Graphs, random graphs, and their extremal characteristics

Andrei M. Raigorodskii
Moscow Institute of Physics and Technology
Moscow State University
Moscow, Russia

Main objects

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called independence number and is denoted by $\alpha(G)$.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called independence number and is denoted by $\alpha(G)$. A complete subgraph of a graph is called clique.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called independence number and is denoted by $\alpha(G)$. A complete subgraph of a graph is called clique. The maximum size of a clique in G is called clique number and is denoted by $\omega(G)$.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called independence number and is denoted by $\alpha(G)$. A complete subgraph of a graph is called clique. The maximum size of a clique in G is called clique number and is denoted by $\omega(G)$.

The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called independence number and is denoted by $\alpha(G)$. A complete subgraph of a graph is called clique. The maximum size of a clique in G is called clique number and is denoted by $\omega(G)$.

The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge. In other words, $\chi(G)$ is the minimum number of independent sets covering all the vertices of the graph.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called independence number and is denoted by $\alpha(G)$. A complete subgraph of a graph is called clique. The maximum size of a clique in G is called clique number and is denoted by $\omega(G)$.

The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge. In other words, $\chi(G)$ is the minimum number of independent sets covering all the vertices of the graph.

Trivially, $\chi(G) \geqslant \omega(G)$ and $\chi(G) \geqslant|V| / \alpha(G)$.

Main objects

By a graph $G=(V, E)$ we mean a simple graph, i.e., a graph without loops, multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are joined by an edge. The maximum size of an independent set in a graph G is called independence number and is denoted by $\alpha(G)$. A complete subgraph of a graph is called clique. The maximum size of a clique in G is called clique number and is denoted by $\omega(G)$.

The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color all the vertices of G so that no two vertices of the same color are joined by an edge. In other words, $\chi(G)$ is the minimum number of independent sets covering all the vertices of the graph.

Trivially, $\chi(G) \geqslant \omega(G)$ and $\chi(G) \geqslant|V| / \alpha(G)$. Which bound is better?

A way to answer and a natural extension

A way to answer and a natural extension

Erdős-Rényi random graph

Let $n \in \mathbb{N}, p \in[0,1] . G(n, p)$ is obtained by drawing independently edges on n vertices, each with probability p.

A way to answer and a natural extension

Erdős-Rényi random graph

Let $n \in \mathbb{N}, p \in[0,1] . G(n, p)$ is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where $c>1$. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G(n, p)) \sim 2 \log _{d}(n p)$ and $\chi(G(n, p)) \sim n / 2 \log _{d}(n p)$. In particular, if $p=1 / 2$, then w.h.p. $\alpha(G(n, p)) \sim 2 \log _{2} n$ and so the same is true for ω, that is, for almost all graphs the bound $|V| / \alpha$ is much better than the one by ω.

A way to answer and a natural extension

Erdős-Rényi random graph

Let $n \in \mathbb{N}, p \in[0,1] . G(n, p)$ is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where $c>1$. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G(n, p)) \sim 2 \log _{d}(n p)$ and $\chi(G(n, p)) \sim n / 2 \log _{d}(n p)$. In particular, if $p=1 / 2$, then w.h.p. $\alpha(G(n, p)) \sim 2 \log _{2} n$ and so the same is true for ω, that is, for almost all graphs the bound $|V| / \alpha$ is much better than the one by ω.

A general random subgraph

Let $n \in \mathbb{N}, p \in[0,1], G_{n}=\left(V_{n}, E_{n}\right)$ - an arbitrary sequence of graphs. $G_{n, p}$ is obtained from G_{n} by keeping independently edges of G_{n}, each with probability p.

A way to answer and a natural extension

Erdős-Rényi random graph

Let $n \in \mathbb{N}, p \in[0,1] . G(n, p)$ is obtained by drawing independently edges on n vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where $c>1$. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha(G(n, p)) \sim 2 \log _{d}(n p)$ and $\chi(G(n, p)) \sim n / 2 \log _{d}(n p)$. In particular, if $p=1 / 2$, then w.h.p. $\alpha(G(n, p)) \sim 2 \log _{2} n$ and so the same is true for ω, that is, for almost all graphs the bound $|V| / \alpha$ is much better than the one by ω.

A general random subgraph

Let $n \in \mathbb{N}, p \in[0,1], G_{n}=\left(V_{n}, E_{n}\right)$ - an arbitrary sequence of graphs. $G_{n, p}$ is obtained from G_{n} by keeping independently edges of G_{n}, each with probability p.

What can be said about $\alpha\left(G_{n, p}\right)$ and $\chi\left(G_{n, p}\right)$?

A special case

Main definition

Let $r, s, n \in \mathbb{N}, s<r<n$, and let $G(n, r, s)=(V, E)$, where

$$
\begin{gathered}
V=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{0,1\}, x_{1}+\ldots+x_{n}=r\right\}, \\
E=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\} .
\end{gathered}
$$

A special case

Main definition

Let $r, s, n \in \mathbb{N}, s<r<n$, and let $G(n, r, s)=(V, E)$, where

$$
\begin{gathered}
V=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{0,1\}, x_{1}+\ldots+x_{n}=r\right\}, \\
E=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\} .
\end{gathered}
$$

Equivalent definition

Let $r, s, n \in \mathbb{N}, s<r<n$. Let $[n]$ be an n-element set, and let $G(n, r, s)=(V, E)$, where

$$
V=\binom{[n]}{r}, \quad E=\{A, B \in V:|A \cap B|=s\} .
$$

A special case

Main definition

Let $r, s, n \in \mathbb{N}, s<r<n$, and let $G(n, r, s)=(V, E)$, where

$$
\begin{gathered}
V=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{0,1\}, x_{1}+\ldots+x_{n}=r\right\} \\
E=\{\{\mathbf{x}, \mathbf{y}\}:(\mathbf{x}, \mathbf{y})=s\}
\end{gathered}
$$

Equivalent definition

Let $r, s, n \in \mathbb{N}, s<r<n$. Let $[n]$ be an n-element set, and let $G(n, r, s)=(V, E)$, where

$$
V=\binom{[n]}{r}, \quad E=\{A, B \in V:|A \cap B|=s\}
$$

Again, what can be said about $\alpha\left(G_{p}(n, r, s)\right)$ and $\chi\left(G_{p}(n, r, s)\right)$?

Some motivation

Why studying $G(n, r, s)$?

Some motivation

Why studying $G(n, r, s)$?

- Coding theory ("Johnson's graphs"):

Some motivation

Why studying $G(n, r, s)$?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n, r, s))$ stands for the maximum size of a code with one forbidden distance;

Some motivation

Why studying $G(n, r, s)$?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n, r, s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4 k, 2 k, k))$ is responsible for the existence of an Hadamard matrix; etc.

Some motivation

Why studying $G(n, r, s)$?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n, r, s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4 k, 2 k, k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: $G(n, r, s)$ is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n, r, s))$ provides important bounds in the Nelson-Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.

Some motivation

Why studying $G(n, r, s)$?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n, r, s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4 k, 2 k, k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: $G(n, r, s)$ is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n, r, s))$ provides important bounds in the Nelson-Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.
- $G(n, r, 0)$ is the classical Kneser graph; $G(n, 1,0)$ is just a complete graph.

Some motivation

Why studying $G(n, r, s)$?

- Coding theory ("Johnson's graphs"): the independence number $\alpha(G(n, r, s))$ stands for the maximum size of a code with one forbidden distance; the clique number $\omega(G(4 k, 2 k, k))$ is responsible for the existence of an Hadamard matrix; etc.
- Combinatorial geometry: $G(n, r, s)$ is a "distance" graph, i.e., its edges are of the same length $\sqrt{2(r-s)}$. The chromatic number $\chi(G(n, r, s))$ provides important bounds in the Nelson-Hadwiger problems of space coloring as well as in the Borsuk problem of partitioning sets in spaces into parts of smaller diameter.
- $G(n, r, 0)$ is the classical Kneser graph; $G(n, 1,0)$ is just a complete graph.
- Constructive bounds for Ramsey numbers.

Random subgraphs of $G(n, r, s)$: independence numbers

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \rightarrow \infty$.

- If $r \leqslant 2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{s}\right)$.

Random subgraphs of $G(n, r, s)$: independence numbers

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \rightarrow \infty$.

- If $r \leqslant 2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{s}\right)$.
- If $r>2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{r-s-1}\right)$.

Random subgraphs of $G(n, r, s)$: independence numbers

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \rightarrow \infty$.

- If $r \leqslant 2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{s}\right)$.
- If $r>2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{r-s-1}\right)$.

A simple construction: Fix $1, \ldots, s+1$ and take all the vertices (subsets) containing them. Obviously it's an independent set of size $\binom{n-s-1}{r-s-1}=\Theta\left(n^{r-s-1}\right)$.

Random subgraphs of $G(n, r, s)$: independence numbers

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \rightarrow \infty$.

- If $r \leqslant 2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{s}\right)$.
- If $r>2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{r-s-1}\right)$.

A simple construction: Fix $1, \ldots, s+1$ and take all the vertices (subsets) containing them. Obviously it's an independent set of size $\binom{n-s-1}{r-s-1}=\Theta\left(n^{r-s-1}\right)$.

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r, s be fixed as $n \rightarrow \infty$.

- If $r \leqslant 2 s+1$, then w.h.p. $\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.

Random subgraphs of $G(n, r, s)$: independence numbers

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as $n \rightarrow \infty$.

- If $r \leqslant 2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{s}\right)$.
- If $r>2 s+1$, then $\alpha(G(n, r, s))=\Theta\left(n^{r-s-1}\right)$.

A simple construction: Fix $1, \ldots, s+1$ and take all the vertices (subsets) containing them. Obviously it's an independent set of size $\binom{n-s-1}{r-s-1}=\Theta\left(n^{r-s-1}\right)$.

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r, s be fixed as $n \rightarrow \infty$.

- If $r \leqslant 2 s+1$, then w.h.p. $\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.
- If $r>2 s+1$, then w.h.p. $\alpha\left(G_{1 / 2}(n, r, s)\right) \sim \alpha(G(n, r, s))$.

Random subgraphs of $G(n, r, s)$: independence numbers for $r>2 s+1$

Let $r \geqslant 2, s=0$. Then $G(n, r, s)$ is Kneser's graph.

Random subgraphs of $G(n, r, s)$: independence numbers for $r>2 s+1$

Let $r \geqslant 2, s=0$. Then $G(n, r, s)$ is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r(n)=o\left(n^{1 / 3}\right)$. Let $p_{c}(n, r)=((r+1) \log n-r \log r) /\binom{n-1}{r-1}$. As $n \rightarrow \infty$,

$$
\mathbb{P}\left(\alpha\left(G_{p}(n, r, 0)\right)=\alpha(G(n, r, 0))=\binom{n-1}{r-1}\right) \rightarrow \begin{cases}1 & \text { if } p \geqslant(1+\varepsilon) p_{c}(n, r) \\ 0 & \text { if } p \leqslant(1-\varepsilon) p_{c}(n, r) .\end{cases}
$$

Random subgraphs of $G(n, r, s)$: independence numbers for $r>2 s+1$

Let $r \geqslant 2, s=0$. Then $G(n, r, s)$ is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r(n)=o\left(n^{1 / 3}\right)$. Let $p_{c}(n, r)=((r+1) \log n-r \log r) /\binom{n-1}{r-1}$. As $n \rightarrow \infty$,

$$
\mathbb{P}\left(\alpha\left(G_{p}(n, r, 0)\right)=\alpha(G(n, r, 0))=\binom{n-1}{r-1}\right) \rightarrow \begin{cases}1 & \text { if } p \geqslant(1+\varepsilon) p_{c}(n, r) \\ 0 & \text { if } p \leqslant(1-\varepsilon) p_{c}(n, r) .\end{cases}
$$

Successively improved by Das, Tran, Balogh, and others.

Random subgraphs of $G(n, r, s)$: independence numbers for $r>2 s+1$

Let $r \geqslant 2, s=0$. Then $G(n, r, s)$ is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r(n)=o\left(n^{1 / 3}\right)$. Let $p_{c}(n, r)=((r+1) \log n-r \log r) /\binom{n-1}{r-1}$. As $n \rightarrow \infty$,

$$
\mathbb{P}\left(\alpha\left(G_{p}(n, r, 0)\right)=\alpha(G(n, r, 0))=\binom{n-1}{r-1}\right) \rightarrow \begin{cases}1 & \text { if } p \geqslant(1+\varepsilon) p_{c}(n, r) \\ 0 & \text { if } p \leqslant(1-\varepsilon) p_{c}(n, r) .\end{cases}
$$

Successively improved by Das, Tran, Balogh, and others.
Let $r \geqslant 4, s=1$.

Random subgraphs of $G(n, r, s)$: independence numbers for $r>2 s+1$

Let $r \geqslant 2, s=0$. Then $G(n, r, s)$ is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r(n)=o\left(n^{1 / 3}\right)$. Let $p_{c}(n, r)=((r+1) \log n-r \log r) /\binom{n-1}{r-1}$. As $n \rightarrow \infty$,

$$
\mathbb{P}\left(\alpha\left(G_{p}(n, r, 0)\right)=\alpha(G(n, r, 0))=\binom{n-1}{r-1}\right) \rightarrow \begin{cases}1 & \text { if } p \geqslant(1+\varepsilon) p_{c}(n, r) \\ 0 & \text { if } p \leqslant(1-\varepsilon) p_{c}(n, r) .\end{cases}
$$

Successively improved by Das, Tran, Balogh, and others.
Let $r \geqslant 4, s=1$.

Pyaderkin, A.M., 2017

W.h.p. $\alpha\left(G_{1 / 2}(n, r, s)\right)=\alpha(G(n, r, s))$.

Random subgraphs of $G(n, r, s)$: independence numbers for $r>2 s+1$

Let $r \geqslant 2, s=0$. Then $G(n, r, s)$ is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r(n)=o\left(n^{1 / 3}\right)$. Let $p_{c}(n, r)=((r+1) \log n-r \log r) /\binom{n-1}{r-1}$. As $n \rightarrow \infty$,

$$
\mathbb{P}\left(\alpha\left(G_{p}(n, r, 0)\right)=\alpha(G(n, r, 0))=\binom{n-1}{r-1}\right) \rightarrow \begin{cases}1 & \text { if } p \geqslant(1+\varepsilon) p_{c}(n, r) \\ 0 & \text { if } p \leqslant(1-\varepsilon) p_{c}(n, r)\end{cases}
$$

Successively improved by Das, Tran, Balogh, and others.
Let $r \geqslant 4, s=1$.

Pyaderkin, A.M., 2017

W.h.p. $\alpha\left(G_{1 / 2}(n, r, s)\right)=\alpha(G(n, r, s))$.

Of course $1 / 2$ can be replaced by another function. However, the threshold is unknown.

Random subgraphs of $G(n, r, s)$: independence numbers for $r>2 s+1$

Let $r \geqslant 2, s=0$. Then $G(n, r, s)$ is Kneser's graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number $\varepsilon>0$ and let $r=r(n)$ be a natural number such that $2 \leqslant r(n)=o\left(n^{1 / 3}\right)$. Let $p_{c}(n, r)=((r+1) \log n-r \log r) /\binom{n-1}{r-1}$. As $n \rightarrow \infty$,

$$
\mathbb{P}\left(\alpha\left(G_{p}(n, r, 0)\right)=\alpha(G(n, r, 0))=\binom{n-1}{r-1}\right) \rightarrow \begin{cases}1 & \text { if } p \geqslant(1+\varepsilon) p_{c}(n, r) \\ 0 & \text { if } p \leqslant(1-\varepsilon) p_{c}(n, r)\end{cases}
$$

Successively improved by Das, Tran, Balogh, and others.
Let $r \geqslant 4, s=1$.

Pyaderkin, A.M., 2017

W.h.p. $\alpha\left(G_{1 / 2}(n, r, s)\right)=\alpha(G(n, r, s))$.

Of course $1 / 2$ can be replaced by another function. However, the threshold is unknown.
No other cases of strong stability are known.

Random subgraphs of $G(n, r, s)$: independence numbers for $r \leqslant 2 s+1$

Remind that
Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)
Let r, s be fixed as $n \rightarrow \infty$. If $r \leqslant 2 s+1$, then w.h.p.
$\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.

Random subgraphs of $G(n, r, s)$: independence numbers for $r \leqslant 2 s+1$

Remind that
Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)
Let r, s be fixed as $n \rightarrow \infty$. If $r \leqslant 2 s+1$, then w.h.p.
$\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.
If $r=1, s=0$, then we have already cited the much subtler classical result.

Random subgraphs of $G(n, r, s)$: independence numbers for $r \leqslant 2 s+1$

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r, s be fixed as $n \rightarrow \infty$. If $r \leqslant 2 s+1$, then w.h.p.
$\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.
If $r=1, s=0$, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where $c>1$. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha\left(G_{p}(n, 1,0)\right) \sim 2 \log _{d}(n p)$.

Random subgraphs of $G(n, r, s)$: independence numbers for $r \leqslant 2 s+1$

Remind that
Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)
Let r, s be fixed as $n \rightarrow \infty$. If $r \leqslant 2 s+1$, then w.h.p.
$\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.
If $r=1, s=0$, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where $c>1$. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha\left(G_{p}(n, 1,0)\right) \sim 2 \log _{d}(n p)$.

There are only two more cases where the Θ notation is replaced by the \sim one.

Random subgraphs of $G(n, r, s)$: independence numbers for $r \leqslant 2 s+1$

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r, s be fixed as $n \rightarrow \infty$. If $r \leqslant 2 s+1$, then w.h.p.
$\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.
If $r=1, s=0$, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where $c>1$. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha\left(G_{p}(n, 1,0)\right) \sim 2 \log _{d}(n p)$.

There are only two more cases where the Θ notation is replaced by the \sim one.

Theorem

(Pyaderkin, 2016) W.h.p. $\alpha\left(G_{1 / 2}(n, 3,1)\right) \sim 2 \alpha(G(n, 3,1)) \log _{2} n$.

Random subgraphs of $G(n, r, s)$: independence numbers for $r \leqslant 2 s+1$

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013-2016)

Let r, s be fixed as $n \rightarrow \infty$. If $r \leqslant 2 s+1$, then w.h.p.
$\alpha\left(G_{1 / 2}(n, r, s)\right)=\Theta(\alpha(G(n, r, s)) \log n)$.
If $r=1, s=0$, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a value $\frac{c}{n}$, where $c>1$. Let $d=\frac{1}{1-p}$. Then w.h.p. $\alpha\left(G_{p}(n, 1,0)\right) \sim 2 \log _{d}(n p)$.

There are only two more cases where the Θ notation is replaced by the \sim one.

Theorem

(Pyaderkin, 2016) W.h.p. $\alpha\left(G_{1 / 2}(n, 3,1)\right) \sim 2 \alpha(G(n, 3,1)) \log _{2} n$. (Kiselev, Derevyanko, 2017) W.h.p. $\alpha\left(G_{1 / 2}(n, 2,1)\right) \sim \alpha(G(n, 2,1)) \log _{2} n$.

Random subgraphs of $G(n, r, s)$: chromatic numbers

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs $(r>1, s=0)$.

Random subgraphs of $G(n, r, s)$: chromatic numbers

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs ($r>1, s=0$).

Lovász, 1978: if $r \leqslant n / 2$, then $\chi(G(n, r, 0))=n-2 r+2$.

Random subgraphs of $G(n, r, s)$: chromatic numbers

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs ($r>1, s=0$).

Lovász, 1978: if $r \leqslant n / 2$, then $\chi(G(n, r, 0))=n-2 r+2$.

Very simply the chromatic number of $G(n, r, 0)$ is not so stable as the independence number: w.h.p. even $\chi\left(G_{1 / 2}(n, r, 0)\right)<n-2 r+2$. However

Random subgraphs of $G(n, r, s)$: chromatic numbers

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs ($r>1, s=0$).

Lovász, 1978: if $r \leqslant n / 2$, then $\chi(G(n, r, 0))=n-2 r+2$.

Very simply the chromatic number of $G(n, r, 0)$ is not so stable as the independence number: w.h.p. even $\chi\left(G_{1 / 2}(n, r, 0)\right)<n-2 r+2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi\left(G_{p}(n, r, 0)\right) \sim n-2 r+2$.

Random subgraphs of $G(n, r, s)$: chromatic numbers

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs ($r>1, s=0$).

Lovász, 1978: if $r \leqslant n / 2$, then $\chi(G(n, r, 0))=n-2 r+2$.

Very simply the chromatic number of $G(n, r, 0)$ is not so stable as the independence number: w.h.p. even $\chi\left(G_{1 / 2}(n, r, 0)\right)<n-2 r+2$. However

Theorem (Kupavski, 2016)

For many different n, r, p, w.h.p. $\chi\left(G_{p}(n, r, 0)\right) \sim n-2 r+2$.

For example, if $g(n)$ is any growing function and r is arbitrary in the range between 2 and $\frac{n}{2}-g(n)$, then for any fixed $p, \chi\left(G_{p}(n, r, 0)\right) \sim n-2 r+2$.

Random subgraphs of $G(n, r, s)$: chromatic numbers

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser's graphs ($r>1, s=0$).

Lovász, 1978: if $r \leqslant n / 2$, then $\chi(G(n, r, 0))=n-2 r+2$.

Very simply the chromatic number of $G(n, r, 0)$ is not so stable as the independence number: w.h.p. even $\chi\left(G_{1 / 2}(n, r, 0)\right)<n-2 r+2$. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. $\chi\left(G_{p}(n, r, 0)\right) \sim n-2 r+2$.

For example, if $g(n)$ is any growing function and r is arbitrary in the range between 2 and $\frac{n}{2}-g(n)$, then for any fixed $p, \chi\left(G_{p}(n, r, 0)\right) \sim n-2 r+2$.

Many improvements by Kupavskii and by Alishahi and Hajiabolhassan.

Random subgraphs of $G(n, r, s)$: chromatic numbers

Random subgraphs of $G(n, r, s)$: chromatic numbers

Theorem (Kiselev, Kupavskii, 2020)

If $r \geqslant 3$, then w.h.p.

$$
n-c_{1} \sqrt[2 r-2]{\log _{2} n} \leqslant \chi\left(G_{1 / 2}(n, r, 0)\right) \leqslant n-c_{2} \sqrt[2 r-2]{\log _{2} n}
$$

Random subgraphs of $G(n, r, s)$: chromatic numbers

Theorem (Kiselev, Kupavskii, 2020)

If $r \geqslant 3$, then w.h.p.

$$
n-c_{1} \sqrt[2 r-2]{\log _{2} n} \leqslant \chi\left(G_{1 / 2}(n, r, 0)\right) \leqslant n-c_{2} \sqrt[2 r-2]{\log _{2} n}
$$

If $r=2$, then w.h.p.

$$
n-c_{1} \sqrt[2]{\log _{2} n \cdot \log _{2} \log _{2} n} \leqslant \chi\left(G_{1 / 2}(n, r, 0)\right) \leqslant n-c_{2} \sqrt[2 r-2]{\log _{2} n \cdot \log _{2} \log _{2} n}
$$

A general result

A general result

Theorem (A.M., 2017)

Let $G_{n}=\left(V_{n}, E_{n}\right), n \in \mathbb{N}$, be a sequence of graphs. Let $N_{n}=\left|V_{n}\right|, \alpha_{n}=\alpha\left(G_{n}\right)$. Let γ_{n} be the maximum number of vertices of G_{n} that are non-adjacent to both vertices of a given edge. Assume that the quantities $N_{n}, \alpha_{n}, \gamma_{n}$ are monotone increasing to infinity and there exists a function β_{n} such that
(1) $\beta_{n}>\gamma_{n}$ and $\beta_{n}=o\left(\alpha_{n}\right)$;
(2) $\log _{2} N_{n}=o\left(\frac{\alpha_{n}}{\beta_{n}}\right)$;
(3) $\log _{2} N_{n}=o\left(\beta_{n}-\gamma_{n}\right)$.

Then w.h.p. $\alpha\left(G_{n}, 1 / 2\right) \sim \alpha\left(G_{n}\right)$.

