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Euclidean tetrahedron

The calculation of volumes in 3-dimensional space E3,H3, or S3 is a very
old and difficult problem. The first known result belongs to Tartaglia
(1499-1557) who had described an algorithm for calculating the height of
a tetrahedron in E3 with some concrete lengths of its edges. The formula
which expresses the volume of an Euclidean tetrahedron in terms of its
edge lengths was given by Euler. More precisely, let T be an Euclidean
tetrahedron with edge lengths dij , 1 ≤ i < j ≤ 4. Then V = Vol(T ) is
given by

288V 2 =

∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣
.

Here V is a root of quadratic equation whose coefficients are integer
polynomials in dij , 1 ≤ i < j ≤ 4.
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Euclidean polyhedron

Surprisedly, but the result can be generalized for any Euclidean polyhedron
in the following way.

Theorem (I. Sabitov, 1997)

Let P be an Euclidean polyhedron with triangular faces. Then
V = Vol(P) is a root of an even degree algebraic equation whose
coefficients are integer polynomials in edge lengths of P depending on
combinatorial type of P only.

P1 P2

(All edge lengths are taken to be 1)

Example

Polyhedra P1 and P2 are of the same combinatorial type. Hence,
V1 = Vol(P1) and V2 = Vol(P2) are roots of the same algebraic equation

a0V
2n + a1V

2n−2 + . . .+ anV
0 = 0.
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Rigid and flexible Euclidean polyhedra

Cauchy theorem (1813) states that a convex polyhedron with rigid faces is
rigid itself. In spite of this, there are non-convex polyhedra with rigid faces
which are flexible.
Bricard, 1897 (self-intersecting flexible octahedron)
Connelly, 1978 (the first example of true flexible polyhedron)
The smallest example is given by Steffen (14 triangular faces and 9 edges).
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Bellows conjecture

An important consequence of Sabitov’s theorem is a positive solution of
the Bellows Conjecture proposed by R. Connelly, N. Kuiper and
D. Sullivan.

Bellows conjecture. The generalized volume of a flexible polyhedron does
not change when it is bending.

Theorem (I. Sabitov, 1997)

All flexible polyhedra keep a constant volume as they are flexed.

A higher-dimensional version of Sabitov’s theorem and other
generalisations were obtained by Gaifullin [14].

[13] I. Kh. Sabitov, A generalized Heron–Tartaglia formula and some of
its consequences. Sbornik: Mathematics 189 (10), 1533–1561 (1998)

[14] A. A. Gaifullin, Generalization of Sabitov’s theorem to polyhedra of
arbitrary dimensions. Discrete Comput. Geom. 52 (2), 195–220 (2014)
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Upper half-space model of hyperbolic 3-space

Denote by H3 a 3-dim hyperbolic space.

H3 can be modelled in R3
+ = {(x , y , t) : x , y , t ∈ R, t > 0} with metric s

given by expression ds2 =
dx2 + dy2 + dt2

t2
.

The boundary ∂H3 = {(x , y , 0) : x , y ∈ R} caled absolute and consist of
points at infinity.

Isometry group Isom(H3) is a group of all actions on H3 preserving the
metric s. Denote by Isom+(H3) the group of orientation preserving
isometries.

Isom+(H3) ∼= PSL(2,C) (Pozitive Special Lorentz group). An element

g =

(
a b
c d

)
∈ PSL(2,C) acts on H3 by the rule

g : (z , t) 7→

(
(az + b)(cz + d) + act2

|cz + d |2 + |c |2 t2
,

t

|cz + d |2 + |c |2 t2

)
,

where z = x + i y .
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Geodesic lines and planes in half-space model of H3

Isom(H3) is generated by reflections with respect to geodesic planes.
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We will refer a knot K as a smooth simple closed curve in S3 or M. The
knot exterior is the compact 3-manifold X = M \ η(K) where η(K) is an
open tubular neighborhood. The group π1(X ) is called the knot group
associated to the knot. We recall that the boundary of X is a torus T and
there are two simple closed curves on T called a longitude and meridian
which intersect transversely in a single point. These two curves generate
π1(T ) ∼= Z× Z which is usually referred to as the peripheral subgroup.

Fig.: Knot exterior X = M \ η(K)
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In the 1960s Waldhausen showed that the data consisting of the knot
group plus the peripheral subgroup is a complete knot invariant.
The difficulty is that although a powerful invariant it is extremely difficult
to work with this data directly. Usually we admit some loss of information
to construct a usable (but non-complete) invariant.

A classical way to study groups is to look at their linear representations
and this suggests that one studies representations of knot groups into
linear groups. Waldhausen’s results suggest that one should also try to
keep track of some of the peripheral data.
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In begining of 1970’s R. Riley in Southampton worked on representations
of knots groups in PSL(2,C), which is the group of orientation preserving
isometries of the hyperbolic space H3. After some time he got a faithful
representation for the figure-eight knot 41, that the image was a discrete
group and that the quotient of H3 by this group was the complement of
knot 41. Thus, he discovered a hyperbolic structure on the figure-eight
knot complement. This result by Riley was published much later, in 2013
(Riley died in 2000).

Fig.: Figure Eight knot 41

Then he showed that the same idea works for several other knots. In 1975
R. Riley found examples of hyperbolic structures on some knot and
link complements in the three-dimensional sphere. Seven of them, so
called excellent knots, were described later in his paper (1982).
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Later, in the spring of 1977, W.P. Thurston announced an existence
theorem for Riemannian metrics of constant negative curvature on
3-manifolds. In particular, it turned out that the knot complement of a
simple knot (excepting torical and satellite) admits a complete
hyperbolic structure1. This fact allowed to consider knot theory from the
viewpoint of geometry and Kleinian group theory.

In 1980 W. Thurston constructed a hyperbolic 3-manifold
homeomorphic to the complement of knot 41 in S3 by gluing faces of
two regular ideal tetrahedra. This manifold has a complete hyperbolic
structure.

1Thurston wrote that he was motivated by Riley’s beautiful examples
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Introduction

The A-polynomial of a knot was introduced in [1] and has become a
powerful knot invariant. It encodes not only topological but also geometric
information about the knot complement, especially in the case of
hyperbolic knots. The notion of A-polynomial can be generalised to the
case of hyperbolic manifolds with a single cusp [2, 1].

[1] D. Cooper, M. Culler, H. Gillet, D. D. Long, P. B. Shalen,
Plane curves associated to character varieties of 3–manifolds. Invent. Math.
118 (1), 47–84 (1994)

[2] A. Champanerkar, A–polynomial and Bloch invariants of hyperbolic
3–manifolds. PhD Thesis, Columbia University (2003)
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Introduction

The other concept that we deal with, namely degeneration and
regeneration of hyperbolic cone-manifold structures, has been studied
in many works over the years. In this regard, we refer to the results of
Boileau, Leeb, and Porti [3, 4, 5].

[3] M. Boileau, B. Leeb, J. Porti, Geometrization of 3–dimensional
orbifolds. Ann. Math. 162 (1), 195–250 (2005)

[4] M. Boileau, J. Porti, Geometrization of 3–orbifolds of cyclic type.
Astérisque 272 (2001), 214 pp. (with an appendix by M. Heusener and J.
Porti)

[5] J. Porti, Regenerating hyperbolic and spherical cone structures from
Euclidean ones. Topology 37 (2), 365–392 (1998)
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Introduction

A 3-dimensional cone manifold is a manifold (M,K) which can be
triangulated so that the link of each vertex is piecewise linear
homeomorphic to the standard sphere and (M,K) is equipped with a
complete path metric such that the restriction of the metric to each
tetrahedron is isometric to a geodesic tetrahedron of constant curvature.
The cone manifold is hyperbolic, Euclidean or spherical if the curvature
is −1, 0, or +1 respectively.

Fig.: 2-dimensional cone manifold

The singular set K of a cone manifold (M,K) consists of the points
without a neighbourhood isometric to a ball in a Riemannian manifold.
The cone angle along K has a prescribed value α.
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Introduction

Let K be a knot (in S3 or any other closed orientable 3-manifold M), and
let Cα = Cα(M,K) be the corresponding cone manifold with underlying
topological space M and cone angle α along a singular geodesic in M

isotopic to K.

Fig.: Cone manifold Cα = Cα(M,K)
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Introduction

We shall assume that K is a hyperbolic knot (i.e.
C0 = C0(M,K) = M \K has a complete hyperbolic metric of finite
volume) and that a hyperbolic structure on the cone-manifold Cα exists for
any α ∈ (α0 − ε, α0), where α0 > ε > 0, and degenerates (up to
rescaling) into a Euclidean structure as α→ α0.

On the other hand, given a Euclidean cone manifold Cα0 , a hyperbolic or
spherical structure can often be “regenerated”: namely, it will be
hyperbolic for α ∈ (α0 − ε, α0) and spherical for α ∈ (α0, α0 + ε). Such
cone manifolds exist under some weak cohomological assumptions
(Porti-1998).

Fig.: Cone manifold Cα = Cα(M,K)
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Introduction

Since Cα converges in the Gromov–Hausdorff metric (after an appropriate
rescaling) to a Euclidean cone-manifold Cα0 , one can define the associated
normalised Euclidean volume as

volCα0 = lim
α→α−

0

VolCα
`3α

,

where `α = `α(M,K) is the length of the singular geodesic of
Cα = Cα(M,K). From here on “vol” denotes the normalised Euclidean
volume in contrast to “Vol” that refers to the standard hyperbolic one.
Such a construction for the normalised Euclidean volume appears in
(Porti-1998).

Fig.: Cone manifold Cα = Cα(M,K)
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Introduction

The hyperbolic volume of Cα is an important quantity: due to the
Mostow–Prasad–Kojima rigidity, the volume of C0 is a topological
invariant whenever it admits a complete hyperbolic metric (of finite
volume) [6]. There is also a large number of results concerning rigidity of
cone–manifolds in the hyperbolic and other geometries [7].

[6] S. Kojima, Deformations of hyperbolic 3-cone-manioflds. J. Diff. Geom.
49 (3), 469–516 (1998)

[7] J. Porti, H. Weiß, Deforming Euclidean cone 3–manifolds. Geometry
& Topology 11 (3), 1507–1538 (2007)
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Introduction

Concerning the normalised Euclidean volume the following results are
known. Local rigidity of hyperbolic cone manifolds was proven in [8] for
the case of knot and link cone manifolds and in [7, 9] for the general case
of 3–dimensional cone manifolds with cone angles less or equal to π.
Global rigidity also takes place under some additional conditions. Namely,
it was shown in [10] that if (M,K) is not a Seifert pair then both
hyperbolic and spherical structures can be “regenerated” from the
Euclidean one and global rigidity follows from Gromov–Prasad–Kojima
theorem. In this case, the normalised Euclidean volume can be considered
as a topological invariant of the knot type of K in M.

[8] C. D. Hodgson, S. P. Kerckhoff, Rigidity of hyperbolic
cone-manifolds and hyperbolic Dehn surgery. J. Diff. Geom. 48 (1), 1–59
(1998)

[9] H. Weiß, Local rigidity of 3–dimensional cone–manifolds. J. Differential
Geom. 71 (3), 437–506 (2005)

[10] H. Weiß, Global rigidity of 3–dimensional cone–manifolds. J.
Differential Geom. 76 (3), 495–523 (2007)
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Introduction

The number-theoretic nature of hyperbolic volume is usually highly
intricate (see, e.g., [11]). The main result of our work with A. Kolpakov
and A. Mednykh [12] is that the normalised Euclidean volume is an
algebraic number. In many cases we give a method to compute its
minimal polynomial.

[11] D. Zagier, The Dilogarithm Function, in: P. Cartier, P. Moussa, B.
Julia, P. Vanhove (eds.), Frontiers in Number Theory, Physics, and Geometry
II. Springer–Verlag, Berlin (2007)

[12] N. Abrosimov, A. Kolpakov, A. Mednykh, Euclidean volumes of
hyperbolic knots. Proc. Amer. Math. Soc., 152 (2024), 869–881.
DOI: 10.1090/proc/16353
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Introduction

In the proof of the main result we use a modified version of the
A-polynomial, while the standard one was introduced by Cooper, Culler,
Gillet, Long, and Shalen in [1]. Our version contributes the real length of
the singular geodesic instead of the complex one, and will be called the
Riley polynomial. It appears very suitable for computational purposes. We
also provide a pseudocode that computes the minimal polynomial of the
normalised volume volCα0 . This code can be used in any computer
algebra system capable of computing resultants and factorising
multivariable polynomials, such as SageMath or Mathematica.
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Riley polynomial as a real version of A–polynomial

We assume that the fundamental group π1(M \K) has a holonomy
representation in SL2(C). This condition is surely satisfied if the
underlying manifold M is S3 (see [15]). Otherwise, one has to require
additional properties: for example, that M be a Z2–homological 3–sphere,
and the image of each peripheral subgroup of K is not Z2 ⊕ Z2 under the
holonomy map into PSL2(C) (see [15] for more details).

Let A(M, L) be the A–polynomial of (M,K) as defined in [1] that
corresponds to the SL2(C) representations of the fundamental group of
π1(M \K).

[15] F. Gonzalez-Acuña, J. M. Montesinos–Amilibia, On the
character variety of group representations in SL(2,C ) and PSL(2,C ). Math.
Z. 214, 627–652 (1993)
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Riley polynomial as a real version of A–polynomial

Following [16], choose the canonical longitude–meridian pair (λ, µ) in the
fundamental group π1(M \K) in such a way that µ is the oriented
boundary of a meridian disc of K and the longitude curve λ is
null–homologous outside of K. Let h : π1(M \K)→ SL2(C) be the
holonomy map of the cone manifold Cα(M,K).
Then, up to conjugation in SL2(C),

h(µ) = ±
[

exp(i α/2) 0
0 exp(−i α/2)

]
, h(λ) =

[
exp(γ/2) 0

0 exp(−γ/2)

]
,

where γ = `+ iϕ, ` is the length of K, and ϕ, −2π ≤ ϕ < 2π, is the
angle of the lifted holonomy of K. For the sake of simplicity, we will refer
to γ = `+ iϕ as the complex length of the singular geodesic K.

[16] H. M. Hilden, M. T. Lozano, J. M. Montesinos–Amilibia, On
volumes and Chern–Simons invariants of geometric 3–manifolds. J. Math.
Sci. Univ. Tokyo 3, 723–744 (1996)
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Riley polynomial as a real version of A–polynomial

An important property of the A–polynomial is that the cone angle α and
complex length γ of K are related by the equation A(L,M) = 0, where
L = exp(γ/2) and M = exp(i α/2).

Let A(M, L) = A(M, L) be the complex conjugate of the A–polynomial.
The coefficients of both polynomials are always integers. Consider

Â(M, L) = MdegM A(M,L)A(M−1, L).

Once M = exp(i α/2), we have M = M−1 and A(M, L) = A(M−1, L).
Also, if L = exp( `+i ϕ

2 ) then L = exp( `−i ϕ2 ) and the quantity
W = LL = exp(`) is associated with the real length ` of the knot K.

We need to obtain the Riley polynomial that relates the variables
M = exp(i α/2) and W = LL = exp(`). In order to do this, we consider L,
L and M as independent variables.
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Riley polynomial as a real version of A–polynomial

res(P,Q) =
∏

(x ,y):P(x)=0,Q(y)=0

(x − y)

res(P,Q) is a polynomial in coefficients of P and Q. res(P,Q) = 0 if and
only if the polynomials P and Q have a common root.

Let us compute the consecutive resultants R1 = ResL(A(M, L), Â(M, L))
and R2 = ResL(R1,W − LL), see [17] for basic theory of resultants as
applied to Laurent polynomials. We define a Riley polynomial as a factor
of R2 that corresponds to the hyperbolic structure on C0. This factor
corresponds to the so-called “excellent component” of the character
variety of (M,K), that is the component containing the character of the
complete structure. Note that by construction R(M,W ) is a two–variable
polynomial with integer coefficients.

[17] A. G. Khovanskii, L. Monin, The resultant of developed systems of
Laurent polynomials. Mosc. Math. J. 17 (4), 717–740 (2017)
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Key property of defined Riley polynomial

Proposition

The identity R(M,W ) = 0 holds, whenever M = exp(i α/2) and
W = LL = exp(`).
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Euclidean volumes and algebraic numbers

Theorem (Abrosimov, Kolpakov, Mednykh – 2023)

Let Cα = Cα(M,K) be a cone–manifold with underlying 3–manifold M

and singular set a knot K with cone angle α. Assume that fundamental
group π1(M \K) has a holonomy representation in SL2(C), and Cα admits
a hyperbolic structure for α ∈ (α0 − ε, α0) that degenerates into a
Euclidean structure as α→ α0. Then the normalised Euclidean volume of
Cα0 is an algebraic number.

[12] N. Abrosimov, A. Kolpakov, A. Mednykh, Euclidean volumes of
hyperbolic knots. Proc. Amer. Math. Soc., 152 (2024), 869–881.
DOI: 10.1090/proc/16353
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Outline of the proof

The limit volCα0 = lim
α→α−

0

VolCα
`3α

exists by [Corollary C, Porti-1998]. It

remains to show that its value is among the roots of a polynomial with
integer coefficients. For this purpose, we express volCα0 as a root of the
associated Riley polynomial of (M,K) which we consider as a “real”
version of the A–polynomial, as opposed to the original “complex” one.

Let us recall the Schläfli formula that in our case takes the following
simple form:

dVolCα(M,K) = −1

2
`αdα. (1)

As α→ α−0 , we have that `α → 0 and VolCα → 0 [Proposition C,
Porti-1998]. Thus M0 = exp(iα0/2) is among the roots of
R(M0, exp(0)) = R(M0, 1). In particular, M0 is an algebraic number.
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Outline of the proof

Let us observe that the expression for vol(M,K) can be rewritten by using
the L’Hôpital rule as follows

volCα0 = lim
α→α−

0

VolCα
`3α

= lim
α→α−

0

(VolCα)′α
(`3α)′α

= lim
α→α−

0

−1
2`α

3 `2α(`α)′α
=

= −1

3
lim

α→α−
0

1

(`2α)′α
, (2)

where we use the Schläfli formula (1) in order to differentiate VolCα. Here
and below, we shall use f ′x as a shortcut for df

dx , for any expression f that
depends on a variable x explicilty or implicitly.
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Outline of the proof

Moreover, as α→ α0 we have that ` = `α → 0 and W = exp(`)→ 1.
Thus we can introduce a new variable X and write W = 1 + X , where
X → 0 as α→ α0. Then ` = ln(1 + X ),
`2 = ln2(1 + X ) = X 2 − X 3 + O(X 4) as X → 0. Hence
(`2)′α = (X 2)′α + O(X 2). By using [Corollary C, Porti-1998], we can
replace O(X 2) with O(|α− α0|), as α→ α0. The resulting asymptotic
expansion (`2)′α = (X 2)′α + O(|α− α0|), as α→ α0, allows us to use only
polynomial expressions in the rest of the proof.

By computing the resultant of R(M,W ) with (W − 1− X ) in W first,
and then computing one more resultant of the obtained expression with
(Y − X 2) in X , we find the minimal polynomial P(M,Y ) for Y over the
ring Q[M].

Nikolay Abrosimov (SIM, Novosibirsk) Euclidean volumes of cone manifolds September 17, 2024 30 / 39



Outline of the proof

Now let us consider Y as an implicit function Y = Y (M) defined by the
equation P(M,Y (M)) = 0 together with the condition Y (M0) = 0, for
M0 = exp(iα0/2). This allows us to compute the derivative Y ′(M) in
terms of P(M,Y ) and Y (M) itself. Since
P ′M(M,Y (M)) + P ′Y (M,Y (M))Y ′(M) = 0, let us put
Q(M,Y ,Z ) = P ′M(M,Y ) + P ′Y (M,Y )Z , where Z = Y ′(M) is a new
variable.

By taking the resultant of P(M,Y ) and Q(M,Y ,Z ) in Y , we finally
obtain the minimal polynomial S(M,Z ) for Z = (X 2)′α over the ring
Q[M], after choosing the appropriate irreducible factor.
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Outline of the proof

Converting all the d
dα derivatives to the d

dM ones via the chain rule allows
us to rewrite (2) as

volCα0 =
2i

3M0Z0
, (3)

where Z0 = limα→α−
0
Y ′(M), for M = exp(iα/2), is among the roots of

the polynomial S(M0,Z ), for M0 = exp(iα0/2).

As M0 is an algebraic number and S(M,Z ) is a polynomial with integer
coefficients, we conclude that Z0 is algebraic. Hence, volCα0 is also
algebraic. �
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Computing the minimal polynomial for normalised volume

Here we provide a pseudocode that computes the minimal polynomial of
vol(M,K) starting from the SL2(C) A–polynomial of (M,K) as input.
This algorithm can be used in any computer algebra system that has
enough functionality in commutative algebra, such as SageMath or
Mathematica.

Data: A(M, L) = the A–polynomial of (M,K).
Result: The minimal polynomial of volCα0 .
1. Let d = degMA(M, L);
2. Let L be a new variable. Let R1,R2,R3 be three auxiliary variable;
3. Let W be a new variable;
4. Let Â(M, L) := Md · A(M−1, L);
5. Let R1 be the resultant of A(M, L) and Â(M, L) in L;
6. Let R2 be the resultant of R1 and W − L · L in L;
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Computing the minimal polynomial for normalised volume

7. Factorise R2 and isolate its irreducible factor that corresponds to the
excellent component of the character variety of (M,K), that is the
component containing the character of the complete hyperbolic structure.
We refer to it as the Riley polynomial R(M,W );
8. Let R1 be the resultant of R(M,W ) and W − X − 1 in W ;
9. Let R2 be the resultant of R1 and Y − X 2 in X ;
10. Factorise R2 and isolate its irreducible factor that corresponds to the
minimal polynomial of Y over the field Q(M) of rational functions in M;
11. Set Y = Y (M) to be a function of M. Let Y ′ = Y ′(M) be the
derivative of Y (M) with respect to M;
12. Differentiate P(M,Y (M)) with respect to M. Store the output as R1;
13. Substitute Y ′(M) in R1 by a new variable Z . Store the output as
Q(M,Y ,Z );
14. Let R2 be the resultant of P(M,Y ) and Q(M,Y ,Z ) in Y ;
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Computing the minimal polynomial for normalised volume

15. Factorise R2 and isolate its irreducible factor S(M,Z ) that
corresponds to the minimal polynomial of Z over Q(M);
16. Let V be a new variable. Let I be the complex unit and let R1 be
3 ·M · Z · V − 2 · I . Let R2 be R(M, 1);
17. Let R3 be the resultant of R1 and S(M,Z ) in Z . Let R4 be the
resultant of R2 and R3 in M;
18. Factorise R4 and isolate its irreducible factor F (V ) that corresponds to
the minimal polynomial of V over Q;
19. Output F (V ).
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Applications of the main theorem

One of the most interesting cases of applications of Theorem 4 is that of
two–bridge knots. Any two–bridge knot K of slope p/q, where p > 1 and
2 < q < p − 1, is hyperbolic [4].

Let Cα = Cα(S3,K). Then according to [18] there exists an angle
α0 ∈ [2π/3, π) such that Cα is hyperbolic for all α ∈ [0, α0), Euclidean for
α = α0, and spherical for all α ∈ (α0, 2π − α0). Thus we can define the
normalised Euclidean volume vol(K) = vol(S3,K) of K. Because of
Weiss’ rigidity theorem [9, 10], vol(K) will be also a topological invariant
of K together with its hyperbolic volume.

[18] J. Porti, Spherical cone structures on 2–bridge knots and links. Kobe
J. Math. 21 (1–2), 61–70 (2004)
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Example: knot 52 (triple-twist knot)

Fig.: Knot 52

The A-polynomial for SL2(C) presentation of knot 52 is

A(M, L) = 1 + L(−1 + 2M2 + 2M4 −M8 + M10)

+ L2(M4 −M6 + 2M10 + 2M12 −M14) + L3M14.
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Example: knot 52 (triple-twist knot)

Fig.: Knot 52

By performing the algorithm we obtain that the normalised Euclidean
volume has numerical value

1/

(
6

√
−6 + 68

√
2 + 4

√
983 + 946

√
2

)
= 0.009909630999945638 . . .

This number is algebraic with minimal polynomial

785065068490752 x8 + 412091172864 x6 + 64457856 x4 − 864 x2 − 1.
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