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The inertial lift on a spherical particle settling in a horizontal viscous flow

through a vertical slot

Evgeny S. Asmolov'?? and Andrei A. Osiptsov'
1Department of Geomechanics, Schlumberger Moscow Research, Moscow 101000, Russia
Central Aero-Hydrodynamics Institute, Zhukovsky, Moscow Region 140180, Russia

(Received 10 September 2008; accepted 29 April 2009; published online 4 June 2009)

The inertial lift force exerted on a small rigid sphere settling due to gravity in a horizontal channel
flow between vertical walls is investigated. The method of matched asymptotic expansions is used
to obtain solutions for the disturbance flow on the length scales of the particle radius and the channel
width (inner and outer regions, respectively). The channel Reynolds number is finite, while the
particle Reynolds numbers that are based on the slip velocity and the mean shear rate are small. The
inner flow is described by the linear Stokes equations. The outer problem is governed by the linear
Oseen-like equations with the particle effect approximated by a point force. The outer equations are
solved numerically using the two-dimensional Fourier transform of the disturbance velocity field.
The lift coefficient is evaluated as a function of governing dimensionless parameters: the particle
coordinate across the channel, the channel Reynolds number, and the slip parameter. The particle
always migrates away from the walls, with an equilibrium position being on the channel centerline.
Close to the walls, the lift coefficient is the same regardless of the slip velocity and the channel
Reynolds number. At large channel Reynolds numbers, a local maximum of the migration velocity
forms near the channel centerline due to a combined effect of the slip, the linear shear, and the
curvature of the undisturbed velocity profile. The results obtained are extended to the case when the
drag on a particle has components both parallel and perpendicular to the undisturbed flow. One of
primary applications of the results is modeling of the cross-flow migration of settling particles

during particle transport in a hydraulic fracture. © 2009 American Institute of Physics.

[DOL: 10.1063/1.3148277]

I. INTRODUCTION

The migration of a single particle settling under gravity
at small Reynolds numbers in shear flows of Newtonian flu-
ids was considered in many theoretical studies.'™" The iner-
tial lift on a sphere was calculated for different flow configu-
rations, either unbounded or wall bounded, either linear
shear or channel flows, and a particle slip velocity directed
either along the fluid velocity or along the shear gradient. In
the present study, we consider the case when a particle settles
in a horizontal viscous flow through a vertical slot (Fig. 1).
Apparently, the lift force on a particle in the present geo-
metrical configuration has not been studied before. The prob-
lem is important in view of possible applications in chemical
engineering and petroleum technology. For example, the
flow configuration shown in Fig. 1 corresponds to the trans-
port of proppant particles in a hydraulic fracture, where the
cross-flow migration is caused by the lateral force exerted on
individual settling particles. It is known that lateral migration
of particles may have a significant effect on the overall set-
tling rate.'* The settling-induced lift force considered in the
present study can be used in a model of particle migration
across fluid streamlines in a hydraulic fracture. The cross-
fracture particle concentration profile may then be incorpo-
rated into the models of particle transport, which are imple-
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mented into existing commercialized simulators of hydraulic
fracturing.14

The migration of a particle moving with a nonzero
slip velocity in a shear flow of a viscous fluid is due to a
small fluid inertia. When the particle Reynolds number,
R,=aU S’/ v, is small, the inertial term in the Navier—Stokes
equations is small compared to the viscous one at distances
of the order of the particle radius a from the particle center
(in the inner region). Here, U! is the dimensional magnitude
of the slip velocity (velocity of the sphere center relative to
an undisturbed flow velocity at the point), v is the kinematic
viscosity of the fluid, and the prime superscript is used here-
inafter to denote the dimensional velocities and spatial coor-
dinates. To the leading order in R,, the disturbance flow in
the inner region is governed by the Stokes equations. How-
ever, the inertial term decays with the distance slower than
the viscous one. These terms are of the same order at suffi-
ciently large distances from the sphere (in the outer region).
For the uniform undisturbed flow, the length scale of the
outer region, where the two terms balance, is the Oseen
length L%=a/R;=v/U.>a.

Theoretical studies of particle migration due to the iner-
tial effect were based on solving the Navier—Stokes equa-
tions using perturbation methods. A regular perturbation
technique can be used when the distance of the particle from
the wall is small compared to the length scale of the outer
region, i.e., it is assumed that the wall lies within the inner
region of the flow. Cox and Brenner® considered the migra-
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FIG. 1. The sketch of the flow pattern near a particle settling in a viscous
flow through a vertical slot.

tion of a non-neutrally buoyant sphere translating in a linear-
shear flow at distances from the wall d being large compared
to the particle radius, a <d <L%. They expressed the lift in
terms of Green’s functions. The lift was evaluated in linear
and parabolic wall-bounded flows.*™® The regular perturba-
tions were also applied to the case when d~a."”

For an unbounded linear-shear flow, another length scale
of the outer region, L5=(v/G)"?, based on the shear rate G,
was introduced.’ Saffman’ showed that the particle effect in
the outer region is equivalent to a point force exerted on the
fluid at the center of the sphere. Oseen-like equations gov-
erning the outer disturbance flow were solved in terms of
Fourier transforms. The disturbance induced by the sphere in
the outer region produces a small lateral correction to a uni-
form flow in the inner region. The migration velocity in the
shear direction was calculated for a particle moving parallel
to the streamlines of an unbounded flow in the strong-shear
limit, when the two small particle Reynolds numbers based
on the slip velocity and the shear rate are related as

R;<R)*=a(G/v)"* < 1. (1)

This inequality means that the linear-shear flow domi-
nates the uniform flow in the outer region. In the case when
the sphere moves in an arbitrary direction to the shear flow,
other components of the migration velocity were also found
for the strong-shear case.”'? The lift is zero in an unbounded
linear flow when the slip velocity is perpendicular both to the
fluid velocity and its gradient, as for the fracture configura-
tion. Asmolov® and McLaughlin9 removed Saffman’s restric-
tion (1) on the relative sizes of the two Reynolds numbers
and considered a general case of an arbitrary ratio of the
Reynolds numbers. They evaluated the migration velocity of
a sphere translating parallel to the streamlines of an un-
bounded shear flow as a function of the slip parameter
a=R,/ Rll,/ 2. The velocity is maximum in the strong-shear
limit when @<<1 and is very small, of the order of o> 1n a,
in the opposite weak-shear limit, a> 1.

Hogg11 and Asmolov'? studied the inertial migration of a
non-neutrally buoyant particle settling in a vertical channel
flow. In this case, the migration is due to the following two
effects: the Oseen-like inertial migration and the wall effect.
The lift coefficient and the particle equilibrium positions
were calculated as the functions of the slip parameter and the
channel Reynolds number R.=U, [/ v, where [ and U, are
the channel width and the maximum flow velocity. When R,
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is large, the wall effect is significant in thin layers near the
walls of a width of the order of lR;”z.13 In the core of the
flow, excluding near-wall layers, the wall effect is negligible,
and the disturbance field in the outer region can be treated as
an unbounded one. The effect of the curvature of the velocity
profile on the lift is significant.

The goal of the present work is to calculate the migration
velocity of a non-neutrally buoyant particle settling in a hori-
zontal viscous flow bounded by vertical impermeable walls.
One would expect that the wall effect at large R, is signifi-
cant only in the thin layers near the slot walls. In the bulk of
the flow, the lift is expected to be small for the configuration
considered, since it is zero in an unbounded linear flow.
However, it will be shown below that a local maximum of
the migration velocity appears at distances of the order of
R_'" from the channel center due to a combined effect of the
slip, the linear shear, and the curvature of the undisturbed
velocity profile. The lift coefficient is of the same order over
the entire channel width. This means that the scaling we use
to nondimensionalize the lift force is applicable everywhere
in the flow domain, both near the walls and in the core of the
flow.

The paper is organized as follows. Governing equations
of the viscous flow past a small sphere settling in a horizon-
tal slot flow are presented in Sec. II. Solutions in the inner
and outer regions are constructed using the method of
matched asymptotic expansions in Secs. III and IV, respec-
tively. The outer solution is presented in terms of a two-
dimensional Fourier transform. An ordinary differential
equation for the Fourier transform of the normal velocity is
integrated numerically using an orthonormalization method.
Numerical results and a comparison with previous studies
are presented in Sec. V. The extension of the approach for
arbitrary direction of the slip velocity is presented in Sec. VI.
The results are summarized in Sec. VIIL.

Il. GOVERNING EQUATIONS

Consider a rigid sphere settling due to gravity in a flow
of a viscous incompressible Newtonian fluid through a ver-
tical slot. The sketch of the flow configuration is shown in
Fig. 1. The undisturbed flow in a slot may have not only a
horizontal but also a vertical component. The origin of a
Cartesian coordinate system is at the center of the sphere and
translates with the particle velocity UI’,. Hence, the particle is
at rest in this frame of reference. The x-axis is parallel to the
slot walls and directed along the undisturbed flow, and y-axis
is perpendicular to the walls. The fluid velocity relative to
the sphere has generally x-and z-components, Uy, and U/, so
that U] =\ U!?+U!?. The particle radius a is small compared
to the slot width /. The particle Reynolds number and the
length scale of the outer region based on the average shear
rate, G,,=U,, /1, are introduced by

R,=U,a*vl, L=aR,"=lU,)"*=IR;"".

The method of matched asymptotic expansions, based on
a small parameter
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8=R,1,/2=a(U'/Vl)”2< 1,

m

is applied to solve the equations governing the disturbance
flow. The ratio of the particle size to the channel width and
the particle Reynolds numbers based on the particle slip ve-
locity and the local shear rate are also small,

all=(R,/R)"?=eR'"> <1, Ri~e<l

The other dimensionless groups, U,=U. /U,
Uy,=U,/U,, d/l, R, are taken to be of the order of unity,
where d is the distance of the particle to the nearest wall.
Flow disturbances due to drag on the particle dominate those
due to shear and particle rotation, when U, > g2

The asymptotic analysis follows the study13 of the iner-
tial migration in a vertical channel for the case when the slip
velocity is parallel to the undisturbed flow. The novelty of
the present study is that the undisturbed velocity of the fluid
in the absence of the sphere has two components,

v =ve. +ve,

’ 12

v;=uzx+u;(yy7—4y,—2), v!=U.
where e, and e, are the unit vectors of the x- and z-axes,
respectively, and y=4-8d/l is the dimensionless shear rate
at the particle center. To the leading order in &, the particle
translates parallel to the walls, and its migration velocity in
the normal direction due to the fluid inertia and the wall
effect is small compared to the slip velocity. Hence, the prob-
lem can be treated as a quasisteady one.

The dimensionless variables are introduced by the
formulas
u=u'/U,

r=r'/a, - .Q,,:Ql’,l/U,;q, szF,;/,u,aU’

m?

where u is the disturbance of the fluid velocity and €2, and
F, are the dimensionless rotational velocity and the force on
the particle, respectively. The dimensionless undisturbed ve-
locity field is given by

v=v'/U = (U, +eyyR.">—4e?y’R."Ye, + Upe.. (2)

We first consider in detail the case when the particle
settles under gravity in a horizontal undisturbed flow, so that
the slip velocity is perpendicular to the fluid velocity. Then
the x-component of the force on the particle is zero. It fol-
lows from Faxen formula that the corresponding slip velocity
is U,,=0(g?), and, to the first order, may be neglected. The
extension of the analysis to the case U, # 0 is presented in
Sec. VL

The dimensionless Navier—Stokes equations governing
the disturbance flow are written as

sRcl./z[(u Vu+(v-V)u+(u-V)v]=-Vp+ Vu,

(3)
V-u=0.

The boundary conditions are specified as follows. The
no-slip condition is prescribed on the particle surface and the
channel walls, and it is assumed that the velocity disturbance
decays far from the particle,
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- -172 _ -1/2
u=-v+eR "Q,Xr=-Uge +eR;

X(Q, X - yye,) +4e’y’R'e, on r=1,

u=0 on y=—¢'RZa/1, &'R(1-a/l), (4)

u—0 as r— oo,

lll. INNER SOLUTION

We seek the dimensionless disturbance velocity and
pressure fields in the form of asymptotic series in &,

u=uy+eu,+o(e), p=py+ep +ole).

Substituting these expansions into Egs. (3) and (4) in the
leading-order approximation, we obtain the Stokes equations
in an unbounded flow,

VZu,-Vp,=0, (5)
V.u,=0, (6)
uy=—Uge, onr=1, (7)
uy—0 as r—oo. (8)

It should be noted that the boundary condition (7) in-
volves the uniform velocity only. The terms in Eq. (4) cor-
responding to the shear rate and the particle angular velocity
are of order &, and the term due to the curvature of the
undisturbed velocity profile is of order e2. Hence, these
terms should be omitted in the leading-order approximation.
The solution of Egs. (5)-(8) is the well-known Stokes
solution,

U (3 1) 3zr<1 1)
uy=- el —+—=|+—=|—-—-=1]1.
0 2| T\ 4r 48 472\r P

This axisymmetric solution gives the drag on the sphere,
F,=67Ue,, and yields no lateral force or torque. The ve-
locity field decays with distance from the sphere as ™!,

S

u,—u’ as r— o,
3 e, zr

uS:_Z sz —Z+—3 .
r r

The Stokeslet velocity field u$ corresponds to the vis-
cous flow driven by the point force,

F,=Fe.=—F,=-67Ue..

Collecting the terms of order € in the asymptotic expan-
sions of Egs. (3) and (4) and taking into account Eq. (2), we
derive the equations governing the first-order inner solution,

Viu,-Vp, = Ri’z[(uo +Uge,) - Vl]ug, 9)
V.u =0, (10)
u, :R;”Z(QP Xr—-yvye,) on r=1. (11)

Note that even to this order of &, the curvature of the
undisturbed velocity profile does not enter into the inner-flow
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equations. Since Egs. (9)—(11) are linear, the solution of

these equations can be sought as the superposition of three
13

terms,

(=R " 4w, (12)

The boundary conditions on the particle surface for the
three terms are

u’?=0, u"b=R;”2(Qp Xr—yye,),

w=0 on r=1.

The first term in Eq. (12) is the solution of inhomoge-
neous equations (9) and (10) for a uniform undisturbed flow
obtained by Proudman and Pearson,15

3 301 1 1 3272\ r
uPP=—U2[(2——+———+—>(1——>—
32 % ror”r or )

3 1 2\(Zr ze)
+d-=+=-=|==-==]|.
( r r3 r4>(r3 r :|

Two other terms satisfy homogeneous Stokes equations
(5) and (6). The term u”® is the solution for a force- and
torque-free (neutrally buoyant) particle in an unbounded
linear-shear flow. It accounts for the effect of particle rota-
tion in a shear flow. The last term, w(r), is the solution of
Egs. (5) and (6), which tends to a uniform velocity w., at
infinity. The first-order solution u; does not decay with r, and
the boundary condition at infinity has to be replaced by a
matching condition with the outer flow. The outer limit of the
inner solution is

|, =l (xir) + W,

(13)

3 312)1' (zzr ze )
PP _ PP Z
= U 1- -+2 - .
e |r 16 {( 2 )r P r

The first two terms in Eq. (12) give no contribution to
the migration velocity because of the symmetry. Hence, the
migration is due to the transverse component of the velocity
W.., which should be found from the matching condition with
the outer flow. The migration velocity of an inertialess par-
ticle is V,,=ew,.,

m

IV. OUTER SOLUTION

The outer coordinates are introduced by the scaling
R=(X,Y,Z)=er=r'/L. The velocity and pressure in the

outer region can be presented as
u=eU+o(e), U=(U,U,U), p= &P +o(&?).

As the disturbances are small compared to the undis-
turbed flow in the outer region, the inertial terms in the
Navier-Stokes equations (3) can be linearized,

sRLl./Z[(u Vu+(v-Viu+(u-V)v]
=&2[(V-V)U+ (U-V)V]+0(ed).

Here, the components of the undisturbed flow velocity are
written in terms of the outer coordinates as follows:
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V=(V,0,V,), V.=vyY—-4R"*Y?, Vv, =U,R!*

(14)

The slip parameter V, characterizes the relative size of
the slip velocity and the linear-shear term in the undisturbed
velocity. Hence, this parameter is analogous to the ratio of
the particle Reynolds numbers a=R,/R"/ 2 used in the studies
of particle migration in llnear-shear flows.*® The strong-
shear limit corresponds to the case e?<V_ <1.

The matching condition with the inner region can be
satisfied if the point force Fy is introduced into the momen-
tum equation. ! Therefore, the equations governing the outer
field are reduced to the linear Oseen-like equations,

U JuU dV

Vi—+V,, +VP-VU
“ox T Veaz v
=-67U_6R)e,,
V-U=0,
(15)
U=0 on Y=-RYdiI, RY(1-dl),
U=0 as R— o,

To solve the outer-flow equations, the two-dimensional
Fourier transforms U*, P* of the disturbance field are intro-
duced as

U*(k,, Y.k, J f
P(k,Y, k) e
Xexp[— i(k X + k.Z)]dXdZ.

The velocity and pressure fields are then given by the
inverse Fourier transforms,

{} f f{ }exp[l(kX+kZ)]dkdk (16)

The Oseen-like equations (15) are rewritten in terms of
the Fourier transforms as follows:

(ik V. + ik, V,)U" + —YUyex+V P - AU
3
=__US75(Y)ez9
27
vV .U"=0,

(17)

e (. d . T S
V= ik ik, ), A=k =K+ A
dy -~ dY :

U'=0 on Y=-RYdi, RY*(1-dil).

Thus we obtain the system of linear ordinary differential
equations with respect to Y. Multiplying the x-component of
the momentum equation (17) by ik,, the z-component by ik,
adding the resulting equations, and using the equation of
continuity, one obtains the value of P* as
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1 au’ av,
P =—=| (A" -ik,V,—ik,V )= +ik,—=U,
k “dy dy

3.
+ —zszszé(Y)].
21

Differentiating the last equation with respect to Y, substitut-
ing the resulting expression into the y-component of the mo-
mentum equation, one can derive a single ordinary differen-
tial equation governing the Fourier transform of the lateral
velocity,

[A* = (ik,V, +ik,V, ) A" - ik 8R."*|U;

3 day)
=Ty
(18)
du,
U'=—2=0 on Y==R"d/Il, R'(1-al).
YToay

The term on the right-hand side of Eq. (18) is equivalent to a
jump condition for the second derivative at the origin of the
coordinate system,

d*U, 3.
e _lkZsz’
dy 27

where [f]=f(+0)—f(-=0) is the magnitude of the jump. The
function U; and its first and third derivatives are continuous
at the origin. These features of U; can be proven if one
integrates Eq. (18) successively four times over a small in-
terval (-AY,AY), AY—0, and solves a linear system for
[dVU;1dy"], i=0-3.

Matching of the outer field back to the inner flow
requires the outer limit of the two-term inner expansion,
u,+euy, to be equal to the outer solution at the origin. As a
result one has for the outer limit of the first-order term
Eq. (13),'

u1|r~>oo = (U - US)|R~>07

where U® is the Stokeslet velocity field written in terms of
the outer coordinates,

s 3 e, ZR
V=3V kw5 )

which matches with the outer limit of u,,.

Small distances R correspond to large k, and the match-
ing condition means that the numerical solution of Eq. (18)
should be equal to the two-dimensional Fourier transform of
the Stokeslet at large Fourier numbers,

Up=UT1+0(k™"N] as k> 1,
where Uf,* is given by’

3 ik
US* = —=U_Y exp(- k|Y]).
y =gz UsY exp(=KY)
The migration velocity V,, of an inertialess particle is
expressed in terms of the Fourier transform of the lateral

velocity at the origin as’
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szsRe|: J f (Uy = UY)y—odk,dk, |- (19)

Thus, the problem is reduced to finding Uy*(kx,O,kZ)
from the numerical solution of Eq. (18). The numerical inte-
gration of the finite-difference version of Eq. (18) presents a
certain difficulty at large R.. The routine technique fails to
converge in this case, since it does not permit to resolve
properly all the linearly independent solutions of the ordi-
nary differential equation. Therefore, the technique does not
allow one to calculate the lift for channel Reynolds numbers
larger than approximately 100."" The problem is eliminated
in the present work similar to the study13 using the orthonor-
malization method,'® which makes it possible to integrate
Eq. (18) up to k,,=128 for any R. For large k, the
asymptotic approximation of the Fourier transform similar to
that of the work'' can be obtained,

U;kv(k)a O’kz) - U;S:*(kxvoakz)

3 kk
= YU, ———5 +0(k™)

Tom 15 as k— oo, (20)

The first term on the right side of Eq. (20) is an odd
function of k, and k_, and its integral over k, is zero. For this
reason, the contribution of large k to Eq. (19) is small, of the
order of k> . The numerical integration of Eq. (19) is ful-
filled using the plane polar coordinates k, @=arccos(k,/k)

instead of k,, k.. It can be verified directly from Eq. (18) that
U;kv(k)a Y’kz) = U;(_ kx, Y’_ kz) )

where the overbar denotes the complex conjugated value.
Hence, it is sufficient to integrate Eq. (19) over the first and
second quadrants.

V. NUMERICAL RESULTS

The lift is obtained numerically as a function of the three
main dimensionless groups: the particle position across the
slot d/I, the slip parameter V_, and the channel Reynolds
number R,. For the sake of illustration, we consider wide
ranges of variation of V, and R, which cover the magni-
tudes relevant to fracturing applications: 0.001=V =4,
0.1=R.=1000. The results are compared with the predic-
tions of the work for a small sphere settling between parallel
walls in a stagnant fluid. Vasseur and Cox> considered the
case when the distances from the walls are also much larger
than the sphere radius but still smaller than the outer-region
length scale, so the walls lie within the inner region. Then
the migration velocity is given by5

VVE=RU,.c)C.

m

The lift coefficient ¢ “(d/l) can be approximated by the
polynomial

cV€==0.31255 - 0.09966> + 14.345° - 116.3¢’
+403.75” - 5185,

s=d/l-1/2.
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The lift is directed away from the walls. The maximum
value of the lift coefficient is attained on the wall: ¢\
(d/1—0)=3/32. The particle equilibrium position where the
lift vanishes is on the channel axis, at d/[=0.5.

For a particle settling in a horizontal channel flow, we
found that the migration velocity should be scaled in a simi-
lar manner,

Vin= R11;/2 UseVielm = RUsCp,s 21)

or, in the dimensional form,

U'’a
Vr,n = Lcm(d/l’ V&‘Z’RL‘) .

v

The quadratic dependence of the migration velocity on

the slip velocity differs from the linear scaling obtained for
the case when the slip velocity is parallel to the undisturbed
flow."® This quadratic scaling can be deduced from the be-
havior of the Fourier transform of the lateral velocity, which,
in turn, follows from the solution of Eq. (18) for the strong-
shear case, V,<1. The equation is linear; hence the solution
is proportional to the right-hand side, U;OCkZUSZ. The slip
parameter V_ enters into the term in the round brackets on
the left-hand side multiplied by k,. All other terms are even
functions of k, as they involve k, and k* only. For this reason,
the solution can be sought in the form of series in V k, when
the slip parameter is small,

Uy = kU [ho(k k) + Vi iy (ko k) + -] as Vi, <1

The leading-order term in the expansion is linear in k,
and, hence, its contribution to the integral (19) is zero. It also
follows from the inverse Fourier integral (16) that the corre-
sponding velocity field is an odd function of Z. Hence, the
first-order term, k?USZVszzpl, only contributes to Eq. (19). As
a result, V,xU. V. as V<1, and we obtain the scaling
(21) for the migration velocity.

The lift coefficient c,,(d/l,V,,R.) is shown in Fig. 2 as
a function of the cross-channel particle coordinate for differ-
ent V,, and R, in comparison with ¢, “(d/ 1).° The curves are
presented only for a half of the channel (0=d//=0.5) since
they are antisymmetric with respect to the channel centerline.

The lift coefficient is positive for all values of the gov-
erning dimensionless parameters, i.e., the particle always mi-
grates from the walls toward the channel centerline. Near the
walls, the lift coefficient coincides with the predictions by
Vasseur and Cox’ given by ¢, (d/l—0,V,,,R.)=3/32. The
migration velocities, calculated for different small (but non-
zero) values of the slip parameter, 0.001=V,_=0.1 and
scaled using Eq. (21), tend to the same dependence (solid
curves) in the limit V,—0 (the strong-shear case). For
R.<1, the undisturbed flow affects the migration only
slightly. It can be seen in Fig. 2(a) that the dependence of the
lift coefficient on the particle position calculated for different
slip parameters, 0.001 =V, =4, is very close to the results
for migration of a particle settling in a stagnant fluid.” The
lift coefficient decreases with the distance from the wall
when R,=10 [Figs. 2(a) and 2(b)]. At large R., the wall
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FIG. 2. Lift coefficient vs particle coordinate across the slot and comparison
with the predictions by Vasseur and Cox (Ref. 5): (a) R.=1, (b) R.=10 (c)
R,=100, and (d) R,=1000.

effect manifests itself only in the thin layers near the walls at
distances of the order of the outer-region length scale,
L=IR;".

One would expect that the migration velocity is small at
R.>1 in the core of the flow where the wall effect is negli-
gible since it is zero in an unbounded linear flow.” However,
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this is valid only when V,=2. At smaller slip parameters
and large channel Reynolds numbers, c,, is finite in the core
of the flow, and an extra maximum forms near the channel
centerline [see solid and dashed curves in Figs. 2(c) and
2(d)]. The origin of the extra maximum cannot be explained
by the wall effect, which vanishes with the increase in the
distance from the wall; also, the shear rate is small near the
axis. However, the curvature of the undisturbed profile is
finite and another length scale of the outer region can be
introduced based on the curvature, LC=lR;1/3 , and Eq. (18)
governing the Fourier transform of the lateral velocity is then
rewritten as

(A2 — (ikgVy + ikEVE ) A - Bik{JUS

3 ds(Y®)
=— —ikU , 22
2 iR gye (22)
. dU*
Ui’l‘:—L.:O on Yc= iRé/S/Z—f,
Y dye
VE=4Q¢r°-Y?), V¢ =U.R", (23)

E=(12-d/IR'

B, ye=y L =Ry, Kk°=R!°k.

When the new slip parameter V7, is fixed, Eq. (22) does
not involve R.. The distances to the walls scaled by L¢ are
large when R, is large and the particle is close to the channel
center (the stretched distance £ is of order unity). This means
that the wall effect is negligible in this region and the outer
flow can be treated as an unbounded parabolic flow. As a
result, the solution of Eq. (22) and the lift coefficient
scarcely depend on R,. Figure 3 presents c,, as a function of
£ obtained for given V{_ and various channel Reynolds num-
bers: R.=100,300,1000. The dependences calculated for
different R, are close to each other when £<<1. Thus, the lift
near the axis at large R, is due to the combination of the slip
and the unbounded linear and quadratic shear rates. The mi-
gration velocity is linear in & when £<<1. The migration ve-
locity reaches the maximum value when £= 1, i.e., when the
linear and quadratic terms in the undisturbed profile (23)
become comparable.

VI. ARBITRARY DIRECTION OF THE SLIP VELOCITY

We have considered above the inertial migration of a
particle settling in a horizontal flow in a vertical slot when
the slip velocity is perpendicular to the Poiseuille flow of the
carrier fluid. The restriction can be removed and the results
obtained can be extended to the case when the drag on a
particle has both horizontal and vertical components,

F,=-F;=Fe+Fe=6m(Uye,+Uge,). (24)
Hogg11 and Asmolov'” studied the case when the drag on

a sphere is directed along the fluid flow, F,=F.e,=67U.e,.
The migration velocity is linear in the slip velocity,

Vo= R2U 3 (dILU.R,). (25)

The results obtained numerically in the present work and
in the studies'"' can be combined for the strong-shear case.

Phys. Fluids 21, 063301 (2009)
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FIG. 3. Lift coefficient near the channel centerline at large R vs dimension-
less distance from the axis &=(1/ 2—d/l)RL'./ 3. (a) Strong-shear limit:
Vi, <1, (b) Vi,=2, and (c) Vi =4.

Solution in the inner region is constructed in the general case
similar to Sec. III. The leading-order term and the first term
in the first-order solution (12) are again the solutions ob-
tained by Stokes, u,, and by Proudman and Pearson,15 u'?,
respectively, but corresponding to another uniform undis-
turbed velocity, U,.e,+U,.e.. The second term in Eq. (12) is
the same and accounts for the effect of particle rotation in a
shear flow. All the terms give no contribution to the lateral
force because of the symmetry, and the migration is again
due to the transverse component of the velocity w.,, which is
found from the matching condition with the outer flow. The
particle effect on the outer disturbance flow is equivalent to
the point drag force on the particle, and Eq. (15) can be
rewritten with the right side followed from Eq. (24):
—-67(U,.e+Uge.)S(R). Since the Oseen-like equations (15)
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are linear, the numerical solutions corresponding to each
drag component can be constructed separately. However, the
slip velocities also enter into the expression for the velocity
of the undisturbed flow Eq. (14), which should be written for
the general case as

V= (Vi + yY —4R2YV)e, + Ve,

1/2
V= UyR.

Hence, the solutions corresponding to each drag compo-
nent will depend on both V, and V, when the slip velocities
are finite. However, for the strong-shear case, |V, |<1,
|V,.| <1, the effect of V,, on the part of the solution propor-
tional to the vertical drag F, can be neglected and vice versa.
Then, combining Egs. (21) and (25), we obtain the following
formula for the migration velocity:

V=R (Ugeh + U Vich) as [V <1,

V| <1.
(26)

It should be noted that the two terms in Eq. (26) can
be sizable even for the case when the x-component of the
slip velocity is small compared to the z-component
|U,|<|U,.|<1. The reason is that the first term in Eq. (26)
is linear in the slip velocity, while the second one is
quadratic.

The cross-flow migration of particles in dilute-
suspension flows is important in a variety of chemical engi-
neering and oilfield applications, e.g., hydraulic fracturing.
The results of the present study can be used in the existing
continuum models'™" of suspension transport through a
fracture. Usually, these models are obtained under the as-
sumption that the cross-flow particle concentration profile is
uniform. However, it is known that the migration of particles
across fluid streamlines can lead to the formation of a central
sheet of concentrated suspension with particle-free layers
near the walls.'"** As a result, the rate of particle sedimen-
tation to the fracture bottom increases significantly as com-
pared to that for a uniformly dispersed suspension. In order
to model this phenomenon, the lift force obtained in the
present work can be now included into a continuum model of
particle migration in a dilute-suspension flow through a ver-
tical slot. The inclusion of a nonuniform cross-flow concen-
tration profile resulting from the inertial migration of par-
ticles will improve existing models of particle transport in
fractures implemented into commercial simulators of hy-
draulic fracturing.

VIl. CONCLUSIONS

The inertial migration of a small rigid spherical particle
settling under gravity in a horizontal flow of a Newtonian
fluid through a vertical slot is investigated. Matched
asymptotic expansions are applied to find the solution of the
Oseen-like equations governing the outer disturbance flow
past a particle on the length scale of the channel width and
the solution of the Stokes equations governing the inner flow
on the length scale of the particle radius. The problem is
reduced to a fourth-order ordinary differential equation for
the two-dimensional Fourier transform of the lateral velocity,

Phys. Fluids 21, 063301 (2009)

which is solved numerically using the orthonormalization
method. The migration velocity is calculated as a function of
the three governing dimensionless parameters: the particle
distance to the closest wall d/I, the channel Reynolds num-
ber R, and the slip parameter V..

The migration velocity scales like V! =U/ac,,/v and is
always positive, i.e., the particle migrates away from the
walls with an equilibrium position being on the channel cen-
terline. The lift coefficient c,, is the same close to the wall
regardless of the values of R. and V,. It decreases with the
distance from the wall when R.=10. At larger channel Rey-
nolds numbers, a local maximum of the migration velocity
forms at distances of the order of R.'* from the channel
centerline, which is due to a combined effect of the slip, the
linear shear, and the curvature of the undisturbed velocity
profile. Extension of the results is obtained for the case when
the drag on a particle has components both parallel and per-
pendicular to the undisturbed flow.

The settling-induced lift force obtained in the present
work can be then used in a continuum model of particle
migration in a dilute-suspension flow through a vertical slot.
A cross-flow particle concentration profile resulting from mi-
gration can be further used in models of particle transport
through a slot, which are being developed for various oilfield
or chemical engineering applications, e.g., for mathematical
modeling of hydraulic fracturing.
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