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We investigate the stability of an elastic plate in supersonic gas flow. This problem
has been studied in many papers regarding panel flutter, where uniform flow is usually
considered. In this paper, we take the boundary layer on the plate into account and
investigate its influence on plate stability. Three problem formulations are studied.
First, we investigate the stability of travelling waves in an infinite-length plate. Second,
the nature of the instability (absolute or convective instability) is examined. Finally,
by using solutions of the first two problems, instability of a long finite-length plate
is studied by using Kulikovskii’s global instability criterion. The following results
are obtained. All the eigenmodes of a finite-length plate are split into two types,
which we call subsonic and supersonic. The influence of the boundary layer on these
eigenmodes can be of two kinds. First, for a generalized convex boundary layer profile
(typical for accelerating flow), supersonic eigenmodes are stabilized by the boundary
layer, whereas subsonic disturbances are destabilized. Second, for a profile with a
generalized inflection point (typical for constant and decelerating flows), supersonic
eigenmodes are destabilized in a thin boundary layer and stabilized in a thick layer;
subsonic eigenmodes are damped. The correspondence between the influence of the
boundary layer on panel flutter and the stability of the boundary layer over a rigid wall
is established. Examples of stable boundary layer profiles of both types are given.

Key words: flow–structure interactions, boundary layer stability, absolute/convective
instability

1. Introduction
The classical stability theory of shear flows deals with fluid flows over rigid surfaces.

Many different ways to control laminar–turbulent transition have been studied, such
as cooling or heating of the surface, boundary layer suction or blowing, and surface
porosity. Following Kramer (1960), a series of papers is devoted to the investigation
of boundary layer stability over compliant surfaces. Besides earlier studies reviewed
in the fundamental work by Carpenter & Garrad (1985, 1986), we mention papers
by Savenkov (1995), Reutov & Rybushkina (1998), Lingwood & Peake (1999),
Miles (2001), Wiplier & Ehrenstein (2001) and Boiko & Kulik (2012). It has been
shown that elastic and viscous properties of the surface can significantly change the
shape of the neutral stability curve and can change the character of instability from
convective to absolute. Also, in addition to inviscid inflection-point instability and
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viscous Tollmien–Schlichting instability, a series of new instability types appears due
to flexibility of the surface (Carpenter & Garrad 1985, 1986).

The stability of compressible shear flows, and especially of supersonic flows over a
compliant wall, has been much less studied. In supersonic flows over a compliant wall,
one more instability type appears, namely, panel flutter (Bolotin 1963; Dowell 1974).
It is dangerous not because of flow transition to turbulence, but primarily because of
high-amplitude vibrations of the wall structure. This phenomenon is well known in
aviation and has been studied in numerous papers since the 1950s. Until recent years,
only one panel flutter type, namely, coupled-mode flutter, had been studied. It occurs
due to the coupling of two plate eigenmodes through gas flow. In the case of low
supersonic flow speeds, another type of flutter exists, namely, single-mode flutter. Even
though this type of flutter was discovered in the 1960s (Dowell 1974), it is still viewed
by some as being non-physical, only appearing in calculations due to insufficient
accuracy in numerical studies. Recently, however, Vedeneev (2005) analytically proved
that this type of flutter does indeed exist; it has subsequently been observed in
experiments (Vedeneev et al. 2010) and studied numerically (Vedeneev 2012).

The overwhelming majority of investigators of panel flutter did not take the
boundary layer into account and considered uniform velocity and temperature profile.
In a few papers where the influence of the boundary layer was numerically studied
(Dowell 1971, 1973; Hashimoto, Aoyama & Nakamura 2009), a particular velocity
profile was considered, namely, the (1/7)th power velocity law. The reason is that
those studies were devoted to the modelling of experiments by Muhlstein, Gaspers
& Riddle (1968) and Gaspers, Muhlstein & Petroff (1970). The same boundary layer
profile was studied by Miles (1959). Those studies showed that the boundary layer
of this particular profile can decrease the growth rate of unstable eigenmodes or
even fully suppress instability. However, in flows over flight vehicles at different
flight conditions and for different skin panel locations, boundary layer profiles over
panels can differ significantly. In this paper, we analytically study the influence of the
arbitrary boundary layer profile on panel flutter and the interaction between flutter and
inflection-point instability of the layer.

The paper is organized as follows. First, in § 2, we state the problem and discuss
the assumptions used. In § 3, we derive the dispersion relation for travelling waves
in an infinite-length plate subjected to a flow. In §§ 4 and 5 we investigate the roots
of the dispersion relation and the analysis of the stability of an infinite-length plate.
In § 6, we investigate the stability of a plate that has a long but finite length so that
Kulikovskii’s asymptotic instability criterion can be used (Kulikovskii 1966a). Finally,
in § 7, we summarize the results of the paper.

2. Formulation of the problem
We investigate the stability of an elastic plate stretched by an isotropic in-plane

force. One side of the plate is exposed to shear gas flow; the other side experiences
constant pressure equal to an undisturbed pressure of the flow so that the undisturbed
state of the plate is flat. The plate is either infinite in all directions or has a shape of a
strip, which is mounted into an infinite rigid plane (figure 1). The flow has a boundary
layer over the plate surface with given velocity and temperature profiles u0(z) and
T0(z), respectively. It is assumed that they are governed by the flow conditions over the
flight vehicle, whose single panel is represented by the plate considered.

The problem is investigated in a two-dimensional formulation; also, we neglect the
growth of the boundary layer so that the unperturbed flow does not depend on x. This
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FIGURE 1. Gas flow over elastic plate.

admits perturbations of a travelling wave type, where all variables are proportional
to ei(kx−ωt). We will first investigate the travelling waves themselves and, second, the
general solutions constructed as a superposition of travelling waves: wave packets for
an infinite plate and Kulikovskii’s natural modes for a large finite plate. All variables
are assumed to be non-dimensional, with the speed of sound and temperature of the
flow outside the boundary layer taken as the velocity and temperature scales, the plate
thickness as the length scale, and plate material density as the density scale.

The plate is governed by Kirchhoff–Love small deflection plate theory. In a
dimensionless form, the plate equation is as follows:

D
∂4w

∂x4
−M2

w

∂2w

∂x2
+ ∂

2w

∂t2
+ p(x, 0, t)= 0, (2.1)

where w(x, t) is the plate deflection, D is the dimensionless plate stiffness, Mw is
the square root of the dimensionless in-plane tension force, and p(x, z, t) is the flow
pressure disturbance generated by the plate, which is hence a function of w.

If the plate is infinite, then the only boundary condition that must be satisfied by the
deflection is finiteness, i.e. w(x) is limited as x→±∞. If the plate has a finite length
L, then two boundary conditions must be satisfied at each plate edge, x = −L/2 and
x= L/2. For example, these could be clamping or pinning boundary conditions.

The flow is assumed to be laminar; the Reynolds number Re→∞. This means
that small perturbations of the flow are governed by the inviscid Rayleigh equation,
while viscosity is essential only in the formation of the steady boundary layer as
non-uniform distribution of velocity and temperature. Let us discuss these assumptions.
First, despite the fact that in supersonic flows turbulent boundary layers are observed
more often, laminarity is also possible up to Re ∼ 105 for the Reynolds number
based on boundary layer thickness. This value is large enough to neglect viscosity
in equations for perturbations (unless the wavenumber is extremely small). Laminar
supersonic boundary layers are observed in accelerating flows and uniform flows
with the cooling of the plate surface or gas suction (Gaponov & Maslov 1980,
chap. 5). In the other case, when the boundary layer is turbulent but typical pulsation
frequencies are much higher than the frequency of growing plate oscillations, laminar
flow equations can be used in the first approximation, with Reynolds-averaged velocity
and temperature profiles taken as steady flow profiles.

Second, solutions of the viscous problem tend to solutions of the Rayleigh equation
as Re→∞ only in a sector of the complex z plane with angle 4π/3 and vertex at
z = zc (figure 2). Here, zc is the critical point, u0(zc) = c, and c = ω/k is the phase
speed (Drazin & Reid 2004). In the shaded regions, solutions of the viscous problem
are of the WKB type, that is, velocity perturbation v(z) ∼ g(z) exp(

√
iRe f (z)). This

leads to Lin’s rule for the integration path: if Im zc 6 0 and the WKB region contains
a segment of the real ray z > 0, not including the point z = 0, then inviscid solutions
can be analytically continued from one boundary (z = 0) to the other (z = +∞) along
a path that must leave the real axis z and pass below the critical point zc. If the real
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FIGURE 2. (a,b) Stokes lines and WKB regions (shaded) for zc lying (a) above, (b) below the
real axis. (c,d) Apparent behaviour of disturbances at real z.

ray z > 0 does not intersect the WKB region (for example, Im zc > 0), then inviscid
solutions can be analytically continued along the ray. However, if the point z = 0
lies in the WKB region, then inviscid approximation is not applicable, because it is
impossible to satisfy boundary conditions at z = 0. We will assume that u′0(z) > 0
throughout the boundary layer, so that for zc lying in a neighbourhood of the real ray
z > 0, it follows that sign Im zc = sign Im c.

Keeping these limitations of the model in mind, we can now proceed to equations.
Let v(z)ei(kx−ωt) and p(z)ei(kx−ωt) be the perturbations of vertical velocity component
and pressure. Then the compressible Rayleigh equation (Lees & Lin 1946) takes the
following form:

d
dz

(
(u0 − c) dv/dz− v du0/dz

T0 − (u0 − c)2

)
− 1

T0
k2(u0 − c)v = 0. (2.2)

The amplitude of pressure perturbation is expressed in terms of v(z) as follows:

p(z)= µ
ik
(u0 − c) dv/dz− v du0/dz

T0 − (u0 − c)2
, (2.3)

where µ is the dimensionless density of the flow outside the boundary layer.
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Consider boundary conditions for the Rayleigh equation. First, at the plate surface
z = 0, we assign the condition of impenetrability along the plate bent into the shape
of a travelling wave: w(x) = ei(kx−ωt). The second boundary condition is the radiation
condition as z→+∞. We apply it at the outer boundary of the boundary layer z = δ,
where δ is the dimensionless boundary layer thickness, as follows. Assume that for
z > δ, the flow is uniform, u0 ≡M∞ is the Mach number outside the boundary layer,
and T0 ≡ 1. Then for z > δ, Rayleigh equation (2.2) is reduced to an equation with
constant coefficients, whose solution is v(z) = Ceγ z, γ = −

√
k2 − (M∞k − ω)2. The

radiation condition as z→+∞ yields a particular square root branch, namely,

Re γ < 0 (2.4)

for Imω� 1. This exponential solution outside the boundary layer must be matched
to the solution inside the boundary layer. Thus, the boundary conditions finally take
the following form:

v =−iω (z= 0),
1
v

dv
dz
= γ (z= δ). (2.5)

Hereafter, we assume that the parameter µ (which is the density of the flow outside
the boundary layer relative to the plate material density) is small, and use asymptotic
expansions as µ→ 0 wherever possible. In industrial applications, the order of µ is
typically in the range 10−5–10−3.

3. Dispersion relation for an infinite plate in a gas flow
In this section, we assume that the plate is infinite and consider travelling

wave disturbances: w(x, t) = ei(kx−ωt). We derive the dispersion relation that connects
wavenumber k and frequency ω in the following manner. First, we solve Rayleigh
equation (2.2) with boundary conditions (2.5). Second, we calculate disturbance
of pressure (2.3) acting on the plate surface. Finally, we substitute the pressure
disturbance into the plate equation (2.1) and obtain the dispersion relation.

Note that the Rayleigh equation can have two singularities (Lees & Lin 1946;
Lin 1966). The first one is the critical point zc, where u0(zc) = c. It leads to the
singularity of the solution that will be discussed below. The other one is the point
where T0(z)− (u0(z)− c)2 = 0, which means that the phase speed of the wave is equal
to the local speed of sound. This singularity is removable.

The solution of the Rayleigh equation can be constructed in the form of a
convergent series in k2, known as the Heisenberg expansion (Lees & Lin 1946; Drazin
& Reid 2004). In industrial applications related to flutter, wavelengths λ = 2π/k of
practical interest are much larger than the boundary layer thickness δ. Therefore,
hereafter in the paper, we assume that |k| is small, namely, |k| � 1/δ, and keep only
the first term of the series. This is equivalent to neglecting the second term of the
order of k2 in (2.2):

d
dz

(
(u0 − c) dv/dz− v du0/dz

T0 − (u0 − c)2

)
= 0. (3.1)

This equation is easily solved, and its general solution is

v(z)=
(

c1

(∫ z

0

T0(ζ ) dζ

(u0(ζ )− c)2
− z

)
+ c2

)
(u0(z)− c). (3.2)
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Substitution into (2.3) yields the pressure perturbation

p(z)≡ c1µ

ik
. (3.3)

It is clearly seen that (3.2) has a singularity at the critical point that is not
removable in inviscid theory. Solutions that are limits of the viscous system solutions
(analogous to the Orr–Sommerfeld equation in incompressible fluid) as viscosity
vanishes are constructed such that the integration path is located in the complex z
plane and passes below the critical point (Lees & Lin 1946; Lin 1966). In particular, if
Im c> 0 (growing disturbances), then integration can be accomplished along the real z
axis. If Im c 6 0 (neutral and damped disturbances), integration must be accomplished
in the complex z plane below the singularity.

A singularity at the critical point yields the fact that, for c ∈ R, function v(z) is
complex and has a discontinuity at the critical point. If we choose c1 and c2 such
that v ∈ R for z > zc, then v discontinuously acquires an imaginary part for z < zc.
Physically, this means that when passing through the critical point, the phase of the
disturbance is changed discontinuously. This discontinuity is absent in potential flow
and can yield the stabilization or destabilization of disturbances by the boundary layer.

Substituting (3.2) into boundary conditions (2.5), finding c1 and c2, and calculating
(3.3) yields the pressure disturbance on the plate surface:

p(0)=−µ
( (M∞k − ω)2√

k2 − (M∞k − ω)2
)−1

+
(∫ δ

0

T0(ζ ) dζ

(u0(ζ )− c)2
− δ
)−1

. (3.4)

The first term in parentheses represents the contribution of the uniform flow outside
the boundary layer, whereas the second term represents the contribution of the
boundary layer.

It is convenient to extract boundary layer thickness δ from the integral. Substituting
ζ = δη, we obtain the following:∫ δ

0

T0(ζ ) dζ

(u0(ζ )− c)2
= δ

∫ 1

0

T0(η) dη

(u0(η)− c)2
. (3.5)

Hereafter, we will consider functions u0(η) and T0(η) as describing the boundary layer
profile, where η is the local boundary layer vertical coordinate, 0 6 η 6 1.

Finally, the substitution of plate deflection w(x, t)= ei(kx−ωt) and pressure disturbance
p= p(0)ei(kx−ωt) into the plate equation (2.1) yields the dispersion relation

D(k, ω)= (Dk4 +M2
wk2 − ω2)

−µ
( (M∞k − ω)2√

k2 − (M∞k − ω)2
)−1

+ δ
(∫ 1

0

T0(η) dη

(u0(η)− c)2
− 1
)−1

= 0. (3.6)

Note that its structure reflects the contribution of each of three media: the plate,
the boundary layer, and the uniform flow outside the boundary layer. In particular,
the expression in the first parentheses represents the plate: its three terms reflect
the bending stiffness, tension, and inertia of the plate. The expression in the second
parentheses represents the flow, whose influence is proportional to µ: the first term in
parentheses is the contribution of the uniform flow, whereas the second term represents
the boundary layer.
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As δ→ 0, the dispersion relation (3.6) coincides with the dispersion relation for a
plate in uniform flow (Kornecki 1979; Vedeneev 2005):

(Dk4 +M2
wk2 − ω2)− µ (M∞k − ω)2√

k2 − (M∞k − ω)2
= 0. (3.7)

4. Instability of ‘short’ travelling waves in an infinite plate
In this section, we consider wavelengths that are not too long, so that solutions ω(k)

of the dispersion relation for the plate in the flow are close to those for the plate in
vacuum. In particular, we assume that |k| � µ1/3. The influence of the flow on such
waves is small and can be taken into account in the first approximation in µ. On the
other hand, we still restrict ourselves to the wavelengths that are much longer than
the boundary layer thickness so that neglecting the term of the order of k2 in (2.2) is
correct. Thus, the wavelengths considered in this section are bounded both above and
below, µ1/3� |k| � 1/δ; this is why we have used quotation marks in the title of this
section.

Under this assumption, the Taylor expansion in µ yields the following:

ω(k, µ)= ω(k, 0)+ µ ∂ω
∂µ

∣∣∣∣
µ=0

+ o(µ)= ω(k, 0)− µ∂D
∂µ

/
∂D

∂ω

∣∣∣∣
µ=0

+ o(µ). (4.1)

Neglecting infinitesimal terms, we obtain

ω(k, µ)= ω(k, 0)− µ

2ω(k, 0)

×
( (M∞k − ω)2√

k2 − (M∞k − ω)2
)−1

+ δ
(∫ 1

0

T0(η) dη

(u0(η)− c)2
− 1
)−1

, (4.2)

where the expression in parentheses is calculated at µ= 0.
It is seen that the frequency ω(k, µ) of the plate in the flow can be represented

as the frequency of the plate in vacuum ω(k, 0), slightly (to O(µ)) modified by the
flow. As the frequency in vacuum ω(k, 0) is always real, the stability of the plate in
the flow is governed by this small term caused by the flow. The flow influence on
the frequency, as well as on the dispersion relation, is clearly split into two different
mechanisms expressed by two terms in parentheses: uniform flow (the first term) and
the boundary layer (the second term).

In order to investigate the influence of the boundary layer on the growth of
travelling waves, let us first consider waves in uniform flow, δ = 0 (Vedeneev 2005).
In this case, the behaviour of the wave is governed by the square root on the right-
hand side of (4.2). The choice of an appropriate branch is not obvious and must be
conducted by considering radiation condition (2.4) for rapidly growing waves. In other
words, the square root branch must be an analytical continuation of the branch defined
as follows:

Re
√

k2 − (M∞k − ω)2 > 0, Imω→+∞, (4.3)

from the region of very large Imω to the values of interest. We will be primarily
interested in unstable solutions, that is, Imω > 0; therefore, the path for continuation
in the ω plane can be chosen so that it lies in the upper half-plane, and this
continuation is single-valued (note that both branch points of the square root are
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real for k ∈ R). The accurate treatment of the continuation (Vedeneev 2005) yields
four cases. If the wave propagates upstream (i.e. c < 0), it is always damped. If
the wave propagates downstream, it is amplified if 0 < c < M∞ − 1, neutral if
M∞ − 1 < c < M∞ + 1, and damped if c > M∞ + 1. Physically, these inequalities
express a relationship between the phase speed c of the wave running in the plate and
the speed of acoustic waves M∞ ± 1 in the gas flow.

Thus, three types of wave behaviour are possible.

(i) In the uniform flow, the wave is growing and supersonic relative to the flow:
0< c<M∞ − 1.

(ii) In the uniform flow, the wave is neutral and subsonic relative to the flow:
M∞ − 1< c<M∞ + 1.

(iii) In the uniform flow, the wave is damped and supersonic relative to the flow:
c>M∞ + 1 or c< 0.

Let us treat them in turn in order to investigate the influence of the boundary layer
term in (4.2).

4.1. Influence of the boundary layer on the growing wave
First, we will investigate waves of type (i). To make the analysis clearer, let

A=
√

k2 − (M∞k − ω)2
(M∞k − ω)2 =

√
1− (M∞ − c)2

k(M∞ − c)2
, B= δ

(∫ 1

0

T0(η) dη

(u0(η)− c)2
− 1
)
, (4.4)

and rewrite (4.2):

Imω(k, µ)=− µ

2ω(k, 0)
Im(A+ B)−1. (4.5)

Since the wave is growing at δ = 0, we obtain Im A = a > 0, Re A = 0. Let us
determine which regions of the B plane correspond to a decrease or increase of
Im(A+ B)−1 in comparison with Im A−1 (i.e. stabilization or destabilization of the
wave by the boundary layer).

It is easy to prove that the level lines of Im(A+ B)−1 on the complex B plane
are circles with centres on the imaginary axis that pass through the point B = −ia.
If the second intersection of the circle and imaginary axis lies above this point, then
Im(A+ B)−1 < 0; otherwise, Im(A+ B)−1 > 0. Level line Im(A+ B)−1 = Im A−1 is
a circle that passes through the point B = 0. Level line Im(A+ B)−1 = 0 (neutral
disturbances) is a horizontal line passing through the point B=−ia (figure 3).

Fix the phase speed c and consider Im(A+ B)−1 as a function of the boundary layer
thickness δ, assuming that profiles u0(η) and T0(η) are specified. A does not depend
on δ, while B is a linear function of δ. Then values of B on the complex plane that
correspond to different values of δ lie on a ray that begins at B= 0.

Two cases are possible. If Im B > 0, then the ray is directed upward or horizontally.
In this case, for any δ, the wave is growing; its growth rate is less than at δ = 0 and
tends to zero as δ→∞.

In the other case, Im B < 0, the ray is directed downward. For 0 < δ < δ1, the
growth rate is positive and larger than at δ = 0, where δ1 is the value where the ray
crosses the circle Im(A+ B)−1 = Im A−1 (figure 3). For δ1 < δ < δ2, the growth rate is
still positive, but less so than at δ = 0, where δ2 is the value at which the ray crosses
the line Im(A+ B)−1 = 0. Finally, for δ > δ2, the wave is damped.

The value of Im B is calculated explicitly as follows. The integrand in the definition
of B has a singularity at the critical point η = ηc, which must be passed below,
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FIGURE 3. Level lines Im(A+ B)−1: 1, Im(A+ B)−1 = 0; 2, set of lines below 1,
Im(A+ B)−1 > 0; 3, set of lines above 1, Im A−1 < Im(A+ B)−1 < 0; 4 (shaded), region
Im(A+ B)−1 < Im A−1 < 0.

according to Lin’s rule. Let us expand boundary layer profiles in the Taylor series near
η = ηc:

T0(ξ)= T00 + T01ξ + · · ·, u0(ξ)= c+ u01ξ + u02ξ
2/2+ · · ·, ξ = η − ηc, (4.6)

where T0n and u0n are nth derivatives in the critical point. Then we have the following:

T0(ξ)

(u0(ξ)− c)2
= T00 + T01ξ + · · ·
(u01ξ + u02ξ 2/2+ · · ·)2

= T00

u2
01

1
ξ 2
+ 1

u2
01

(
T01 − T00

u02

u01

)
1
ξ
+ reg. terms. (4.7)

As the 1/ξ term is the only source of the non-zero imaginary part of B, we obtain

Im B= πδ
u2

01

(
T01 − T00

u02

u01

)
=−πδ T2

0

u′30

(
u′0
T0

)′
, (4.8)

where the prime denotes the derivative with respect to z at the critical point. Thus,
Im B is a function of the boundary layer thickness and the local behaviour of the
velocity and temperature profiles in a neighbourhood of the critical point. In contrast,
the value of Re B depends on all regular terms in the expansion (4.7), i.e. on the
profiles in the full segment η ∈ [0; 1].

Let us now reformulate the results obtained in terms of the boundary layer profile.
If the profile is generalized convex, i.e. (u′0/T0)

′
< 0 everywhere, then for any phase

speed Im B > 0. This means that the boundary layer has a stabilizing effect: although
the growth rate in the flow with the boundary layer stays positive, it is less than in the
uniform flow.

If the profile has a generalized inflection point, then there exists a range of phase
speeds c such that the effect of the boundary layer is destabilizing (i.e. the growth rate
of the wave in the flow with the boundary layer is higher than in the uniform flow)
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FIGURE 4. Length scale of accelerating outer flow Λ, boundary layer thickness δ, and the
wavelength λ in the case of δ� λ�Λ.

for δ < δ1, since Im B < 0. The closer |Re B| is to zero (i.e. the closer the direction of
the ray to the vertical), the higher the growth rate due to the boundary layer. In the
limit case Re B = 0, Im B→−a the value of Im(A+ B)−1 (and hence the growth rate
Imω) tends to infinity as δ→ δ1.

The possibility of very high growth rates caused by the boundary layer in real
flows will be considered below in §§ 4.2 and 4.3. But the limit case of c→ 0 can
be immediately excluded, as the behaviour of Re B can be explicitly found. After the
integration of (4.7), the leading term of Re B is as follows:∫ 1−ηc

−ηc

T00

u2
01

1
ξ 2

dξ =− T00

u2
01

1
ξ

∣∣∣∣1−ηc

−ηc

=−T00(ηc)

u2
01(ηc)

(
1

1− ηc
+ 1
ηc

)
. (4.9)

Thus, as c→ 0 (consequently, ηc→ 0), Re B→−∞, i.e. the ray direction tends to
horizontal. This means that, first, δ1 → 0 and, second, the increase of the growth
rate caused by the boundary layer for 0 < δ < δ1 is negligible. We conclude that
destabilization of the wave growing in uniform flow by the boundary layer can occur
only for intermediate phase speeds, 0< c<M∞ − 1.

4.2. Example: profiles of accelerating and decelerating flows
Consider self-similar boundary layer profiles (Schlichting 1960) that are governed by
parameter β. If β > 0, then the free-stream flow is accelerating; if β < 0, then it is
decelerating; if β = 0, then the flow velocity is constant. These profiles are analogous
to those boundary layer profiles that appear in incompressible fluid in the case of
degree function flow u∞(x) = Cxm, β = 2m/(m + 1). Note that the problem of an
infinite-length plate is treated here for the purpose of using its solutions to construct
eigenmodes of a finite-length plate, which will be considered in § 6. We will assume
that the plate length is much less than the characteristic distance Λ, over which the
flow outside the boundary layer essentially changes; hence, the flow can be considered
as locally uniform. This assumption can be also applied to the infinite-length plate if
we are interested only in the local behaviour of the piece of the wave, whose length
λ is much smaller than the length scale Λ of the flow outside the boundary layer
(figure 4). Although there exist beautiful theories for constructing global modes of
the infinite plate in a slowly varying flow in both linear (Huerre & Monkewitz 1990;
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Hunt & Crighton 1991; Le Dizès et al. 1996) and nonlinear (Pier, Huerre & Chomaz
2001; Chomaz 2005) formulations, in this section, we only study the effect of the local
flow profile, and global modes of the infinite plate are not considered in this paper.
In other words, when we refer to ‘accelerating’ and ‘decelerating’ flow hereafter, we
mean the corresponding boundary layer profile, still considering the free-stream flow
to be uniform.

In this section, we consider an example of the Prandtl number Pr = 1 and the
heat-insulated plate so that the boundary layer profiles are expressed via the solution
f (ξ) of the following equation (Schlichting 1960):

f ′′′ + f f ′′ = β(f ′2 − 1), f (0)= f ′(0)= 0, f ′(+∞)= 1. (4.10)

Velocity is then given as a function of a similarity variable ξ : u0(ξ) = f ′(ξ). The
physical z coordinate is calculated for each ξ as follows:

z= C
∫ ξ

0
T0(u0(ξ)) dξ. (4.11)

Temperature profile T0(u0) is given using the same expression as in adiabatic flow:

T0(u0)= 1+ γ − 1
2

(M2
∞ − u2

0). (4.12)

Let us consider several profiles as examples. They are denoted as 1–5 in figure 5(a)
and correspond to β = 2, 0.5, 0, −0.14 and −0.199, respectively. Note that profile 5
is a limit case of the attached boundary layer, because du0(0)/dz < 0 for β < −0.199,
and the boundary layer separates from the plate. Calculations have been conducted for
parameters that correspond to a steel plate at 3 km above sea level:

D= 23.9, Mw = 0, µ= 0.00012, γ = 1.4, (4.13)

and Mach number M∞ = 1.6. The generalized curvature (u′0/T0)
′ is plotted for these

profiles in figure 5(b), while values of Re B and Im B are shown in figures 5(c) and
5(d). It is seen in figure 5(d) that for profiles 1 and 2, Im B > 0, and the growth rate
decreases when δ increases. This is also seen in figure 6, where Imω is plotted versus
the boundary layer thickness for a particular wavenumber k = 0.06. In the case of
profiles 3–5, Im B < 0 for waves travelling with supersonic speed relative to the outer
flow (i.e. for c < M − 1), which means that the wave is amplified by the boundary
layer at δ < δ1 (figure 6). As proved in § 4.1, the smallness of |Re B| is a condition of
the significant destabilizing effect of the boundary layer. It is seen in figure 5(c) that
amongst the profiles considered, |Re B| is the smallest for profile 5 on a whole interval
c < M∞ − 1. According to this, Imω is significantly increased for this profile by the
boundary layer (figure 6).

4.3. Relation between the effect of the boundary layer on the stability of an elastic plate
and the stability of the boundary layer over a rigid wall

Let us now investigate the influence of the boundary layer on the plate stability in
relation to the stability of the boundary layer over a rigid wall. Boundary conditions
for the Rayleigh equation (2.2) in the latter case are as follows:

v = 0, z= 0,
1
v

dv
dz
= γ, z= 1. (4.14)
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FIGURE 5. Velocity profiles for accelerating and decelerating flows over a heat-insulated
plate for parameters (4.13), M∞ = 1.6, Pr = 1: (a) velocity profiles, (b) generalized curvature,
(c) Re B, (d) Im B. Curves 1–5 correspond to β = 2.0, 0.5, 0.0, −0.14, −0.199, respectively.

Taking the general solution (3.2) and satisfying boundary conditions (4.14), we
obtain the eigenvalue problem(

(M∞k − ω)2√
k2 − (M∞k − ω)2

)−1

+ δ
(∫ 1

0

T0(η) dη

(u0(η)− c)2
− 1
)
= 0, (4.15)

which is rewritten in the following form:

A+ B= 0. (4.16)

Solutions of this equation give a spectrum of eigenvalues c for a given wavenumber
|k| � 1/δ; if Im c> 0 for at least one of them, then the boundary layer is unstable.

In the inviscid stability theory of compressible shear flows, two different stability
criteria are obtained for subsonic (c > M∞ − 1) and supersonic (c < M∞ − 1)
waves (Lees & Lin 1946). The criterion for subsonic waves is analogous to the
incompressible inflection-point criterion, and the regular inflection point, where u′′0 = 0,
is replaced by the generalized inflection point, where (u′0/T0)

′ = 0. The criterion for
supersonic waves is completely different and has no relation to the inflection point.
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FIGURE 6. Function Imω(δ) for profiles 1–5 in figure 5 for parameters (4.13), M∞ = 1.6,
k = 0.06.

Let us now review these criteria through the long-wave approximation (4.16) of
the eigenvalue problem and relate them to the effect of the boundary layer on the
stability of the elastic plate. If the boundary layer is unstable, then there exists a
neutral disturbance that lies on a boundary of the region of unstable wavenumbers. If
this disturbance is supersonic (i.e. c ∈ [0;M∞− 1]), then Re A= 0, Im A> 0. It follows
from (4.16) that Re B = 0, Im B < 0; hence, the ray in figure 3 is directed straight
down. Thus, for the instability of long supersonic waves over the rigid wall, it is
necessary that the ray in figure 3 is directed straight down at a certain c ∈ [0;M∞ − 1],
whereas for the significant increase of the growth rate of the plate waves by the
boundary layer, it is sufficient that the ray direction is just close to being straight
down.

If the neutral disturbance is subsonic (i.e. M∞ − 1 < c < M∞ + 1), then Im A = 0,
and the necessary condition for instability follows from (4.16): Im B= 0, that is, there
exists a point in the subsonic part of the boundary layer where (u′0/T0)

′ = 0. We call
this point the generalized inflection point of the profile. This condition is actually
necessary and sufficient without the assumption of small k (Lees & Lin 1946; Lin
1966). Note that if a subsonic neutral disturbance exists (i.e. there exists a generalized
inflection point), then only subsonic waves can be growing (Lees & Reshotko 1962).

Taking these general criteria into account, let us analyse the stability of the profiles
considered in § 4.2. They all are stable with respect to long supersonic waves. Indeed,
it is seen in figure 5 that Re B 6= 0 for any real c < M∞ − 1, although Re B can be
sufficiently small for β =−0.199, which gives a significant increase of Imω for δ < δ1

(figure 6). However, at β = 0, −0.14, −0.199, the boundary layer is unstable with
respect to subsonic disturbances because there exists a point in the subsonic part of
the layer where Im B = 0 (figure 5d). We conclude that profiles that affect the plate
stability in a destabilizing manner cannot actually develop over a plate due to their
own instability. The question that arises is as follows: Does a profile that, on one
hand, is stable over a rigid wall (i.e. can actually develop) and that, on the other hand,
destabilizes the plate exist?
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The answer to this question turns out to be positive. Indeed, if the boundary layer
profile has a generalized inflection point that lies in the supersonic part of the layer,
such a layer can be stable (in inviscid approximation). It can also yield an arbitrarily
large growth rate of the plate waves if Im B < 0 and Re B is negative and close
to zero for c ∈ [0;M∞ − 1]. For the stability of the layer over the rigid wall, it
should be Re B 6= 0 for c ∈ [0;M∞ − 1] (supersonic disturbances) and Im B 6= 0 for
c ∈ [M∞ − 1;M∞] (subsonic disturbances).

As an example of such profiles, consider temperature profile (4.12) and the family
of velocity profiles u0(η) parametrized by a parameter s ∈ [0; 1], which are defined
through a natural cubic spline passing through the following five points:

u0(0)= 0, u0(0.105− 0.045s)= 0.12M∞,
u0(0.155− 0.045s)= 0.21M∞, u0(0.6)= 0.88M∞, u0(1)=M∞.

}
(4.17)

Here, the first, fourth, and fifth points are fixed, whereas the second and third points
shift with the change in s. Plots of u0(η) for several values of s are shown in
figure 7(a). It is seen that the increase of s makes the profile more convex and
eliminates the generalized inflection point. Note that when defining a profile using
a cubic spline, which is a function with continuous first and second derivatives, we
assume that the spline can be approximated (including the first and second derivatives)
arbitrarily well by an analytic function.

Plots of Re B(c) and Im B(c) for these profiles are shown in figures 7(c) and 7(d)
for c ∈ [0;M∞ − 1]. All these profiles are stable with respect to subsonic disturbances
as (u′0/T0)

′ 6= 0 for c > M∞ − 1 (figure 7b), and the generalized inflection point, if it
exists, lies in the part of the layer which is supersonic relative to the outer flow. At
s = 0, a graph of Re B(c) touches the horizontal axis, which means that there exists
a neutral supersonic wave; for s > 0, supersonic waves are damped as Re B 6= 0 for
c<M∞ − 1. Thus, all these profiles are stable.

Now consider the influence of these boundary layers on the stability of the elastic
plate. As s→ 0, the ray in figure 3 tends to be vertical at c ≈ 0.21 (where the graph
of Re B touches the horizontal axis in figure 7c), which yields an arbitrarily high
growth rate as δ→ δ1. Calculated Imω(δ) are shown in figure 8 for parameters (4.13),
M∞ = 1.3. It is seen that max Imω is increased more than twice in comparison with
the uniform flow at s= 0.2, and more than four times at s= 0.1, max Imω→+∞ as
s→ 0.

Note that an arbitrarily high growth rate contradicts the assumptions that were used
when deriving expansion (4.2), since it will no longer be linear in µ. In fact, we
can only conclude that Imω & µ. This situation is analogous to that considered by
Vedeneev (2006): the growth rate is also unbounded in uniform flow as c→M∞ − 1
because of the first term in parentheses in (4.2); in that case, a nonlinear expansion in
µ yields Imω ∼ µ2/3.

4.4. Influence of the boundary layer on neutral and damped waves

We have investigated the influence of the boundary layer on waves that are growing
in potential flow, that is, 0 < c < M∞ − 1. Now suppose that the wave is damped
in potential flow, that is, M∞ + 1 < c or c < 0. Then A is purely imaginary,
and Im A < 0. There is no critical point in the flow; therefore, Im B = 0. Then
0< Im (A+ B)−1 < Im A−1, which means that the boundary layer decreases the wave’s
damping rate but cannot result in its growth. Damped waves stay damped.
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FIGURE 7. Boundary layer profiles (4.17) for a heat-insulated plate for parameters (4.13),
M∞ = 1.3, Pr = 1: (a) velocity profiles, (b) generalized curvature, (c) Re B, (d) Im B. Curves
1–6 correspond to s= 0, 0.2, 0.4, 0,6, 0.8, 1, respectively.

Next, suppose that the wave is neutral in uniform flow, that is, M∞−1< c<M∞+1,
and Im A= 0. If M∞ 6 c 6 M∞+1, then there is no critical point in the flow; therefore,
Im B= 0. The wave stays neutral in the boundary layer.

If the wave in uniform flow is neutral and M∞ − 1 < c < M∞, then there
is a critical point, and Im B 6= 0. Consider two types of the boundary layer
profile. In the case of the flow with a generalized convex profile, (u′0/T0)

′
< 0,

sign Im B=−sign((u′0/T0)
′
) > 0. Consequently, Im (A+ B)−1 < 0 and Imω > 0, which

means that the wave is destabilized by the boundary layer. Note that the boundary
layer itself (i.e. over a rigid wall) is stable. This conclusion is similar to that obtained
by Miles (2001), who showed that for the Blasius boundary layer in incompressible
fluid, elasticity of the plate yields destabilization of the layer as Re →∞.

Finally, suppose that the boundary layer profile has a generalized inflection point
zinfl in the subsonic part of the layer so that (u′0/T0)

′
> 0 for z < zinfl and (u′0/T0)

′
< 0

otherwise (this is typical for boundary layers over a flat heat-insulated plate; we
restrict ourselves to this class of boundary layers). Then waves that have critical points
at z > zinfl, that is, M∞ − 1 < u0(zinfl) < c < M∞, are destabilized by the boundary
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layer because sign Im B=−sign((u′0/T0)
′
) > 0 and hence Im (A+ B)−1 < 0. In contrast,

waves with phase speeds such that M∞ − 1< c< u0(zinfl) become damped.

5. Instability of long travelling waves in an infinite plate: absolute and
convective instability

In the previous sections we have treated waves that are not too long, i.e. k� µ1/3.
Now consider wavenumbers k ∼ µ1/3, which we will refer to as long waves. Vedeneev
(2005) showed that the instability of long plate waves in uniform flow is absolute for
small plate tension and convective for large tension. In this section, we will prove
that when instability in uniform flow is absolute, it stays absolute in the presence of
the boundary layer. If instability in uniform flow is convective, it becomes absolute.
Thus, in the presence of the boundary layer, instability is always absolute. That is why
instead of treating ordinary instability of long waves first, we will directly investigate
absolute instability.

5.1. Absolute instability criterion
Consider the perturbation that at t = 0 is localized in a neighbourhood of a point
x = x0. The question answered by an absolute instability analysis is as follows: If the
system is unstable, will this localized perturbation grow at the point x = x0 (in this
case, instability is absolute), or will it travel along the x axis such that it damps at
x= x0 as t→∞ (in this case, instability is convective), as shown in figure 9?

An absolute instability analysis (Briggs 1964; Whitham 1974; Bers 1983; Huerre
& Monkewitz 1985) is based on expressing an initial localized perturbation in the
form of superpositioned travelling waves, whose frequency ω and wavenumber k
are connected to each other by the dispersion relation (3.6). Its solution ω(k) is a
multivalued function for which each branch ωj(k) gives a single temporally developing
wave. From a mathematical point of view, such a representation of the localized
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FIGURE 9. Evolution of localized disturbance: (a) convective and (b) absolute instability.

perturbation is given by the Fourier transform:

w(x, t)=
∫ ∞
−∞

n∑
j=1

Wj(k)ei(kx−ωj(k)t) dk, (5.1)

where integration is conducted along the real k axis. We are interested in the behaviour
of w(x0, t) as t→∞. The calculation of the integral (5.1) is performed by deforming
the integration contour in the k plane and employing the method of steepest descent.
In particular, we deform the integration contour in the complex k plane such that it
passes through saddle points of the function ωj(k) for each single-valued j branch.
These saddle points satisfy the following equation:

dωj(k)

dk
= 0. (5.2)

Then the asymptotic behaviour of w(x0, t) as t→∞ is as follows:

w(x0, t)∼ AW(kb)

√
2π
|ω′′(kb)|

ei(kbx0−ωbt)

√
t

, (5.3)

where |A| = 1; (kb, ωb) is one of the saddle points of ωj(k), which has the greatest
Imω amongst the saddle points through which the contour passes. It is seen that the
absolute instability criterion is then as follows: if there is a point kb satisfying (5.2),
through which the integration contour passes so that Imωb > 0, then the system is
absolutely unstable. Otherwise, instability is convective.

The main difficulty in applying the absolute instability criterion is that not all
saddle points (5.2) give asymptotic behaviour because the integration contour does
not necessarily pass through all of them. In order to select branch points that
govern absolute instability, one needs to investigate the topology of level lines of
the multivalued function Imω(k). This yields a saddle point selection criterion based
on the investigation of the integration contour.

We will use another selection criterion, which is equivalent to the one based on
the analysis of the integration contour. In order to formulate this criterion, let us
consider the inverse solution of the dispersion relation k(ω). It is a multivalued
function for which each branch kl(ω) represents a spatial wave. Let us split these
branches into two groups. The first group, l= 1, . . . , s, is such that Im kl(ω)→+∞ as
Imω→+∞, whereas the second group, l= s+1, . . . ,N, is such that Im kl(ω)→−∞
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as Imω→+∞. Branches belonging to the first group correspond to spatial waves
travelling downstream, while those belonging to the second group correspond to waves
travelling upstream. Now describe the selection criterion. Let kb be a saddle point of
ω(k), i.e. the value satisfying (5.2) for some j. The frequency ωb = ωj(kb) is then a
branch point of the inverse function k(ω), which means that two k branches merge:
kp(ωb) = kq(ωb). Then the selection criterion of saddle points that are responsible for
absolute instability is as follows: merged branches must belong to different groups. It
is easy to prove that the maximum of Imω taken over selected branch points does
not depend on which of the selection criteria is used: based either on the integration
contour analysis or on an analysis of merged branches kl(ω). Hence, both selection
criteria yield an absolute instability criterion.

5.2. Simplification of the dispersion relation

In the uniform flow (δ = 0), the branch point of k(ω) responsible for absolute
instability satisfies inequality |ω| � |k|, namely, k ∼ µ1/3, ω ∼ µ2/3 (Vedeneev 2005).
We will prove that the same orders of k and ω hold for δ 6= 0 so that we may simplify
the dispersion relation (3.6). First, in the first term in parentheses, we may neglect ω
in comparison with M∞k, i.e. substitute

(M∞k − ω)2√
k2 − (M∞k − ω)2

→−i
M2
∞√

M2∞ − 1
k. (5.4)

The choice of the square root branch is justified by Vedeneev (2005).
Second, we may simplify the integral term. Note that in the branch point of

our interest c = ω/k ∼ µ1/3. Due to the no-slip condition for unperturbed flow
u0(0) = 0, then the critical point ηc, where u0(ηc) = c, can be approximated as
follows: ηc ≈ c/u′0(0) ∼ µ1/3. This point is a pole of the integrand that lies in a
small neighbourhood of the left end of the integration interval η = 0. Hence, the main
contribution to the integral is from this neighbourhood. Taking expansion (4.7) into
account, it is seen that as c→ 0, the leading-order term in the integral is∫ 1−ηc

−ηc

T00

u2
01

1
ξ 2

dξ =− T00

u2
01

1
ξ

∣∣∣∣1−ηc

−ηc

=−T00(ηc)

u2
01(ηc)

(
1

1− ηc
+ 1
ηc

)
→−T0(0)

u′0(0)
1
c
. (5.5)

Therefore, the dispersion relation (3.6) has the following asymptotic form as µ→ 0:

D(k, ω)= (Dk4 +M2
wk2 − ω2)− µ

(
i

√
M2∞ − 1

M2∞

1
k
− δT0(0)

u′0(0)
k

ω

)−1

= 0. (5.6)

It is seen that for the orders of k and ω assumed above, both terms in parentheses of
(5.6) are of the same order µ−1/3.

It is convenient to rewrite (5.6) in the following form:

D(k, ω)= (Dk4 +M2
wk2 − ω2)− µωk

iaω − δbk2
= 0, (5.7)

where

a=
√

M2∞ − 1

M2∞
> 0, b= T0(0)

u′0(0)
> 0. (5.8)
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Saddle points of solutions of (5.7) ω(k) (i.e. branch points of k(ω)) are given by (5.2),
which yields the condition ∂D/∂k = 0:

4Dk3 + 2M2
wk − µω

(
iaω + δbk2

)(
iaω − δbk2

)2 = 0. (5.9)

In order to seek branch points, instead of (5.7), we will use the equivalent equation
obtained by multiplying (5.7) by 4 and subtracting (5.9) multiplied by k:

2M2
wk2 − 4ω2 + µωk

(−3iaω + 5δbk2
)(

iaω − δbk2
)2 = 0. (5.10)

Thus, the branch points of the multivalued function k(ω) are the roots of the
system (5.9), (5.10). Generally speaking, not all the roots of this system satisfy the
condition of z = 0 not lying in the WKB region (figure 2); that is, some of the
roots need viscosity to be taken into account even for an arbitrarily large Reynolds
number. We cannot exclude the situation when such branch points yield absolute
instability, as in the study of Wiplier & Ehrenstein (2001), where absolute instability
is generated by coincidence of the Tollmien–Schlichting wave caused by the boundary
layer and a wave caused by the plate. However, due to the small growth rates of
Tollmien–Schlichting waves in comparison with the growth rates of flutter, we assume
that such an absolute instability is weak compared with flutter. That is why we restrict
ourselves to a particular problem: the investigation of the boundary layer influence on
a particular branch point that is responsible for flutter in uniform flow. It will be seen
that at this point, Im c> 0; hence, its investigation in inviscid approximation is correct.

To choose branch points responsible for instability, we will establish a connection
between branch points and the topology of level lines of Reω(k) in the following
manner. Take certain parameters of the problem and numerically plot level lines of
Reω(k). Mark saddle points of ω(k) and select those that govern absolute instability.
Next, when changing parameters, it is enough to watch only the location of the
marked points (which can be done analytically) because the topology of the level
lines is not changed if the parameters are not changed much. If bifurcation of
the branch points occurs, then a connection to a new topology of the level lines
must be established anew, though again for certain parameter values. To establish the
connection, we will use the following parameters:

D= 23.9, M∞ = 1.5, µ= 0.00012. (5.11)

Dimensionless bending stiffness and flow density are the same as in (4.13); however,
we will include plate tension because it significantly changes the location of the
branch points.

Let us discuss the splitting of the roots kl(ω) of (5.7) into two groups (§ 5.1).
At δ = 0, there are four roots kl(ω), two in each group: Im k1,2(ω) → +∞,
Im k3,4(ω)→−∞ as Imω→+∞. For large |ω|, they are close to the roots of (5.7)
at µ = 0, i.e. to roots of the dispersion relation for the plate in vacuum. For δ 6= 0,
two more roots appear: one of them tends to +i∞, the other to −i∞ as Imω→+∞.
For large |ω|, they are close to the roots of the denominator of the fraction in (5.7).
We will use kbl+(ω) to denote the first additional root and kbl−(ω) for the second. Now
each group consists of three roots: k1, k2, kbl+ and k3, k4, kbl−.

We will investigate the location of the branch points in the half-plane Reω > 0
because a frequency ω reflected from the imaginary axis corresponds to the solution of
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k(ω) of (5.7) also being reflected from the imaginary axis. Physically, such reflected
roots correspond to the same wave.

5.3. A plate in uniform gas flow
If δ = 0, then the system (5.9), (5.10) is reduced to

4Dk3 + 2M2
wk + iµ

a
= 0, (5.12a)

2M2
wk2 − 4ω2 + 3

iµ
a

k = 0, (5.12b)

which has been studied by Vedeneev (2005). Let us review the results of that
investigation here.

When Mw = 0 (no plate tension), there are three branch points in k plane that
correspond to Reω > 0; the topology of level lines is shown in figure 10(a). The first
point,

k∗ =
( µ

4Da

)1/3
e−iπ/6, ω∗ =

√
3

2

(µ
a

)2/3 1

(4D)1/6
eiπ/6, (5.13)

is responsible for absolute instability, due to the coincidence of branches k2 and k4

from different groups at this point. At the second point,

k∗∗ =
( µ

4Da

)1/3
e−5iπ/6, ω∗∗ =

√
3

2

(µ
a

)2/3 1

(4D)1/6
e−iπ/6, (5.14)

coincidence of the branch k3 and the branch arising from the first point occurs. This
point has no relation to instability as Imω∗∗ < 0. At the third point,

k∗∗∗ =
( µ

4Da

)1/3
i, ω∗∗∗ =±

√
3

2

(µ
a

)2/3 1

(4D)1/6
i, (5.15)

branches k1 and k2 from the same group coincide; hence, this point also has no
relation to instability.

While increasing Mw such that

Mw <Mcr
w =

√
3
2

(µ
a

)1/3
D1/6, (5.16)

the frequencies ω∗ and ω∗∗ approach the real axis but stay in the same quadrants of
the complex ω plane as at Mw = 0.

At Mw =Mcr
w , bifurcation of the branch points occurs (figure 10b). The first and the

second points coincide at the real ω axis:

ω∗ = ω∗∗ =
√

3
4

(µ
a

)2/3 1
D1/6

(5.17)

and stay real for Mw >Mcr
w . In the k plane, the coincidence of the branch points occurs

on the imaginary axis:

k∗ = k∗∗ =− i
2

( µ
Da

)1/3
. (5.18)

For Mw > Mcr
w , they stay pure imaginary. The topology of level lines (figure 10c)

shows that for Mw > Mcr
w amongst two branch points, the one responsible for
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FIGURE 10. (Colour online) Level lines Reω(k) = const. > 0 in the complex k plane for
parameters (5.11): (a) Mw <Mcr

w , (b) Mw =Mcr
w , (c) Mw >Mcr

w , ω∗∗ is real, (d) Mw >Mcr
w , ω∗∗

is pure imaginary. Continuous curves are images of Imω > 0, and dashed curves are images
of Imω < 0. Bold curves are level lines Imω = 0, Reω > 0. Branches of k(ω) are marked
by numbers as follows: branch kn(ω) maps the region Reω > 0, Imω > 0 into the region
that contains the number n. Branch points of k(ω) are shown by circles, and arrows show
directions where the branch points move while Mw increases.

asymptotic behaviour of the solution is the point with the smaller |k|, which will
be denoted by k∗ as before. At this point, roots k2 and k3 coincide. At the other branch
point, k∗∗, branches k3 and k4 coalesce; hence, it has no relation to the asymptotic
behaviour. As the frequency ω∗ corresponding to k∗ is real, we conclude that for
Mw >Mcr

w , instability of the plate is convective.
When Mw is further increased, one more bifurcation occurs: ω∗∗ moves along the

real axis towards 0, where it coincides with the branch point reflected from the
imaginary axis. This bifurcation is only due to the second equation (5.12) and hence
occurs only in the ω plane. After that, ω∗∗ moves along the imaginary axis and
stays on it for an arbitrarily large Mw. Level lines after this bifurcation are shown in
figure 10(d); it is seen that at point k∗∗, the same branches k3 and k4 coalesce; hence,
the only branch point governing instability is still k∗.
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0

FIGURE 11. Plot G(λ) for different values of δ.

The third branch point ω∗∗∗ does not interact with other points for any Mw and, as
before, has no relation to instability.

5.4. Untensioned plate in flow with the boundary layer
Let us now investigate the effect of the boundary layer and first consider the case of
no plate tension: Mw = 0. With this assumption, the study of the branch point location
is conducted analytically. Move the term with µ in (5.9) and (5.10) to the right-hand
side and divide one equation by the other. In the resulting equation, k and ω are
presented only in the combination λ= k2/(iω):

Dλ2 = a+ δbλ
3a− 5δbλ

. (5.19)

The equation transforms to

G(λ)= 5Dδbλ3 − 3Daλ2 + δbλ+ a= 0. (5.20)

When this cubic equation is solved, ω and k are easily found. Indeed, rewrite (5.10)
in the following form:

4
ω2

k
= µiβ(λ), β(λ)= 3a− 5δbλ

(a− δbλ)2 . (5.21)

Solving the system

4
ω2

k
= µiβ(λ),

k2

ω
= iλ, (5.22)

we find the branch points

ω =
(−iµ2λβ2(λ)

16

)1/3

, k =− 4iω2

µβ(λ)
. (5.23)

It is seen that each root λ of (5.20) yields three different branch points. As (5.20) has
three roots λ, we have 9 different branch points in total. They all satisfy the condition
k ∼ µ1/3, ω ∼ µ2/3; consequently, simplifications in the dispersion relation for small µ
are correct.

Consider solutions of (5.20) and choose branch points responsible for instability. It
is convenient to solve (5.20) graphically. At δ = 0, there are two real roots of (5.20):
λ1 < 0 and λ2 > 0 (figure 11). Amongst frequencies ω, we are interested in those lying
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FIGURE 12. (Colour online) Level lines Reω(k) = const. > 0 in the complex k plane for
parameters (5.11), Mw = 0: (a) before bifurcation, δ = 0.2, (b) after bifurcation, δ = 1.2.
Continuous curves are images of Imω > 0, and dashed curves are images of Imω < 0.
Bold curves are level lines Imω = 0, Reω > 0. Indices denote branches that map the
quadrant Reω > 0, Imω > 0 into the region that contains the index. Branch points of k(ω)
corresponding to λ1, λ2, λ3 are represented by circles, squares, and triangles, respectively.
Arrows show the direction of motion of the branch points when δ increases.

in the right half-plane. Two such frequencies correspond to the root λ1: ω∗, which is
responsible for absolute instability, and ω∗∗∗, which has no relation to instability. Two
more frequencies correspond to λ2: ω∗∗, whose imaginary part is negative, and ω∗∗∗.

For small δ 6= 0, one more root λ3 > 0 appears (figure 11) such that λ3 ∼ 1/δ as
δ→ 0. Two branch points correspond to this root: at the first, the branches k1 and kbl+
coincide, while at the other, k3 and kbl− coincide. This is proved by considering level
lines (figure 12a). It is seen that these points have no relation to instability.

Note that when the roots λj are real, β(λj) > 0, j= 1, 2, 3.
When δ increases, λ2 increases, and λ3 decreases such that at δ = δcr, coincidence

of λ2 and λ3 occurs. After that, they become complex conjugate (figure 11). As an
example, for parameters (5.11), δcr ≈ 0.89. There are no other bifurcations of λj, as
well as no more bifurcations of ω, since β(λj) 6= 0,∞. Thus, the only possibility for
branch point bifurcation is the coincidence of λ2 and λ3. After this coincidence, we
will assign index 2 to the root with a positive imaginary part, i.e. Im λ2 > 0, Im λ3 < 0.

Level lines after the bifurcation are shown in figure 12(b). In the branch point that
corresponds to λ2, branches k4 and kbl− coincide; in two other branch points that
correspond to λ3, k3 coincides with k4, and k2 coincides with kbl+. As before, these
points have no relation to instability.

For any δ > 0, the root λ1 stays real and negative, and β(λ1) stays real and positive.
Corresponding branch points do not bifurcate. We conclude that in the presence of the
boundary layer, the branch point ω∗, which is responsible for the instability, keeps its
imaginary part positive. Thus, we have proved that absolute instability is preserved in
the presence of the boundary layer.

Let us now prove that Imω∗ decreases monotonically when δ increases, i.e.

(λβ2(λ))
′
δ > 0 (5.24)

at λ = λ1. It is sufficient to consider the case D = a = b = 1, as the general case
is reduced to the latter by a linear transformation of λ and δ, which also linearly
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FIGURE 13. (Colour online) Level lines Reω(k) = const. > 0 in the complex k plane for
parameters (5.11), Mw = 0: (a) before switch, δ = 2.2, (b) after switch, δ = 3.0. All signs are
the same as in figure 12.

transforms β(λ). First calculate

dλ
dδ
=− ∂G/∂δ

∂G/∂λ
=− 5λ3 + λ

15δλ2 − 6λ+ δ . (5.25)

Next, using the definition of β(λ), we obtain

(λβ2(λ))
′
δ =

3− 5δλ

(1− δλ)2
[
λ′(3− 5δλ)+ 2λ

1− δλ(δλ)
′(1− 5δλ)

]
. (5.26)

For λ = λ1 < 0, the multiplier of the square brackets is positive. The first term in
square brackets is positive. Also,

(δλ)′δ = λ+ δλ′ =
λ2(10δλ− 6)

15δλ2 − 6λ+ δ < 0, (5.27)

which means that the second term in square brackets is also positive. Thus, the
inequality (5.24) is proved; hence, Imω∗ decreases when δ increases. We conclude
that if the plate is not tensioned, then the boundary layer decreases the growth rate of
absolute instability but cannot suppress the instability (i.e. Imω∗ > 0).

When δ is increased further, k2 and k4 coincide in the branch point ω∗ up to a
certain value of δ, after which kbl+ substitutes k2 so that branches kbl+ and k4 coincide
at this point (figure 13). This switch from k2 to kbl+ occurs without bifurcation of the
branch points. For parameters (5.11), this switch occurs at δ ≈ 2.55. At larger δ, other
switches occur; however, the only important thing is that the branches that coincide
at this point belong to different groups. Hence, this branch point governs absolute
instability, no matter which waves generate this instability. We conclude that absolute
instability, which in uniform flow was generated by the interaction of two plate waves,
for large boundary layer thickness changes its form: it is generated by the interaction
of boundary layer wave travelling downstream with the plate wave travelling upstream.
Note that the same kind of interaction, but in incompressible fluid and with viscosity
taken into account, was studied by Wiplier & Ehrenstein (2001).
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5.5. Tensioned plate, thin boundary layer
In the absence of the boundary layer (δ = 0), instability stays absolute while Mw <Mcr

w .
At Mw =Mcr

w , two branch points merge such that for Mw > Mcr
w , the frequency in the

branch point responsible for instability is real (i.e. the instability is convective). In
the presence of the boundary layer, the system (5.9), (5.10) is too complicated for
analytical investigation; that is why in this section we restrict our attention to the case
of small δ, which can still be treated analytically. Linearize (5.9), (5.10) with respect
to δ:

4Dk3 + 2M2
wk − µ

ia

(
1+ 3

δbk2

iaω

)
= 0, (5.28a)

2M2
wk2 − 4ω2 − 3µk

ia

(
1+ 1

3
δbk2

iaω

)
= 0. (5.28b)

Let k0, ω0 be the solutions of this system at δ = 0. For small δ, suppose k = k0 + δk̃,
ω = ω0 + δω̃, substitute into (5.28), and linearize. We obtain the following:

12Dk2
0k̃ + 2M2

wk̃ + 3µ
b

a2

k2
0

ω0
= 0, (5.29a)

4M2
wk0k̃ − 8ω0ω̃ − 3µk̃

ia
+ µ b

a2

k3
0

ω0
= 0, (5.29b)

which yields

k̃ =−3µ
b

a2

k2
0

ω0

1
12Dk2

0 + 2M2
w

, (5.30a)

ω̃ = µ

8ω0

b

a2

k2
0

ω0

(
−3

4M2
wk0 + 3iµ/a

12Dk2
0 + 2M2

w

+ k0

)
. (5.30b)

An investigation of the sign of Im ω̃ is now reduced to an analysis of branch point
properties at δ = 0.

The only interesting case is Mw > Mcr
w , when Imω0 = 0, and stability is governed

by the sign of Im ω̃. Note that the denominator of the fraction in parentheses in the
second equality (5.30) is the derivative of the left-hand side of the first equation
(5.12). At Mw = Mcr

w , when two roots of the first equation (5.12) coincide, the
denominator is equal to zero. When Mw >Mcr

w , the denominator for k0 = k∗0 is positive.
Now consider the numerator of the same fraction. At Mw = Mcr

w , it is also zero,
whereas for Mw > Mcr

w and k0 = k∗0 , it is purely imaginary with a positive imaginary
part. As Im k∗0 < 0, the imaginary part of the expression in parentheses is negative.
Consequently, Im ω̃∗ > 0. This means that a thin boundary layer yields the shift of the
frequency ω∗ from the real axis to the top half-plane, i.e. Imω∗ = σ Im ω̃∗ > 0.

Thus we have proved that for Mw > Mcr
w a thin boundary layer converts convective

instability to absolute instability.

5.6. Tensioned plate, boundary layer of finite thickness
In the case of finite δ, investigation of the system (5.9), (5.10) is conducted
numerically. Figure 14 shows the results of calculations, namely, the location of branch
points for parameters (5.11) and 0 6 Mw 6 0.25 for values of δ = 0, 0.5, 1.0, 1.5, 2.0
(note that for the parameters considered, Mcr

w ≈ 0.13). It is seen that the point ω∗ stays
in the upper half-plane for all δ analysed. The topology of level lines in figure 15
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FIGURE 15. (Colour online) Level lines Reω(k)= const.> 0 in the complex k plane for
parameters (5.11), Mw = 0.15, δ = 1.5. All signs are the same as in figure 12.

shows that this is the only branch point where roots from different groups coincide.
No branch point bifurcation was detected in the range of parameters analysed.

Thus, absolute instability generated by the boundary layer for infinitesimal δ is
preserved for finite values of δ from the range of parameters studied.
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kN
kN

FIGURE 16. Ordering spatial waves (a) for Imω→+∞, (b) for ω obeying (6.2).

6. Flutter of finite plates
6.1. Global instability criterion

In this section, we investigate the influence of the boundary layer on flutter of a large
but finite plate. The stability criterion of a finite plate (no matter how long it is) is
generally different from the criterion for an infinite plate, and was derived in a general
form by Kulikovskii (1966a).

In order to formulate this criterion and explain its physical nature, let us first
number the roots of the dispersion relation for infinite plate kj(ω) in the order
of decrease of Im kj(ω) for Imω � 1. Then all roots are split into two groups
in the same manner as in § 5.1: the first consists of such roots that Im kj(ω) > 0
as Imω→ +∞, j = 1, . . . , s; the second consists of roots with Im kj(ω) < 0 as
Imω → +∞, j = s + 1, . . . ,N. From a physical point of view, the first group
represents waves travelling from left to right (downstream), and waves from the second
group travel from right to left (upstream), as shown in figure 16(a). For downstream-
travelling waves, an increase of j corresponds to a decrease of the spatial damping of
the wave. The least damped downstream-travelling wave, therefore, corresponds to the
wavenumber ks. In contrast, for upstream-travelling waves, an increase of j corresponds
to an increase of the spatial damping; the least damped upstream-travelling wave has
the wavenumber ks+1. When Imω decreases, branches kj are analytically continued,
keeping their numbering, from the region of Imω→ +∞. For sufficiently small
Imω values, Im kj(ω) can change signs; in this case, the wave becomes spatially
amplified. Its apparent behaviour becomes deceptive: downstream-travelling waves can
become amplified in the downstream direction. That is why it is important to order
wavenumbers and classify them as downstream-travelling and upstream-travelling as
Imω→ +∞, when there are no doubts about the travelling direction and spatial
behaviour of the waves.

Kulikovskii (1966a) considered eigenmodes of a finite-length system in the form
of a linear combination of waves travelling in an infinite system, which satisfies the
boundary conditions at the boundaries of the finite system. Namely, the substitution of

w(x, t)=
N∑

j=1

Cjei(kj(ω)x−ωt) (6.1)

into boundary conditions at x = ±L/2 (where L is the plate length) yields the
frequency equation. He proved that the asymptotic form of the latter as L→∞ is
as follows:

min
j=1,...,s

Im kj(ω)= max
j=s+1,...,N

Im kj(ω). (6.2)
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In other words, solutions of this equation form a limit set of eigenvalues as L→∞.
This equation does not depend on the boundary conditions assigned at the plate edges
(indeed, it contains only roots of the dispersion relation for an infinite plate). Its
solutions form a curve Ω in the complex ω plane, such that eigenvalues of the finite
plate in the gas flow are concentrated near this curve. If there is a piece of this curve
lying in the region Imω > 0, then the plate of a sufficiently long length is unstable,
because there exists an eigenfrequency located in the neighbourhood of this piece of
Ω . The system is then called globally unstable.

Equation (6.2) and eigenmodes corresponding to its solutions have a clear physical
representation. Imagine that at the leading edge of the plate (x = −L/2), a wave
with the wavenumber ks travelling downstream is generated. When it comes to the
trailing edge (x = L/2), it is reflected and transformed into upstream-travelling waves
corresponding to ks+1 . . . kN . Amongst these waves, the least damped wave corresponds
to ks+1, so that when they approach the leading edge, for a sufficiently long plate
length L, we can neglect all other waves as their amplitudes are negligible in
comparison with the wave with ks+1. The latter is reflected from the leading edge
and transforms into waves travelling downstream with k1 . . . ks. When they approach
the trailing edge, the amplitudes of those with wavenumbers k1 . . . ks−1 for sufficiently
large L are negligible so that the only essential wave corresponds to ks. As the
frequency ω satisfies (6.2), the amplitude of the initially generated wave with ks

remains the same after the double reflection, i.e. we have exactly the same state as two
reflections before. This process of reflections is cyclically continued, representing the
finite plate eigenmode.

Kulikovskii’s criterion (6.2) has been successfully used in various applications:
stability of the Poiseuille flow in a finite-length pipe (Kulikovskii 1966b, 1968),
vibrations of a fluid-conveying pipe (Kulikovskii & Shikina 1988), stability of an
elastic plate in a flow of incompressible fluid (Peake 2004), and other problems (Doaré
& de Langre 2006).

Evidently, if the infinite system is absolutely unstable (i.e. kp(ω)= kq(ω), p ∈ 1 . . . s,
q ∈ s+ 1 . . .N for some ω, Imω > 0), then the finite system is globally unstable, since
(6.2) is satisfied. The inverse statement is generally not correct.

Let us now apply criterion (6.2) to the problem under consideration. An
investigation at δ = 0 (uniform flow) was conducted by Vedeneev (2005). In this
case, there are four roots of (3.6): k1 and k2 form the first group, k3 and k4

the second. If the plate tension is sufficiently small that Mw < Mcr
w , then curve

Ω consists of two parts shown in figure 17(a). The first one, Ω1, is defined by
the equation Im k1(ω) < Im k2(ω) = Im k3(ω) < Im k4(ω) and corresponds to single-
mode flutter of the finite plate. The second part, Ω2, is defined by the equation
Im k1(ω) < Im k2(ω) = Im k4(ω) < Im k3(ω) and corresponds to coupled-mode flutter.
The curve Ω2 ends in the branch point k2(ω

∗) = k4(ω
∗), where points of Ω2 achieve

the maximum of Imω. This branch point also yields an absolute instability of an
infinite plate. If the plate tension is sufficiently large that Mw > Mcr

w , then coupled-
mode flutter is suppressed, Ω2 is not present, and Ω1 (figure 17b) ends in the branch
point k2(ω

∗)= k3(ω
∗) (figures 10c and 10d).

6.2. Coupled-mode flutter

In § 5, we have proved that an infinite plate is always absolutely unstable in the
presence of the boundary layer. Therefore, a finite plate of a sufficiently long length is
also unstable.
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FIGURE 17. Typical shape of the curve Ω for (a) both single-mode and coupled-mode flutter,
(b) single-mode flutter only.

0

FIGURE 18. Shift of ω∗ and resulting shape of the curve Ω for single-mode flutter in uniform
flow (dashed) and in the presence of the boundary layer (continuous).

For Mw < Mcr
w , the branch point ω∗ that yields to instability is formed by the

merging of branches k2 and k4. By definition, this case is referred to as coupled-mode
flutter; hence, we conclude that coupled-mode flutter, if present in uniform flow, is
retained in the presence of the boundary layer, although the growth rate is decreased.

For Mw > Mcr
w , the branch point ω∗ is formed by the merging of branches k2 and

k3, which is referred to as single-mode flutter. In uniform flow Imω∗ < 0 (figure 17b);
consequently, this branch point does not yield instability (in § 5.3, we claimed that
Imω∗ = 0; actually, ω∗ is slightly shifted to the bottom half-plane due to terms that
were neglected when we simplified the dispersion relation). However, as shown in
§§ 5.5 and 5.6, the boundary layer yields shift of ω∗ to the upper half-plane. Thus the
end of Ω1 is shifted into the upper half-plane by the boundary layer (figure 18). Note
that this shift occurs no matter what velocity and temperature profiles the boundary
layer has. In contrast, in § 6.3 below, we will show that the change of Ω1 shape in the
region |ω| � µ2/3, especially around the hump, depends on the boundary layer profiles.

6.3. Single-mode flutter
According to Vedeneev (2005), in uniform flow (δ = 0), the curve Ω in the region
|ω| � µ2/3 is defined by the equation Im k2(ω) = Im k3(ω), where k2 and k3 are
branches of the solution of the dispersion equation for an infinite plate (3.6) that
correspond to waves travelling downstream (k2) and upstream (k3). Now let δ 6= 0. As
µ is a small parameter, we assume ω = ωR + iωI , |ωI| � 1 and obtain the Taylor
expansion

kj(ωR + iωI, µ)= kj(ωR, 0)+ i
ωI

gj
+ µ1(kj)+ o(ωI, µ), (6.3)
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where

1(kj)= 1
2kj(M2

w + 2Dk2
j )

 (M∞kj − ω)2√
k2

j − (M∞kj − ω)2

−1

+δ
(∫ 1

0

T0(η) dη

(u0(η)− cj)
2 − 1

))−1

, (6.4)

cj = ωR/kj is a phase velocity, and gj = dωR/dkj is a group velocity. Denoting

g(ω)= g2 =−g3 = 2Dk3
2 + k2M2

w

ω
, (6.5)

we obtain the equation for curve Ω1

ωI =−µg(ωR)

2
Im(1(k2(ωR))−1(k3(ωR)))

=− µ

2ωR
Im
(
(A+ B)−1

2 + (A+ B)−1
3

)
, (6.6)

where A and B are defined in § 4 for each single wave.
Thus, the growth rate of the finite plate eigenmode is the arithmetic mean of growth

rates of downstream-travelling and upstream-travelling waves.
As well as for an infinite plate (§§ 4.1 and 4.4), we will consider three types of

eigenmodes distinguished by the behaviour of downstream-travelling waves in uniform
flow: growing, neutral, or damped. Consider the first case. If the boundary layer
profile is generalized convex, then the downstream-travelling wave stays growing, but
its growth rate is decreased in comparison with the uniform flow. A damped wave
travelling upstream stays damped, but its damping rate is also decreased in comparison
with the uniform flow. The total growth rate of the eigenmode, equal to the arithmetic
mean of the growth rates, generally speaking, can lead to a change in the growth
rate by the boundary layer both to larger and smaller values. For typical boundary
layer profiles, calculations show that the total growth rate decreases or even becomes
negative (i.e. the eigenmode is damped); see § 6.4 below for details.

If the boundary layer profile has a generalized inflection point such that (u′0/T0)
′
> 0

for 0 < z < zinfl, then there is a range of phase velocities c of the downstream-
travelling wave such that Im B < 0. For such values of c, the growth rate of the
downstream-travelling wave is increased for δ < δ1. Since the damping rate of the
upstream-travelling wave is decreased, we conclude that the total growth rate of the
finite plate eigenmode is increased by the boundary layer. This effect is typical for
decelerating flow profiles, where the amplification of the downstream-travelling wave
can be large (§ 4.2).

Now consider the second type of eigenmodes, which corresponds to neutral
downstream-travelling waves. Eigenmodes that correspond to c ∈ [M∞;M∞ + 1] are
damped as the downstream-travelling wave is neutral and the upstream-travelling wave
is damped. The behaviour of those corresponding to c ∈ [M∞ − 1;M∞] depends on
the boundary layer. Let the boundary layer profile be generalized convex or have a
generalized inflection point in the supersonic part of the layer (i.e. (u′0/T0)

′
< 0 in the

subsonic part of the layer z > zs, where zs is the sonic point, u0(zs) =M∞ − 1). Then
for phase velocities close to M∞−1, the growth rate of the downstream-travelling wave
is increased by the boundary layer, which can be sufficient to exceed the damping rate
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FIGURE 19. Curve Ω1 for profile 1 in figure 5. Vertical dashed line corresponds to the sonic
eigenmode (i.e. phase speed of the wave travelling downstream c = M∞ − 1). Curves 1–4:
δ = 0, 0.5, 1, 2, respectively.

of the upstream-travelling wave. The total action on the eigenmode in this case is the
growth of the finite plate eigenmode.

If the boundary layer profile has a generalized inflection point in the subsonic
part of the layer, which is located far enough from the sonic point zs (i.e. there is
a sufficiently wide segment zs < z < zinfl, where (u′0/T0)

′
> 0), then the growth rate

of the downstream-travelling wave is small and does not exceed the damping rate
of the upstream-travelling wave. The total action is the damping of the finite plate
eigenmode.

For the third type of eigenmodes, both downstream-travelling and upstream-
travelling waves are damped, and finite plate eigenmodes are also damped.

6.4. Examples
Let us summarize the results obtained in the previous section. We will call an
eigenmode supersonic or subsonic if its downstream-travelling wave is supersonic or
subsonic relating to the flow, respectively (i.e. 0 < c <M∞ − 1 or M∞ − 1 < c <M∞,
respectively). Then for a generalized convex profile of the boundary layer, growth
rates of supersonic plate eigenmodes are decreased, while the growth rates of subsonic
eigenmodes are increased in comparison with the uniform flow. For the profile with a
generalized inflection point in the subsonic part of the layer, located far from the sonic
point, the growth rate of supersonic eigenmodes is larger than in the uniform flow for
δ < δ1; supersonic eigenmodes are damped for δ > δ2, and subsonic eigenmodes are
damped for any δ.

For example, consider a generalized convex profile of accelerating flow, which
corresponds to β = 2.0 (profile 1 in figure 5). The calculated curve Ω1 is shown in
figure 19. It is seen that while increasing the boundary layer thickness δ, Imω for
supersonic eigenmodes decreases and becomes negative. At the same time, subsonic
eigenmodes are destabilized by the boundary layer.

Now consider decelerating flow, which corresponds to β = −0.199 (profile 5 in
figure 5). Shown in figure 20 is the calculated curve Ω1. For δ < δ1, the instability
of supersonic modes becomes stronger: Imω for growing eigenmodes increases, while
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FIGURE 20. Curve Ω1 for profile 5 in figure 5. Vertical dashed line corresponds to the sonic
eigenmode (i.e. phase speed of the wave travelling downstream c = M∞ − 1). Curves 1–4:
δ = 0, 0.5, 1, 2, respectively.

damped eigenmodes grow. For δ > δ2 (curve 4 in figure 20), supersonic eigenmodes
are all damped. Subsonic eigenmodes stay damped as the flow speed at generalized
inflection point u0(zinfl)≈ 1.07>M∞ − 1.

7. Conclusions
In this paper, the influence of the boundary layer over an elastic plate on the

stability of infinite-length and finite-length plates has been investigated.
In the case of a generalized convex boundary layer profile, which is typical for

accelerating flows, supersonic plate waves (in an infinite plate) or eigenmodes in
single-mode flutter (in a finite-length plate) are stabilized, and subsonic waves are
destabilized. In the case of the boundary layer profile with a generalized inflection
point located in the subsonic (relative to the flow) part of the layer (typical for
constant and decelerating mean flow), supersonic perturbations are destabilized if
δ < δ1 and stabilized if δ > δ2. Subsonic perturbations are damped.

The relation between the influence of the boundary layer on plate stability and
the stability of the boundary layer over a rigid wall has been studied. An example
has been given of a stable boundary layer which makes the growth rate of the plate
disturbances arbitrarily high.

An absolute instability of an infinite plate and the coupled-mode flutter of a finite-
length plate have been studied. In the case of no pre-existing tension, the plate stays
absolutely unstable (coupled-mode flutter is preserved), but the growth rate decreases
when the boundary layer thickness increases. At a certain δ, a switch of waves
responsible for instability occurs: in a thin boundary layer (as well as in uniform flow),
it is generated by the interaction of upstream-travelling and downstream-travelling
plate waves, while in a thick boundary layer, an upstream-travelling plate wave
interacts with a downstream-travelling boundary layer wave.

In the case of sufficiently large plate tension, when instability of the plate
in uniform flow becomes convective (the coupled-mode flutter of the finite plate
disappears), the boundary layer yields absolute instability, irrespective of the velocity
and temperature profiles of the boundary layer.
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