Graphs, random graphs, and their extremal characteristics

Andrei M. Raigorodskii

Moscow Institute of Physics and Technology Moscow State University Moscow, Russia

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A. Raigorodskii (MIPT, MSU)

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

Image: A mathematical states and a mathem

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge.

イロト イヨト イヨト イ

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called *independence number* and is denoted by $\alpha(G)$.

A D F A A F F A

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called *independence number* and is denoted by $\alpha(G)$. A complete subgraph of a graph is called *clique*.

A D F A A F F A

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called *independence number* and is denoted by $\alpha(G)$. A complete subgraph of a graph is called *clique*. The maximum size of a clique in G is called *clique number* and is denoted by $\omega(G)$.

(日) (四) (日) (日) (日)

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called *independence number* and is denoted by $\alpha(G)$. A complete subgraph of a graph is called *clique*. The maximum size of a clique in G is called *clique number* and is denoted by $\omega(G)$.

The *chromatic number* $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge.

(日) (四) (日) (日) (日)

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called *independence number* and is denoted by $\alpha(G)$. A complete subgraph of a graph is called *clique*. The maximum size of a clique in G is called *clique number* and is denoted by $\omega(G)$.

The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge. In other words, $\chi(G)$ is the minimum number of independent sets covering all the vertices of the graph.

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called *independence number* and is denoted by $\alpha(G)$. A complete subgraph of a graph is called *clique*. The maximum size of a clique in G is called *clique number* and is denoted by $\omega(G)$.

The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge. In other words, $\chi(G)$ is the minimum number of independent sets covering all the vertices of the graph.

Trivially, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge |V|/\alpha(G)$.

By a graph G = (V, E) we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called *independent*, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called *independence number* and is denoted by $\alpha(G)$. A complete subgraph of a graph is called *clique*. The maximum size of a clique in G is called *clique number* and is denoted by $\omega(G)$.

The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge. In other words, $\chi(G)$ is the minimum number of independent sets covering all the vertices of the graph.

Trivially, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge |V|/\alpha(G)$. Which bound is better?

э

A. Raigorodskii (MIPT, MSU)

Image: A image: A

2

Erdős-Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

(日) (四) (日) (日) (日)

Erdős-Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G(n,p))\sim 2\log_d(np)$ and $\chi(G(n,p))\sim n/2\log_d(np)$. In particular, if p=1/2, then w.h.p. $\alpha(G(n,p))\sim 2\log_2 n$ and so the same is true for ω , that is, for almost all graphs the bound $|V|/\alpha$ is much better than the one by ω .

(日)

Erdős–Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G(n,p))\sim 2\log_d(np)$ and $\chi(G(n,p))\sim n/2\log_d(np)$. In particular, if p=1/2, then w.h.p. $\alpha(G(n,p))\sim 2\log_2 n$ and so the same is true for ω , that is, for almost all graphs the bound $|V|/\alpha$ is much better than the one by ω .

A general random subgraph

Let $n \in \mathbb{N}$, $p \in [0, 1]$, $G_n = (V_n, E_n)$ — an arbitrary sequence of graphs. $G_{n,p}$ is obtained from G_n by keeping independently edges of G_n , each with probability p.

Ξ.

Erdős–Rényi random graph

Let $n \in \mathbb{N}$, $p \in [0,1]$. G(n,p) is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G(n,p))\sim 2\log_d(np)$ and $\chi(G(n,p))\sim n/2\log_d(np)$. In particular, if p=1/2, then w.h.p. $\alpha(G(n,p))\sim 2\log_2 n$ and so the same is true for ω , that is, for almost all graphs the bound $|V|/\alpha$ is much better than the one by ω .

A general random subgraph

Let $n \in \mathbb{N}$, $p \in [0, 1]$, $G_n = (V_n, E_n)$ — an arbitrary sequence of graphs. $G_{n,p}$ is obtained from G_n by keeping independently edges of G_n , each with probability p.

What can be said about $\alpha(G_{n,p})$ and $\chi(G_{n,p})$?

2

イロン イ団 とく ヨン イヨン

A special case

Main definition

Let $r, s, n \in \mathbb{N}$, s < r < n, and let G(n, r, s) = (V, E), where

$$V = \{ \mathbf{x} = (x_1, \dots, x_n) : x_i \in \{0, 1\}, x_1 + \dots + x_n = r \},$$
$$E = \{ \{ \mathbf{x}, \mathbf{y} \} : (\mathbf{x}, \mathbf{y}) = s \}.$$

æ

Image: A math a math

A special case

Main definition

Let $r, s, n \in \mathbb{N}$, s < r < n, and let G(n, r, s) = (V, E), where

$$V = \{ \mathbf{x} = (x_1, \dots, x_n) : x_i \in \{0, 1\}, x_1 + \dots + x_n = r \},$$
$$E = \{ \{ \mathbf{x}, \mathbf{y} \} : (\mathbf{x}, \mathbf{y}) = s \}.$$

Equivalent definition

Let $r,s,n \in \mathbb{N}, \, s < r < n.$ Let [n] be an n-element set, and let G(n,r,s) = (V,E), where

$$V = \binom{[n]}{r}, \quad E = \{A, B \in V : |A \cap B| = s\}.$$

• • • • • • • • • • •

A special case

Main definition

Let $r, s, n \in \mathbb{N}$, s < r < n, and let G(n, r, s) = (V, E), where

$$V = \{ \mathbf{x} = (x_1, \dots, x_n) : x_i \in \{0, 1\}, x_1 + \dots + x_n = r \},$$
$$E = \{ \{ \mathbf{x}, \mathbf{y} \} : (\mathbf{x}, \mathbf{y}) = s \}.$$

Equivalent definition

Let $r,s,n \in \mathbb{N},\, s < r < n.$ Let [n] be an n-element set, and let G(n,r,s) = (V,E), where

$$V = \binom{[n]}{r}, \quad E = \{A, B \in V : |A \cap B| = s\}.$$

Again, what can be said about $\alpha(G_p(n,r,s))$ and $\chi(G_p(n,r,s))?$

э

Some motivation

Why studying G(n,r,s)?

2

メロト メロト メヨトメ

• Coding theory ("Johnson's graphs"):

イロト イロト イヨト イ

2

• Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n, r, s))$ stands for the maximum size of a code with one forbidden distance;

• • • • • • • • • •

• Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k, 2k, k))$ is responsible for the existence of an Hadamard matrix; etc.

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k, 2k, k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: G(n, r, s) is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n, r, s))$ provides important bounds in the Nelson–Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.

A D F A A F F A

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k, 2k, k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: G(n, r, s) is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n, r, s))$ provides important bounds in the Nelson–Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.
- G(n, r, 0) is the classical Kneser graph; G(n, 1, 0) is just a complete graph.

A D F A B F A B F A

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n,r,s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4k, 2k, k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: G(n, r, s) is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n, r, s))$ provides important bounds in the Nelson–Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.
- G(n, r, 0) is the classical Kneser graph; G(n, 1, 0) is just a complete graph.
- Constructive bounds for Ramsey numbers.

A D > A B > A B > A

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

• If $r \leq 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.

• • • • • • • • • •

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

- If $r \leq 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.
- If r > 2s + 1, then $\alpha(G(n, r, s)) = \Theta(n^{r-s-1})$.

Image: A math a math

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

- If $r \leq 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.
- If r > 2s + 1, then $\alpha(G(n, r, s)) = \Theta(n^{r-s-1})$.

A simple construction: Fix $1, \ldots, s+1$ and take all the vertices (subsets) containing them. Obviously it's an independent set of size $\binom{n-s-1}{r-s-1} = \Theta(n^{r-s-1})$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

- If $r \leq 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.
- If r > 2s + 1, then $\alpha(G(n, r, s)) = \Theta(n^{r-s-1})$.

A simple construction: Fix $1, \ldots, s+1$ and take all the vertices (subsets) containing them. Obviously it's an independent set of size $\binom{n-s-1}{r-s-1} = \Theta(n^{r-s-1})$.

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$.

• If
$$r \leq 2s + 1$$
, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n)$.

(日) (四) (日) (日) (日)

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \to \infty$.

- If $r \leq 2s + 1$, then $\alpha(G(n, r, s)) = \Theta(n^s)$.
- If r > 2s + 1, then $\alpha(G(n, r, s)) = \Theta(n^{r-s-1})$.

A simple construction: Fix $1, \ldots, s+1$ and take all the vertices (subsets) containing them. Obviously it's an independent set of size $\binom{n-s-1}{r-s-1} = \Theta(n^{r-s-1})$.

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$.

• If
$$r \leq 2s + 1$$
, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n)$.

• If r > 2s + 1, then w.h.p. $\alpha(G_{1/2}(n,r,s)) \sim \alpha(G(n,r,s))$.

Let $r \ge 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Let $r \ge 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon > 0$ and let r = r(n) be a natural number such that $2 \leq r(n) = o(n^{1/3})$. Let $p_c(n,r) = ((r+1)\log n - r\log r)/\binom{n-1}{r-1}$. As $n \to \infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \ge (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \le (1-\varepsilon)p_c(n,r). \end{cases}$$

Image: A matrix and a matrix

Let $r \ge 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon > 0$ and let r = r(n) be a natural number such that $2 \leq r(n) = o(n^{1/3})$. Let $p_c(n,r) = ((r+1)\log n - r\log r)/\binom{n-1}{r-1}$. As $n \to \infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \ge (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \le (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others.

A D F A A F F A

Let $r \ge 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon > 0$ and let r = r(n) be a natural number such that $2 \leq r(n) = o(n^{1/3})$. Let $p_c(n,r) = ((r+1)\log n - r\log r)/\binom{n-1}{r-1}$. As $n \to \infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \ge (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \le (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r \ge 4$, s = 1.

• • • • • • • • • • •

Let $r \ge 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon > 0$ and let r = r(n) be a natural number such that $2 \leq r(n) = o(n^{1/3})$. Let $p_c(n,r) = ((r+1)\log n - r\log r)/\binom{n-1}{r-1}$. As $n \to \infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \ge (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \le (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r \ge 4$, s = 1.

Pyaderkin, A.M., 2017

 $\mathsf{W.h.p.}\ \alpha(G_{1/2}(n,r,s)) = \alpha(G(n,r,s)).$

イロト 不得 トイヨト イヨト

Let $r \ge 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon > 0$ and let r = r(n) be a natural number such that $2 \leq r(n) = o(n^{1/3})$. Let $p_c(n,r) = ((r+1)\log n - r\log r)/\binom{n-1}{r-1}$. As $n \to \infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \ge (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \le (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r \ge 4$, s = 1.

Pyaderkin, A.M., 2017

 $\text{W.h.p. } \alpha(G_{1/2}(n,r,s)) = \alpha(G(n,r,s)).$

Of course $1/2\ {\rm can}$ be replaced by another function. However, the threshold is unknown.

3

(日)

Let $r \ge 2$, s = 0. Then G(n, r, s) is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon > 0$ and let r = r(n) be a natural number such that $2 \leq r(n) = o(n^{1/3})$. Let $p_c(n,r) = ((r+1)\log n - r\log r)/\binom{n-1}{r-1}$. As $n \to \infty$,

$$\mathbb{P}\left(\alpha(G_p(n,r,0)) = \alpha(G(n,r,0)) = \binom{n-1}{r-1}\right) \to \begin{cases} 1 & \text{if } p \ge (1+\varepsilon)p_c(n,r) \\ 0 & \text{if } p \le (1-\varepsilon)p_c(n,r). \end{cases}$$

Successively improved by Das, Tran, Balogh, and others. Let $r \ge 4$, s = 1.

Pyaderkin, A.M., 2017

 $\mathsf{W.h.p.}\ \alpha(G_{1/2}(n,r,s)) = \alpha(G(n,r,s)).$

Of course $1/2\ {\rm can}$ be replaced by another function. However, the threshold is unknown.

イロト イボト イヨト イヨト

2022 Moscow, Russia

э

No other cases of strong stability are known.

A. Raigorodskii (MIPT, MSU)

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$. If $r \leq 2s + 1$, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n).$

• • • • • • • • • • •

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$. If $r \leq 2s + 1$, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n).$

If r = 1, s = 0, then we have already cited the much subtler classical result.

• • • • • • • • • •

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$. If $r \leq 2s + 1$, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n).$

If r = 1, s = 0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}.$ Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np).$

(日) (四) (日) (日) (日)

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$. If $r \leq 2s + 1$, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n).$

If r = 1, s = 0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}.$ Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np).$

There are only two more cases where the Θ notation is replaced by the \sim one.

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$. If $r \leq 2s + 1$, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n).$

If r = 1, s = 0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}.$ Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np).$

There are only two more cases where the Θ notation is replaced by the \sim one.

Theorem

(Pyaderkin, 2016) W.h.p. $\alpha(G_{1/2}(n,3,1)) \sim 2\alpha(G(n,3,1)) \log_2 n$.

8/11

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as $n \to \infty$. If $r \leq 2s + 1$, then w.h.p. $\alpha(G_{1/2}(n, r, s)) = \Theta(\alpha(G(n, r, s)) \log n).$

If r = 1, s = 0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where c>1. Let $d=\frac{1}{1-p}.$ Then w.h.p. $\alpha(G_p(n,1,0))\sim 2\log_d(np).$

There are only two more cases where the Θ notation is replaced by the \sim one.

Theorem

(Pyaderkin, 2016) W.h.p. $\alpha(G_{1/2}(n,3,1)) \sim 2\alpha(G(n,3,1)) \log_2 n.$ (Kiselev, Derevyanko, 2017) W.h.p. $\alpha(G_{1/2}(n,2,1)) \sim \alpha(G(n,2,1)) \log_2 n.$

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs (r > 1, s = 0).

< □ > < 同 >

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs (r > 1, s = 0).

Lovász, 1978: if $r \leq n/2$, then $\chi(G(n, r, 0)) = n - 2r + 2$.

< < >>

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs (r > 1, s = 0).

Lovász, 1978: if $r \leq n/2$, then $\chi(G(n, r, 0)) = n - 2r + 2$.

Very simply the chromatic number of G(n, r, 0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n, r, 0)) < n - 2r + 2$. However

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs (r > 1, s = 0).

Lovász, 1978: if $r \leq n/2$, then $\chi(G(n, r, 0)) = n - 2r + 2$.

Very simply the chromatic number of G(n,r,0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n,r,0)) < n - 2r + 2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi(G_p(n, r, 0)) \sim n - 2r + 2$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs (r > 1, s = 0).

Lovász, 1978: if $r \leq n/2$, then $\chi(G(n, r, 0)) = n - 2r + 2$.

Very simply the chromatic number of G(n,r,0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n,r,0)) < n - 2r + 2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi(G_p(n, r, 0)) \sim n - 2r + 2$.

For example, if g(n) is any growing function and r is arbitrary in the range between 2 and $\frac{n}{2} - g(n)$, then for any fixed p, $\chi(G_p(n,r,0)) \sim n - 2r + 2$.

(日) (四) (日) (日) (日)

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs (r > 1, s = 0).

Lovász, 1978: if $r \leq n/2$, then $\chi(G(n, r, 0)) = n - 2r + 2$.

Very simply the chromatic number of G(n,r,0) is not so stable as the independence number: w.h.p. even $\chi(G_{1/2}(n,r,0)) < n-2r+2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi(G_p(n, r, 0)) \sim n - 2r + 2$.

For example, if g(n) is any growing function and r is arbitrary in the range between 2 and $\frac{n}{2} - g(n)$, then for any fixed p, $\chi(G_p(n,r,0)) \sim n - 2r + 2$.

Many improvements by Kupavskii and by Alishahi and Hajiabolhassan.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

Theorem (Kiselev, Kupavskii, 2020)

If $r \ge 3$, then w.h.p.

$$n - c_1 \sqrt[2r-2]{\log_2 n} \leqslant \chi(G_{1/2}(n, r, 0)) \leqslant n - c_2 \sqrt[2r-2]{\log_2 n}.$$

Theorem (Kiselev, Kupavskii, 2020)

If $r \ge 3$, then w.h.p.

$$n - c_1 \sqrt[2r-2]{\log_2 n} \leq \chi(G_{1/2}(n, r, 0)) \leq n - c_2 \sqrt[2r-2]{\log_2 n}.$$

If r = 2, then w.h.p.

 $n - c_1 \sqrt[2]{\log_2 n \cdot \log_2 \log_2 n} \leqslant \chi(G_{1/2}(n, r, 0)) \leqslant n - c_2 \sqrt[2r-2]{\log_2 n \cdot \log_2 \log_2 n}.$

• • • • • • • • • • •

A general result

A. Raigorodskii (MIPT, MSU)

= 990

イロト イヨト イヨト イヨト

Theorem (A.M., 2017)

Let $G_n = (V_n, E_n)$, $n \in \mathbb{N}$, be a sequence of graphs. Let $N_n = |V_n|$, $\alpha_n = \alpha(G_n)$. Let γ_n be the maximum number of vertices of G_n that are non-adjacent to both vertices of a given edge. Assume that the quantities N_n, α_n, γ_n are monotone increasing to infinity and there exists a function β_n such that

• $\beta_n > \gamma_n \text{ and } \beta_n = o(\alpha_n);$ • $\log_2 N_n = o\left(\frac{\alpha_n}{\beta_n}\right);$ • $\log_2 N_n = o(\beta_n - \gamma_n).$ Then w.h.p. $\alpha(G_n, 1/2) \sim \alpha(G_n).$

(日) (四) (日) (日) (日)