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Main objects

By a graph G = (V,E) we mean a simple graph, i.e., a graph without loops,
multiple edges and orientation.

A set of vertices of a graph is called independent, if no two of its vertices are
joined by an edge. The maximum size of an independent set in a graph G is called
independence number and is denoted by α(G). A complete subgraph of a graph is
called clique. The maximum size of a clique in G is called clique number and is
denoted by ω(G).

The chromatic number χ(G) of a graph G is the minimum number of colors
needed to color all the vertices of G so that no two vertices of the same color are
joined by an edge. In other words, χ(G) is the minimum number of independent
sets covering all the vertices of the graph.

Trivially, χ(G) > ω(G) and χ(G) > |V |/α(G). Which bound is better?
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A way to answer and a natural extension

Erdős–Rényi random graph

Let n ∈ N, p ∈ [0, 1]. G(n, p) is obtained by drawing independently edges on n
vertices, each with probability p.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a
value c

n , where c > 1. Let d = 1
1−p . Then w.h.p. α(G(n, p)) ∼ 2 logd(np) and

χ(G(n, p)) ∼ n/2 logd(np). In particular, if p = 1/2, then w.h.p.
α(G(n, p)) ∼ 2 log2 n and so the same is true for ω, that is, for almost all graphs
the bound |V |/α is much better than the one by ω.

A general random subgraph

Let n ∈ N, p ∈ [0, 1], Gn = (Vn, En) — an arbitrary sequence of graphs. Gn,p is
obtained from Gn by keeping independently edges of Gn, each with probability p.

What can be said about α(Gn,p) and χ(Gn,p)?
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A special case

Main definition

Let r, s, n ∈ N, s < r < n, and let G(n, r, s) = (V,E), where

V = {x = (x1, . . . , xn) : xi ∈ {0, 1}, x1 + . . .+ xn = r},

E = {{x,y} : (x,y) = s}.

Equivalent definition

Let r, s, n ∈ N, s < r < n. Let [n] be an n-element set, and let
G(n, r, s) = (V,E), where

V =

(
[n]

r

)
, E = {A,B ∈ V : |A ∩B| = s}.

Again, what can be said about α(Gp(n, r, s)) and χ(Gp(n, r, s))?
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Some motivation

Why studying G(n, r, s)?

Coding theory (“Johnson’s graphs”): the independence number α(G(n, r, s))
stands for the maximum size of a code with one forbidden distance; the
clique number ω(G(4k, 2k, k)) is responsible for the existence of an
Hadamard matrix; etc.

Combinatorial geometry: G(n, r, s) is a “distance” graph, i.e., its edges
are of the same length

√
2(r − s). The chromatic number χ(G(n, r, s))

provides important bounds in the Nelson–Hadwiger problems of space
coloring as well as in the Borsuk problem of partitioning sets in spaces into
parts of smaller diameter.

G(n, r, 0) is the classical Kneser graph; G(n, 1, 0) is just a complete graph.

Constructive bounds for Ramsey numbers.
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Random subgraphs of G(n, r, s): independence
numbers

Theorem (Frankl, Füredi, 1985)

Let r, s be fixed as n→∞.

If r 6 2s+ 1, then α(G(n, r, s)) = Θ (ns).

If r > 2s+ 1, then α(G(n, r, s)) = Θ
(
nr−s−1

)
.

A simple construction: Fix 1, . . . , s+ 1 and take all the vertices (subsets)
containing them. Obviously it’s an independent set of size

(
n−s−1
r−s−1

)
= Θ

(
nr−s−1

)
.

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as n→∞.

If r 6 2s+ 1, then w.h.p. α(G1/2(n, r, s)) = Θ (α(G(n, r, s)) log n).

If r > 2s+ 1, then w.h.p. α(G1/2(n, r, s)) ∼ α(G(n, r, s)).
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Random subgraphs of G(n, r, s): independence
numbers for r > 2s+ 1

Let r > 2, s = 0. Then G(n, r, s) is Kneser’s graph.

Bollobás, Narayanan, A.M., 2016

Fix a real number ε > 0 and let r = r(n) be a natural number such that
2 6 r(n) = o(n1/3). Let pc(n, r) = ((r + 1) log n− r log r)/

(
n−1
r−1

)
. As n→∞,

P
(
α(Gp(n, r, 0)) = α(G(n, r, 0)) =

(
n− 1

r − 1

))
→

{
1 if p > (1 + ε)pc(n, r)

0 if p 6 (1− ε)pc(n, r).

Successively improved by Das, Tran, Balogh, and others.
Let r > 4, s = 1.

Pyaderkin, A.M., 2017

W.h.p. α(G1/2(n, r, s)) = α(G(n, r, s)).

Of course 1/2 can be replaced by another function. However, the threshold is
unknown.
No other cases of strong stability are known.
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Random subgraphs of G(n, r, s): independence
numbers for r 6 2s+ 1

Remind that

Theorem (Bogoliubskiy, Gusev, Pyaderkin, A.M., 2013–2016)

Let r, s be fixed as n→∞. If r 6 2s+ 1, then w.h.p.
α(G1/2(n, r, s)) = Θ (α(G(n, r, s)) log n).

If r = 1, s = 0, then we have already cited the much subtler classical result.

Theorem

Let p be a constant or a function tending to zero and bounded from below by a
value c

n , where c > 1. Let d = 1
1−p . Then w.h.p. α(Gp(n, 1, 0)) ∼ 2 logd(np).

There are only two more cases where the Θ notation is replaced by the ∼ one.

Theorem

(Pyaderkin, 2016) W.h.p. α(G1/2(n, 3, 1)) ∼ 2α(G(n, 3, 1)) log2 n.
(Kiselev, Derevyanko, 2017) W.h.p. α(G1/2(n, 2, 1)) ∼ α(G(n, 2, 1)) log2 n.
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Random subgraphs of G(n, r, s): chromatic numbers

Let us skip rather cumbersome cases of arbitrary r, s and concentrate on Kneser’s
graphs (r > 1, s = 0).

Lovász, 1978: if r 6 n/2, then χ(G(n, r, 0)) = n− 2r + 2.

Very simply the chromatic number of G(n, r, 0) is not so stable as the
independence number: w.h.p. even χ(G1/2(n, r, 0)) < n− 2r + 2. However

Theorem (Kupavskii, 2016)

For many different n, r, p, w.h.p. χ(Gp(n, r, 0)) ∼ n− 2r + 2.

For example, if g(n) is any growing function and r is arbitrary in the range
between 2 and n

2 − g(n), then for any fixed p, χ(Gp(n, r, 0)) ∼ n− 2r + 2.

Many improvements by Kupavskii and by Alishahi and Hajiabolhassan.
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Random subgraphs of G(n, r, s): chromatic numbers

Theorem (Kiselev, Kupavskii, 2020)

If r > 3, then w.h.p.

n− c1 2r−2
√

log2 n 6 χ(G1/2(n, r, 0)) 6 n− c2 2r−2
√

log2 n.

If r = 2, then w.h.p.

n− c1 2
√

log2 n · log2 log2 n 6 χ(G1/2(n, r, 0)) 6 n− c2 2r−2
√

log2 n · log2 log2 n.
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A general result

Theorem (A.M., 2017)

Let Gn = (Vn, En), n ∈ N, be a sequence of graphs. Let Nn = |Vn|, αn = α(Gn).
Let γn be the maximum number of vertices of Gn that are non-adjacent to both
vertices of a given edge. Assume that the quantities Nn, αn, γn are monotone
increasing to infinity and there exists a function βn such that

1 βn > γn and βn = o(αn);

2 log2Nn = o
(
αn

βn

)
;

3 log2Nn = o (βn − γn).

Then w.h.p. α(Gn, 1/2) ∼ α(Gn).
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