensional flows� and
it can handle both steady and unsteady flows without chang-
ing the formulation. Being simple yet nontrivial, the method
makes possible the interpretation of complex phenomena of
particle motion in fluids based on the solution of ordinary
differential equations, once the fluid velocity field is known.

Below, we will present the full Lagrangian method in
detail. We introduce the new Lagrangian variables �x0 ,�0 ,��,
where x0 and �0 are the initial values of the particle coordi-
nates and � is the time of particle motion along the trajectory.
In the Lagrangian form, the mass and momentum conserva-
tion equations for the flow of particulate medium in the
boundary layer �9� and �10� are rewritten as

�s0 = �s�J� , �18�

dx

d�
= us,

d�

d�
= vs,

dus

d�
= Fsx,

dvs

d�
= Fs�. �19�

Here, �s0 is the particulate medium density at �=0, �s is the
density of the particulate medium at the actual time instant �,
and J is the Jacobian of the Eulerian–Lagrangian transforma-
tion. By the ordinary derivative with respect to �, we mean
here the partial derivative at fixed x0, �0. At the initial time
instant �=0, the particle medium element is rectangular with
the area equal to dx0d�0, whereas at a later time instant � the
medium element has become stretched or strained, with the
area equal to �J�dx0d�0, where29,32

J = JxxJ�� − Jx�J�x,

Jxx = � �x

�x0
�

�,�0

, Jx� = � �x

��0
�

�,x0

, �20�

J�x = � ��

�x0
�

�,�0

, J�� = � ��

��0
�

�,x0

.

In these formulas for the components of the Jacobi matrix,
the subscripts denote the variables that are held constant in
taking the partial derivative. In cases when the particle tra-
jectories intersect, the Jacobian changes sign, while the area
remains constant. This is why the absolute value is required
in Eq. �18�.

The basic idea of the full Lagrangian method is to deter-
mine the particle velocity field from the solution of the sys-
tem of ordinary differential Eq. �19� along the particle trajec-
tories, assuming that the velocity field of the carrier fluid is
determined beforehand. The particle medium density �s is
then found algebraically from Eq. �18� through determining
the components of the Jacobi matrix given by Eq. �20�.

The procedure of determining the components of the Ja-
cobi matrix is as follows. The continuity equation for the
particulate medium in the Eulerian form �9� implies that the
stream function ��t ,x ,�� can be introduced as follows:

��

��
= �sus,

��

�x
= − �svs. �21�

In the Lagrangian variables, the stream function is
�=��� ,�0�. Since the flow under consideration is steady, the
stream function depends on �0 only, �=���0�, and we can
write the ordinary derivative of � with respect to �0:

d�

d�0
=

��

�x
� �x

��0
�

�,x0

+
��

��
� ��

��0
�

�,x0

= �s0us0.

In view of formulas �18�, �20�, and �21�, we rewrite this
equation in the form

�s
 us

us0
J�� −

vs

us0
Jx�
 = �s0. �22�

Comparing Eq. �22� to the continuity equation in the La-
grangian form �18�, we find two of the four components of
the Jacobi matrix

Jxx =
us

us0
, J�x =

vs

us0
.

For the other two components Jx� and J��, from Eq. �19� we
derive a system of ordinary differential equations, taking par-
tial derivatives with respect to �0 of both sides of Eq. �19�.
For simplicity of the equations derived in the Lagrangian
variables, we assume that the slip parameter � is a given
constant in the region where the particle migration occurs.
Introduce the new variables:

e =
�x

��0
, g =

��

��0
, f =

�us

��0
, h =

�vs

��0
.

In this notation, Eq. �19� along with the equations for the
auxiliary variables are written as

dx

d�
= us,

d�

d�
= vs,

dus

d�
= Fsx,

dvs

d�
= Fs�,

de

d�
= f ,

dg

d�
= h ,

df

d�
=

2�

2� + 1
�1 +

5

18
Res0

2/3�u − us�2/3�F

+
3

2� + 1
�� �u

�x
e +

�u

��
g� �u

�x
+ u� �2u

�x2e +
�2u

�x � �
g�

+ � �v
�x

e +
�v
��

g� �u

��
+ v� �2u

�x � �
e +

�2u

��2g�� ,
�23�
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dh

d�
=

2�

2� + 1�D0G +
Res0

2/3�v − vs�
9�u − us�1/3 F + �0cl� �u

��
�−1/2

��H

2
�u − us� + F

�u

��
� + �0� �u

��
�1/2

�u − us�

��n���m1���
	4 x

exp�− m1���
�

	4 x
���g −

1

4x
e��

+
3

2� + 1
�� �u

�x
e +

�u

��
g� �v

�x
+ u� �2v

�x2 e +
�2v

�x � �
g�

+ � �v
�x

e +
�v
��

g� �v
��

+ v� �2v
�x � �

e +
�2v
��2g�� ,

F =
�u

�x
e +

�u

��
g − f , G =

�v
�x

e +
�v
��

g − h ,

H =
�2u

�x � �
e +

�2u

��2g .

Thus, we obtain the closed system of eight ordinary differ-
ential Eq. �23� along the particle trajectories for the follow-
ing variables: the particle coordinates x, � and velocities us,
vs, the two components of the Jacobi matrix �x /��0, �� /��0,
and two auxiliary variables �us /��0 and �vs /��0. These
equations can be integrated numerically, and then the particle
number concentration �s can be obtained algebraically along
the trajectories from the explicit formula �22�.

We now have to specify the initial conditions for the
unknown variables. The initial conditions for the coordinates
and the velocity components are already prescribed in the
formulation of the boundary-layer Eq. �10�. Differentiating
these equations with respect to �0, we find the necessary
initial conditions for the components of the Jacobi matrix
and the auxiliary variables. In the case under consideration, it
is simple to derive the initial conditions, since the flow at the
inlet is uniform, and it would be a more complicated task
otherwise. In terms of the new variables, the initial condi-
tions for all unknown variables are rewritten as

� = 0: x = 0, � = �0, us = 1, vs = 0,

�24�
e = 0, f = 0, g = 1, h = 0.

The Cauchy problem �23� and �24� for ordinary differential
equations can be solved, once the carrier-fluid velocity and
its gradients are known from the solution of the Blasius
problem,36 which represents the boundary-value problem for
a third-order ordinary differential equation. The Blasius
problem is solved using a variant of the shooting method.
The unknown initial condition for the second derivative of
the Blasius function is found to be ���0�=0.332 057. The
carrier-fluid velocity field and its gradients entering into the
right-hand sides of Eq. �23� are expressed in terms of the
Blasius function � and its first and second derivatives, which
are found explicitly from the solution of the Blasius problem.
Thus, the procedure of determining the gradients of the

velocity field does not require numerical differentiation.
Equation �23� with initial condition �24� is solved using the
fourth order Runge–Kutta method. The particle concentra-
tion is found from explicit formula �22�. Section VI de-
scribes the results obtained numerically from Eqs. �22�–�24�.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, the results obtained using the numerical
procedure for solving Eqs. �22�–�24� along the particle tra-
jectories are presented in comparison with existing experi-
mental data and theoretical studies by other authors. In nu-
merical calculations, we assumed that governing dimensional
parameters belong to the following ranges:
�=10−4÷10−3 m, �=10÷3÷10−1 Pa s �for fluid� or
�=1.7�10−5 Pa s �for gas�, �=103 kg /m3 �for fluid� or
�=1.2 kg /m3 �for gas�, �s

0=1�103÷4�103 kg /m3,
U=0.1÷10 m /s. Hence, the dimensionless governing pa-
rameters may take the values from the ranges: �0=0.02÷44
and �=1÷3000.

A. Numerical results

We first present the numerical results for particle trajec-
tories and the cross-flow profile of particle number concen-
tration obtained for the case when the particle-to-fluid den-
sity ratio �=�s

0 /� is significantly larger unity �dusty-gas
flow�, and then follows a description of the results for the
case when � is of order unity �suspension flow�. In the case
of a dusty-gas flow ��→��, the virtual mass force and the
Archimedes force can be neglected in Eq. �23�. In the nu-
merical calculations described below, the slip parameter was
assumed to be equal to a finite nonzero constant for simpli-
fication, so that m1=0.5 and n=2.7.

We note that Eq. �23� is written for a general case of
small but nonzero Res0 with account for the correction to the
Stokes drag �in the Schiller–Nauman form�; however, in cal-
culations, we studied the effect of this correction and con-
cluded that there is only a slight quantitative effect, which is
in accord with the previous work.17 For this reason, all fur-
ther results are presented for the classical Stokes drag with
no correction.

Figure 3 shows the particle trajectories obtained numeri-
cally for �0=5 and 10. The case of �0=5 and �→� corre-
sponds, for example, to the following set of dimensional pa-
rameters: �=10−4 m, �=1.7�10−5 Pa s, �=1.2 kg /m3,
and �s

0=2.5�103 kg /m3, U=1.9 m /s. Similarly, for a given
set of parameters of the gas and particles the flow velocity U
corresponding to other values of �0 can be found from the
formula �9� for �0. Figure 3 reveals the formation of a
particle-free layer near the wall, which is confirmed by the
numerical results for the cross-flow profile of particle num-
ber concentration presented in Fig. 4. Particles, which were
originally near the wall, are pushed toward the core of the
flow under the action of the lift force. Particle trajectories
intersect and a fold in the Lagrangian volume of the particu-
late medium forms, i.e., at any point of space inside the fold,
there are two different Lagrangian points of particulate me-
dium with different number concentration and velocity. In
this case, any Eulerian method would not provide an accu-
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rate solution, because it requires solving particle medium
equations in each part of the fold with a free boundary, which
is unknown a priori.

In Fig. 4�a�, we present the profile of particle number
concentration calculated with the classical Saffman force
�curve 1�, which coincides with that obtained previously in
the problem of a dusty-gas flow.17 In the profile of particle
number concentration, there is a nonintegrable singularity18

on the wall meaning that the model is nonuniformly valid
near the channel wall and a correction should be included to
account for the presence of the boundary. The number con-
centration profile for the lift force with the nonzero correc-
tion factor cl �curve 2� shows that migration results in the
formation of a particle-free layer near the wall and a fold of
the particulate medium above the line, where the lift force
changes sign. Figure 4�b� shows the number concentration
profiles in each part of the fold and the total concentration
profile obtained as a sum of the number concentrations in
both parts of the fold. The dashed curve ending abruptly
represents the concentration profile in that part of the fold
that was originally located near the wall and then was pushed
by the lift force into the core of the flow. The asymptote and
the jump of the profile of the total number concentration
correspond to the lower and the upper boundaries of the fold
of particulate medium, respectively. The correction factor cl,
being a function of the transverse coordinate, is positive near
the wall and negative far from the wall, changing the sign on
a certain line distanced from the wall. The particles migrate
toward the line where the lift force is zero, however the
particles do not fully accumulate on this line before the
particle velocity relaxation is complete and the lift force
vanishes.

All the particles, which were originally under the equi-
librium line, do not accumulate near this line but are pushed
above. This effect is due to the particle inertia. Since the
fluid-particle boundary-layer equations are identical both for
channel and pipe geometries �with a difference being in the
continuity equation only�, all the considerations presented
above can be applied to an axisymmetric flow in a circular
pipe.17 Thus, the results obtained can be interpreted as fol-
lows: the inertial migration of particles in a suspension flow

through the entry region of a plane channel or a circular pipe
results in the particle accumulation on two symmetric planes
�a narrow annulus� distanced from the walls, with a nonuni-
form concentration distribution between the planes �inside
the annulus� and particle-free layers near the walls.

The effect of the coefficient �0 with the lift force on the
distribution of particle number concentration is shown in Fig.
5. The plot shows that the higher the value of �0, the wider
the fold of the particulate medium. With an increase in the
relative inertia of particles, the depth of penetration of par-
ticles into the region above the equilibrium line increases.

In Fig. 6, we present the particle concentration profile
for the case of a suspension flow when the particle-to-fluid
density ratio is of order unity. Compared to the dusty-gas
flow when the particle-to-fluid density ratio is significantly
larger unity �Fig. 4�, there is an additional nonuniformity,
namely, a local maximum appears to be in the concentration

FIG. 4. �Color online� Far-downstream asymptotics of the particle number
concentration �s vs the stream function � in the boundary layer, �0=20,
�→�; �a� lift force is taken in classical Saffman form �curve 1� or with
correction factor �curve 2�; �b� corrected lift force, concentration profiles in
each part of the fold of particulate medium �dashed� and total concentration
profile �solid�. FIG. 5. �Color online� Far-downstream asymptotics of the particle number

concentration �s vs the stream function � in the boundary layer: corrected
lift force, �→�, �0=10, 20, and 40 �curves 1–3�.

FIG. 6. �Color online� Far-downstream asymptotics of the particle number
concentration �s vs the stream function � in the boundary layer: corrected
lift force, �0=20, �=4. Concentration profiles in each part of the fold of
particulate medium �broken curves� and total concentration profile �solid
curve�.
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profile. We note that the position of the annulus of particle
accumulation, which separates the particle-free layer and the
particle-laden fluid, is independent of the particle-to-fluid
density ratio. From the plot of particle concentration profiles
in each part �layer� of the fold of the particulate medium, it is
clear that the nonuniformity arises in that layer of the fold
that was initially located below the equilibrium line.

In this case, the particle trajectory pattern shown in Fig.
7 differs noticeably from that for the dusty-gas flow �Fig. 3�.
The reason is that, when the particle-to-fluid density ratio � is
of order unity, there is an additional term in the momentum
equations for the particulate medium, which is due to the
virtual mass force and the Archimedes force �see Eq. �9��.
This term is proportional to the fluid acceleration. In the
projection on �, the fluid acceleration is negative in the
boundary layer. Hence, this term can be considered as an
additional lift force directed toward the wall. The smaller the
value of �, the larger the coefficient associated with this
term, and hence the more pronounced the migration toward
the wall in the initial section, which is absent in the case of a
dusty-gas flow �see Fig. 3�. With increasing �, the pattern of
particle trajectories tends to that for the case of �→� shown
in Fig. 3. The effect of the variation of the density ratio on
the distribution of particle number concentration is illustrated
in Fig. 8. As �→�, the local maximum in the concentration
profile vanishes and the profile tends to that given in Fig. 4.
However, for large values of �0 with a decrease in the

particle-to-fluid density ratio, the local maximum increases
�see Fig. 9�a��. The particle number concentration tends to
infinity in a small vicinity of a certain line distanced from the
line of particle accumulation, which separates the particle-
free near-wall region and the particle-laden fluid.

In Fig. 9�b�, we illustrate the concentration profile in the
neutrally buoyant case. With an increase in �0, an additional
local maximum of the number concentration forms inside the
fold, and the concentration profile is qualitatively similar to
those shown in Figs. 8 and 9�a�. The case �0=1 and �=1
shown in Fig. 9�b� corresponds, for example, to the follow-
ing set of dimensional parameters: �=10−3 m,
�=10−3 Pa s, �s

0=�=103 kg /m3, and U=0.02 m /s. Thus,
when the density ratio is of order unity, particles accumulate
not only on the two planes �an annulus� as shown in Figs. 4
and 5 but also on two additional planes located closer to the
channel centerline �an inner annulus�, as shown in Figs. 8
and 9�a�.

Next, we demonstrate the relation between the large-x
asymptotics of the concentration profile in the boundary
layer and the far-downstream cross-channel concentration
profile. Equation �17� can be rewritten as follows:

�s5�Y� = �s2
lim���, Y = �� �

�
�1/4����0�

q
�1/2

, �25�

where q=3 for the flow in a plane channel and q=4 for the
flow through a circular pipe. This equation makes it possible
to obtain the cross-channel concentration profile in the far-
downstream region for any � and � at fixed values of �0 and
� by stretching the cross-flow coordinate.

The quantitative result provided by the present model is
the width of the particle-free layer in the far-downstream
region 5 �Fig. 2�. The thickness of this layer can be calcu-
lated from the formula for the Saffman lift force with the
correction factor �see Eq. �9�� and the expression �25� relat-
ing concentration profiles in the boundary layer 2 and in the
far-downstream region 5 �Fig. 2�. The asymptote of the con-
centration profile, which marks the boundary of the particle-
free layer, can be found from the condition that the lift force
is zero on this line:

FIG. 7. �Color online� Particle trajectories in the boundary layer for cor-
rected lift force, �0=10, �=3 �a�, and �=5 �b�.

FIG. 8. �Color online� Far-downstream asymptotics of the particle number
concentration �s vs the stream function � in the boundary layer: corrected
lift force, �0=20, and �=5, 4.5, 4 �curves 1–3�. Concentration profiles in
each part of the fold of particulate medium �a� and total concentration pro-
files �b�.

FIG. 9. �Color online� Far-downstream asymptotics of the particle number
concentration �s vs the stream function � in the boundary layer: corrected
lift force, concentration profiles in each part of the fold of particulate me-
dium: �a� �0=20, �=3.5; �b� �=1, �0=1 �dashed� and �0=5 �solid�.
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�ann =
ln n���
m1���

.

Here, � is a mean value of the slip parameter. In our simu-
lations, we assumed that the slip parameter is a given con-
stant, so �ann=2 for all the results. This assumption makes it
possible to obtain an approximate width of the particle-free
layer near the wall. Substituting this formula into Eq. �25�,
we obtain the width of the particle-free layer scaled by the
channel half-width �radius�:

Yann =
ln n���
m1���

� �

�
�1/4����0�

q
�1/2

. �26�

B. Comparison with experiments

We will now compare the numerical results with avail-
able experimental data on dilute suspension flows in chan-
nels. The work of Matas et al.38 was aimed at studying the
migration of neutrally buoyant particles moving in a Poi-
seuille flow with zero longitudinal slip velocity under the
action of the inertial lift force due to the particle rotation in a
shear flow �the lift on a neutrally buoyant particle10–12�. In
their experiment, the longitudinal length scale was assumed
to be significantly larger than the entry region length to allow
the particles to accumulate on the Segre–Silberberg annulus2

under the action of this lift force. Experiments38 demon-
strated the formation of the particle-free near-wall layer and
particle accumulation on an annulus distanced from the pipe
wall. There is an analogy between the experimental data38

and the present theoretical results, because both the lift force
on a neutrally buoyant particle and the Saffman lift with a
correction factor due to the presence of the wall and a non-
zero slip parameter have a similar dependence on the cross-
flow coordinate. Both forces are positive near the wall and
negative far from the wall, with an equilibrium position be-
ing at a certain distance from the wall. A direct comparison
does not appear to be possible in this case because the ex-
perimental results for the cross-flow concentration field are
presented at a distance from the inlet, which is significantly
larger than the channel entry length. As a result, the concen-
tration pattern formed at the exit from the entry region is
then changed under the action of the lift on a neutrally buoy-
ant particle, but retaining the original qualitative features
�annulus, particle-free near-wall layers�.

Experiments38 revealed also the formation of an inner
annulus, on which the particles accumulate. It was suggested
that the inner annulus is another equilibrium position, which
so far is not predicted by the theory. A surprising outcome of
our simulations is obtaining an inner annulus that formed due
to the action of the virtual mass force and the Archimedes
force, as the particle-to-fluid density ratio is decreased to
reach the values of order unity. However, at present we are
not able either to confirm or to contradict the statement that
this inner annulus predicted by the model in the entry region
survives under the action of the lift force on a neutrally
buoyant particle and gives rise to the concentration pattern in
the downstream region registered in the experiments.38 In
our opinion, an experimental work that would focus on mea-

suring the particle distribution within the entry region of a
channel is required to validate the predictions of the present
theory, or to extend our theory to find out what effects give
rise to the far-downstream patterns found in previous
experiments.38

C. Comparison with previous theoretical work

In earlier studies of the two-phase boundary layer, the
authors took into account either the Stokes drag only15 or the
Stokes drag and the classical Saffman lift,17 which resulted
in a nonintegrable singularity in the profile of particle num-
ber concentration on the wall.16,18 In the present work, we
obtained the cross-flow concentration profile with the
particle-free near-wall layer and the singularity of the num-
ber concentration at a certain line distanced from the wall,
which marks the boundary of the fold of the particulate me-
dium �Figs. 4–6�.

We will now derive the asymptotics of the particle num-
ber concentration near the singularity line. Consider a thin
layer above the singularity line. The normal component of
the fluid velocity is a finite constant within this layer, while
the normal velocity of particles is small and is exactly zero
on the singularity line, because the lift force changes sign on
this line. Introduce the new stretched variables in the thin
layer: �−�0=��1, �s=	��s1. Here, �→0 is an auxiliary
small parameter, and �s1 and �1 are the normal component of
the particle velocity and the normal coordinate measured
from the singularity �0, respectively. Substituting these ex-
pressions into Eq. �9� and neglecting the higher-order terms,
we obtain the reduced asymptotic equations:

�s1
��s1

��1
� �,

��svs1

��1
� 0.

The exponents in the expansions of the inner variables in �
are chosen from the condition that the resulting asymptotic
equations are consistent and least degenerate.37 From these
equations, we find the local asymptotics near the singularity
line:

�s1 � 	�1, �s � 1/	�1, �1 → 0. �27�

Thus, we conclude that the asymptotics of the particle num-
ber concentration near the singularity line given by Eq. �27�
is integrable. Hence, according to the explicit formulas re-
lating the mean distance between particles with the param-
eters characterizing the concentration singularity,16 the char-
acteristic distance between particles remains significantly
larger than the particle diameter. This statement means that,
although the particle number concentration grows un-
bounded as the fold boundary is approached, the dilute sus-
pension approximation holds true.16

Chernyshenko39 considered the integrability of a particle
concentration singularity in a dusty-gas flow near a blunt
body in the presence of particle reflection from the body
surface. He derived that, in the vicinity of an envelope of
particle trajectories, the particle concentration has also an
inverse square-root-like behavior, which is governed by Eq.
�27�. Hence, the above conclusion that the particle concen-
tration singularity on the fold inside the stream is integrable
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appears to be general for any fold of a particulate medium,
which is inclined to the flow of the carrier fluid �i.e., on
which the normal component of the fluid velocity is nonzero�
regardless of the physical phenomenon resulting in the fold,
whether it is the lift force pushing the particles from the wall
or the reflection of particles from a solid boundary.

The asymptotic behavior �27� is confirmed by the nu-
merical results. In Fig. 10, we plot the inverse particle con-
centration obtained numerically in the case �=�s

0 /�→� �to
allow a comparison with the previous results for dusty-gas
flows� with �i� the Stokes drag only,15 �ii� the Stokes drag
and the classical Saffman lift,17 and �iii� the result of the
present work with the corrected lift force. Figure 10 shows
the linear behavior of the inverse particle concentration in
the vicinity of the singularity 1 /�s�� as �→0 in the cases
�i� and �ii� �which means that the integral of the concentra-
tion �s�1 /� is divergent at the singularity point �=0� and
the square-root-like behavior predicted by Eq. �27� in the
present case �iii�.

The result with the integrable distribution of particle
number concentration makes a difference to the previous
studies of the evolution of a particle concentration profile in
the two-phase boundary layer.15–18 All the existing results for
the particle concentration profile contain the nonintegrable
singularity on the wall, because either no lift force or a clas-
sical Saffman lift was included. In the present work, we dem-
onstrate that the nonintegrable singularity on the wall can be
resolved and a self-consistent result for the particle concen-
tration profile can be obtained within the dilute suspension
approximation by including a proper correction to the lift
force due to the presence of a boundary and a nonzero slip
parameter.

VII. SUMMARY AND CONCLUSIONS

Within the two-fluid approach, an asymptotic model of
the inertial migration of rigid noncolloidal particles in a di-
lute suspension flow through the channel entry region is con-
structed. In the momentum exchange between the phases, the

drag force, the virtual mass force, the Archimedes force, and
the inertial lift force are included, the latter with a correction
factor for bounded flows at an arbitrary slip parameter. The
solution is constructed using the method of matched
asymptotic expansions in the limit of a high channel Rey-
nolds number, the particle-to-fluid density ratio of order
unity or significantly larger unity, and the particle velocity
relaxation length of the order of the channel width. The prob-
lem of finding the cross-channel concentration profile in the
far-downstream region, where the Poiseuille velocity profile
is fully established, is reduced to solving the equations of the
fluid-particle boundary layer developing on the channel wall.

The full Lagrangian approach is used for calculating par-
ticle concentration fields. The problem is reduced to a system
of ordinary differential equations along particle trajectories
for the particle coordinates and velocity components, and the
components of the Jacobian of the Eulerian–Lagrangian
transformation. The equations are solved numerically. The
particle concentration is then calculated algebraically along
particle trajectories from the continuity equation in the La-
grangian form. The method makes it possible to calculate
particle concentration profiles even in the cases when particle
trajectories intersect and folds in the particulate medium
form.

The particle trajectory pattern and the evolution of the
cross-flow concentration profile are studied for the cases
when the particle-to-fluid density ratio is of order unity or
significantly larger unity, corresponding to dilute suspension
flows and dusty-gas flows, respectively. In the case of a
dusty-gas flow, the virtual mass force and the Archimedes
force are negligible. In both cases, it is shown that the par-
ticle trajectories intersect and a fold in the particulate me-
dium and a particle-free layer near the channel wall form.
The cross-flow profile of particle number concentration is
found to contain a singularity on the fold boundary at a dis-
tance from the wall. It is shown analytically and confirmed
numerically that the particle number concentration behaves
like an inverse square root of the cross-flow coordinate mea-
sured from the singularity. Hence, the particle number con-
centration is integrable and the dilute suspension approxima-
tion holds true. This is in contrast to previous studies of the
dusty-gas boundary-layer problem, in which the account of
either the Stokes drag only or the classical Saffman lift ad-
ditionally resulted in a nonintegrable singularity in the par-
ticle concentration profile on the wall. We note that the sin-
gularity on the wall is resolved within the dilute suspension
model essentially due to the effects of the boundary and the
nonzero slip parameter accounted for via the correction to
the Saffman lift force. In the case when the particle-to-fluid
density ratio is of order unity, all four interphase forces are
important. It is demonstrated numerically that an additional
local maximum appears to be in the particle concentration
profile near the singularity line, which is absent in the case
when the particle-to-fluid density ratio is significantly larger
unity. The concentration at the inner maximum increases as
the particle-to-fluid density ratio is decreased. The concen-
tration singularity at the boundary of the particle-laden re-
gion remains integrable regardless of the magnitude of the
density ratio.

FIG. 10. �Color online� Far-downstream asymptotics of the inversed particle
number concentration 1 /�s vs the stream function � in the boundary layer.
Curves 1–3: Stokes force only, classical Saffman force additionally, and
corrected lift force �concentration in each part of the fold�, �0=20, �→�.
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Thus, the inertial migration of particles in a dilute sus-
pension flow through the channel entry region results in par-
ticle accumulation on two symmetric planes �an annulus�
distanced from the walls, with a nonuniform concentration
distribution between the planes �inside the annulus� and
particle-free layers near the walls. These numerical results
are compared to the tubular pinch effect observed in experi-
ments, and a qualitative analogy is found.
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