

Моделирование оптимальных сетей с помощью шарнирных механизмов.

Марина Житная механико-математический факультет МГУ им. М.В.Ломоносова научный руководитель: профессор А. А. Тужилин

Основные результаты

Конструктивное доказательство существования механизмов, которые позволяют строить:

- 1) минимальную параметрическую сеть в евклидовом пространстве размерности d≥2,
- 2) кратчайшую сеть на плоскости в евклидовом пространстве,
- 3) кратчайшую сеть в манхэттенском пространстве размерности d≥2.

G = (V, E) — простой конечный граф

 Ω — метрическое пространство

 $\Gamma = \Gamma_G \colon V \to \Omega - cem b \; muna \; G \;$ в пространстве Ω

$$\Gamma_v = \Gamma|_v, v \in V - вершины сети \Gamma$$

$$\Gamma_e = \Gamma|_e, e \in E - p \ddot{e} \delta p a$$
 сети Γ

 $|\Gamma_{uv}| = |\Gamma(u)\Gamma(v)| - \partial \Lambda u u u peбpa uv \in E$

 $\sum_{e \in E} |\Gamma_e| - \partial$ лина $cemu\ \Gamma$

 Γ_e — вырожеденное ребро, если $|\Gamma_e|=0$

Сеть без вырожденных рёбер — невырожденная

 $E' \subset E^2$ — подмножество пар рёбер

 $\overline{\omega} \colon E' \to \mathbb{R}^+$ — неотрицательная симметричная функция

 $\overline{\omega}(e,f)=\overline{\omega}(f,e)$, где $(e,f)\in E'$ угол между рёбрами e и f.

Угол между рёбрами Γ_{uv} , Γ_{uw} — плоский угол $\angle \Gamma_v \Gamma_u \Gamma_w$

 $\Gamma-cemь$ со строго заданной угловой структурой $\overline{\omega},$ если для любой пары $(e,f)\in E'$ угол между рёбрами Γ_e,Γ_f равен $\overline{\omega}(e,f).$ Такая сеть имеет $mun\ (G,\overline{\omega})$

 $\Gamma- cemь\ c\ peлаксированной угловой структурой <math>\widetilde{\omega}$, если угол между любыми $(e,f)\in E'$ равен $\overline{\omega}(e,f)$ или $\pi-\overline{\omega}(e,f)$. Такая сеть имеет тип $(G,\widetilde{\omega})$

 $[G,\overline{\omega}]$ — множество всех сетей типа $(G,\overline{\omega})$

 $[G,\widetilde{\omega}]$ — множество всех сетей типа $[G,\widetilde{\omega}]$

 $[G,\omega]$ — множество сетей с заданной угловой структурой, если не сказано, является она строгой или релаксированной

 $[G, \omega]_r$ — множество сетей, у которых максимальная длина ребра $\leqslant r$.

 $W \subset V$ — граница графа G

 $w \in W$ — граничные вершины графа G

 Γ раф G с границей W обозначим G^W

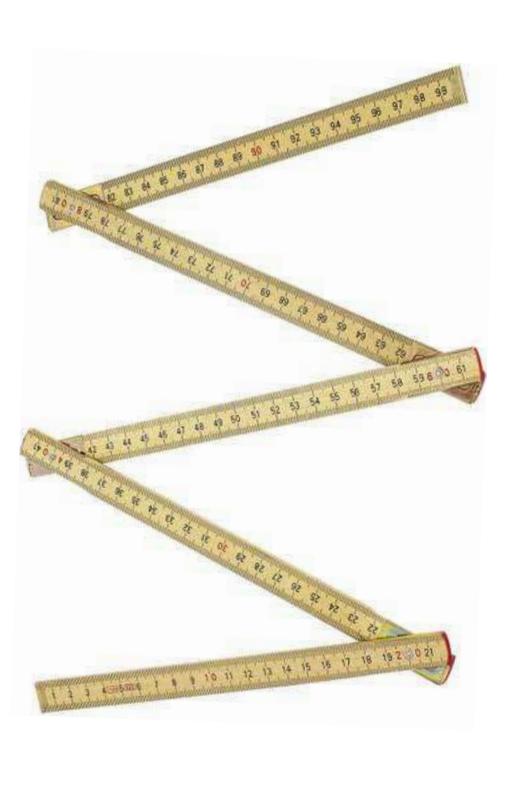
 $\Gamma_W = \Gamma|_W - граница \ cemu$

 $\Gamma_w, w \in W$ — граничные вершины сети Γ

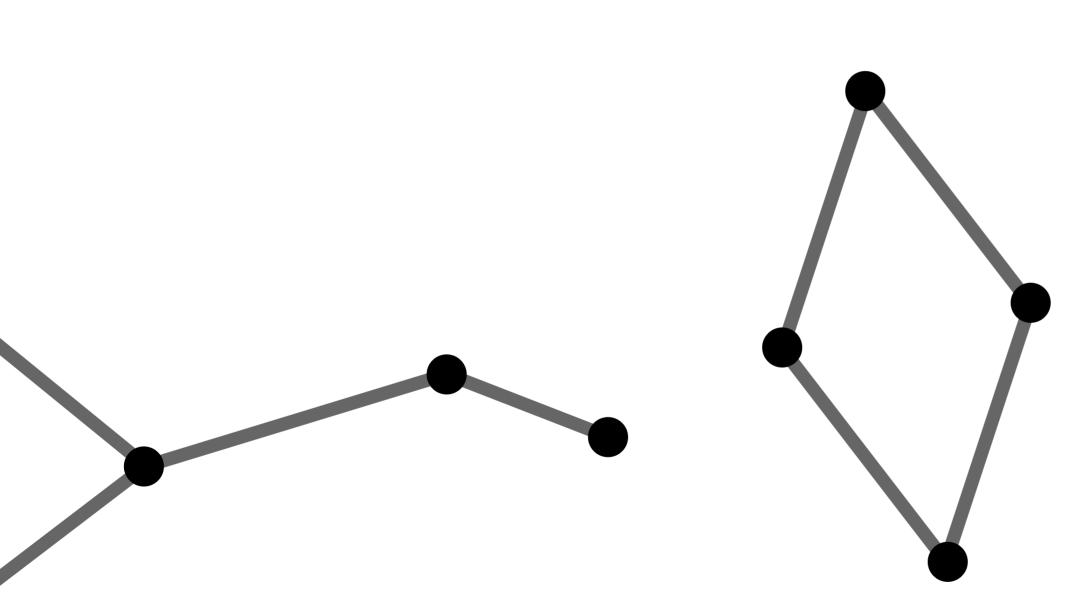
Не граничные вершины сети или графа — внутренние

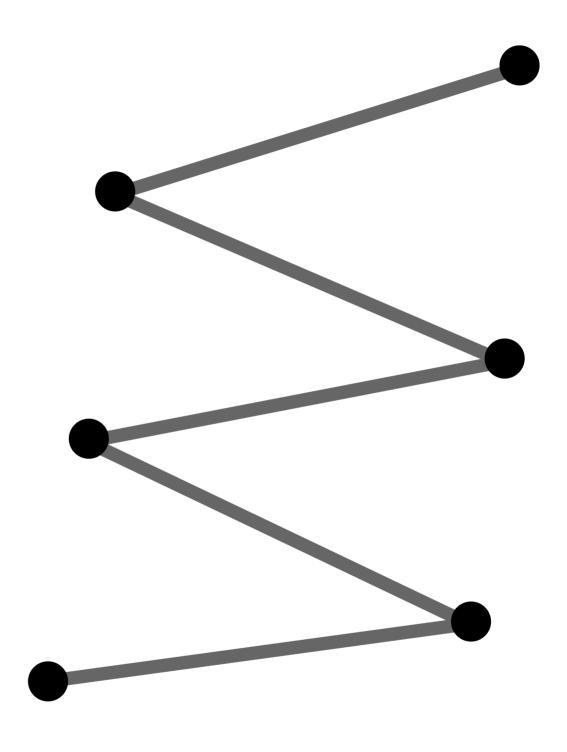
Формализация шарнирных механизмов

Примеры шарнирных механизмов



Моделирование шарнирных механизмов





Формализация шарнирных механизмов

G = (V, E) – простой конечный граф

 $\ell \colon E \to [0, \infty)$ — весовая функция, задающая длины рёбер

 $L=(G,\ell)$ — шарнирный механизмом

 $v \in V$ — шарниры

 $e \in E - cmep$ экни

 $\ell(e), e \in E - \partial \Lambda u h u c mep ж h e \ddot{u}$

Формализация шарнирных механизмов

 $L = (G, \ell)$ — шарнирный механизм

 Ω — метрическое пространство

 $x:V \to \Omega$ — сеть, выполнено $|(x(u)x(v))| = \ell(uv)$

x — положение механизма в пространстве Ω

 X^L — множество всех положений механизма L

Формализация шарнирных механизмов

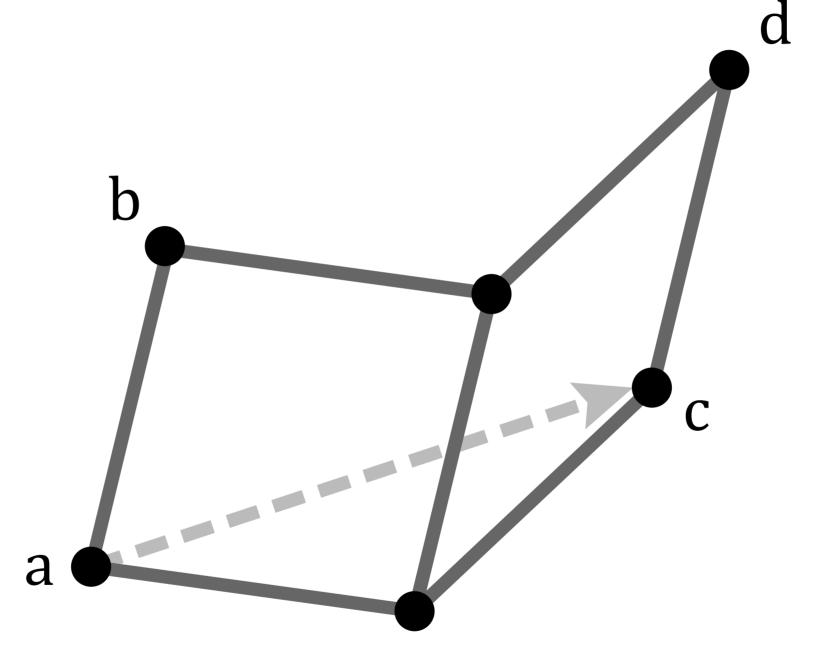
 $x|_A$ — положение набора шарниров $A, A \subset V$, обозначим x_A .

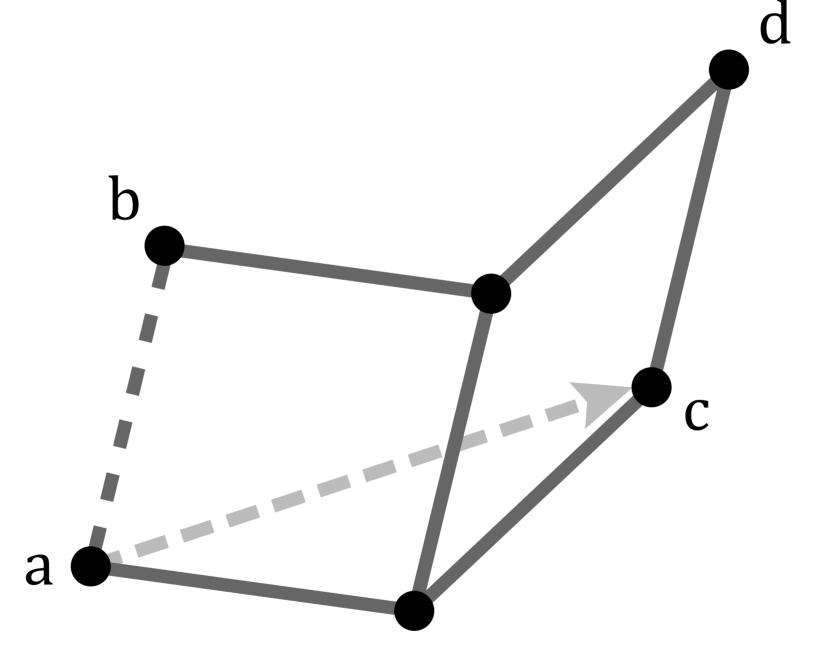
 X_A^L — множество всех положений шарниров

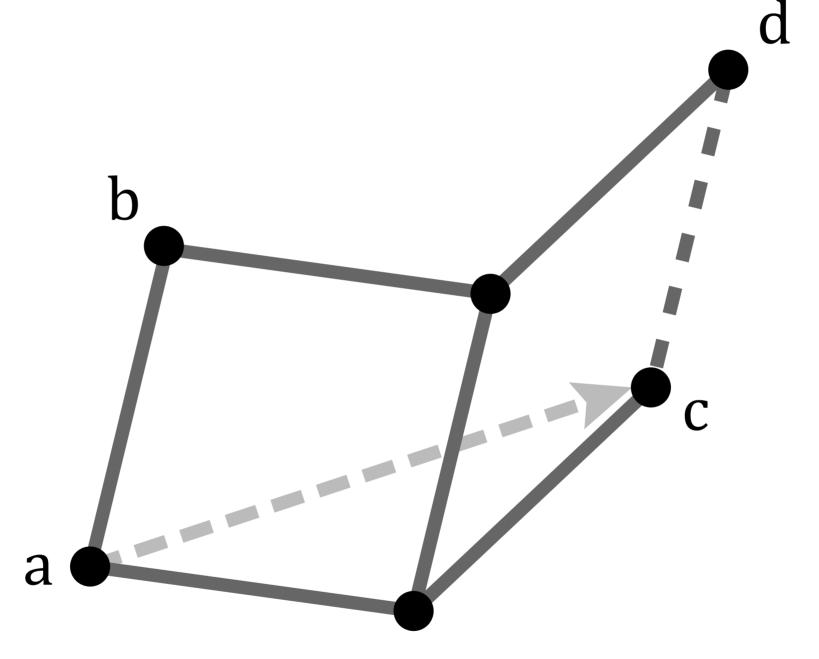
A pucyem множество X_A^L

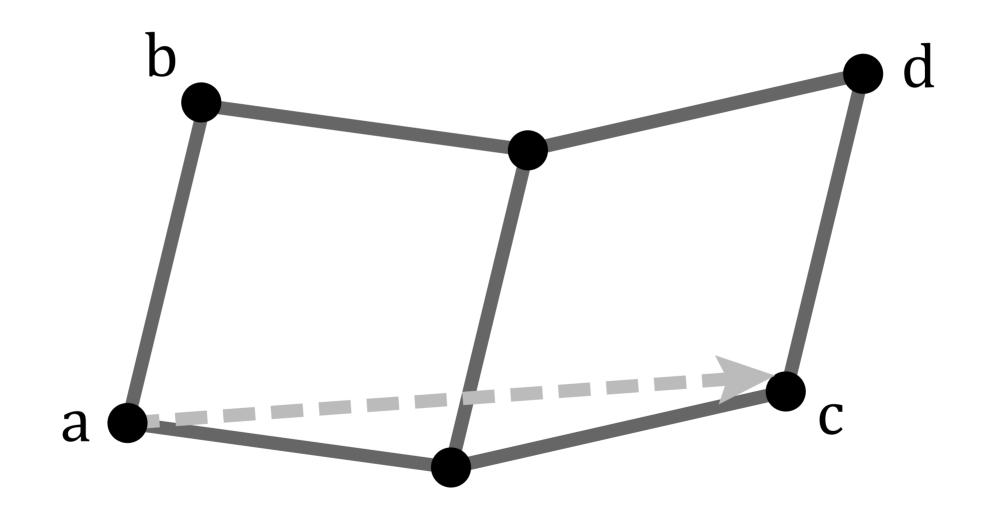
Механизм $L = (G_L = (V_L, E_L), \ell)$ рисует множество $[G = (A, E), \omega]_r$ сетей $\Gamma \colon A \to \Omega$ с заданной угловой структурой ω , у которых длины рёбер не превосходят r, если $A \subset V_L$ и $X_A^L = [G, \omega]_r$

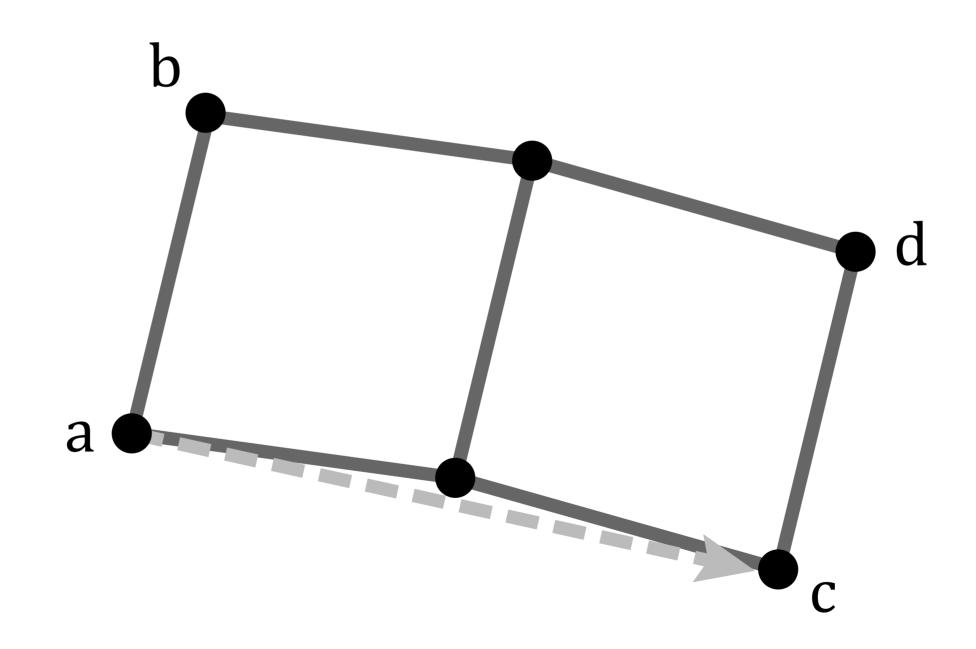
Классические шарнирные механизмы

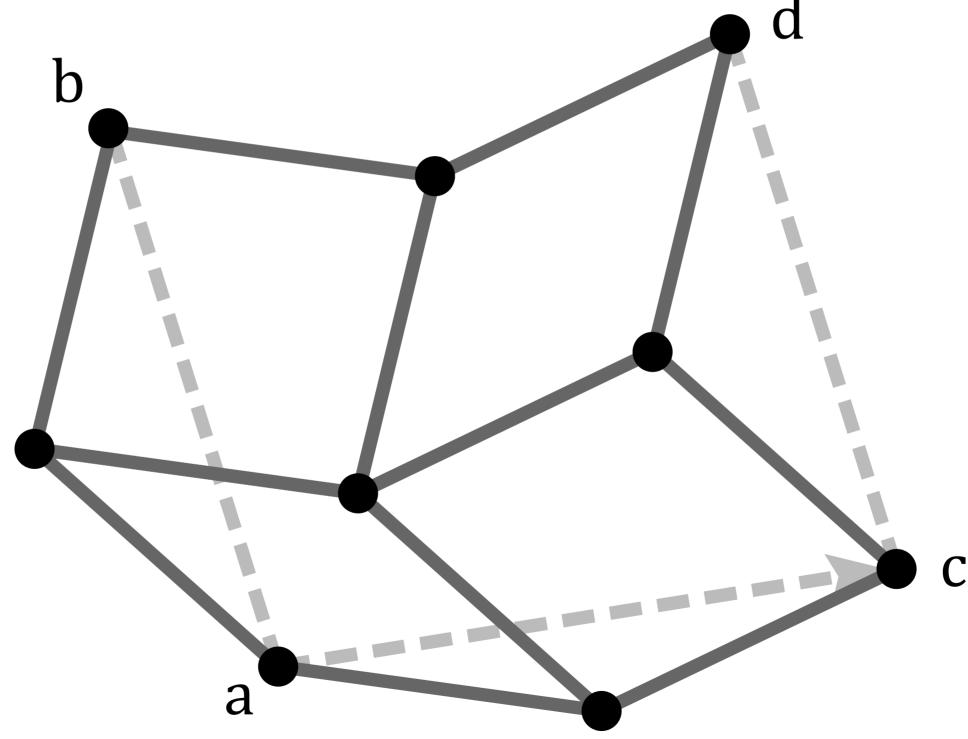


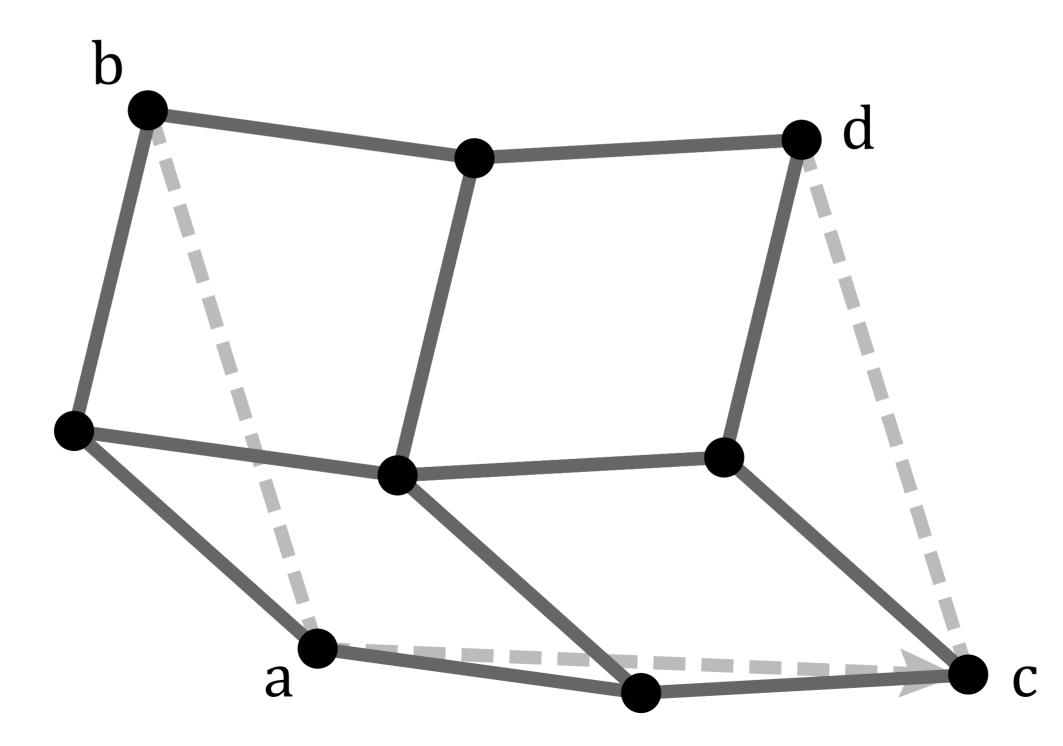


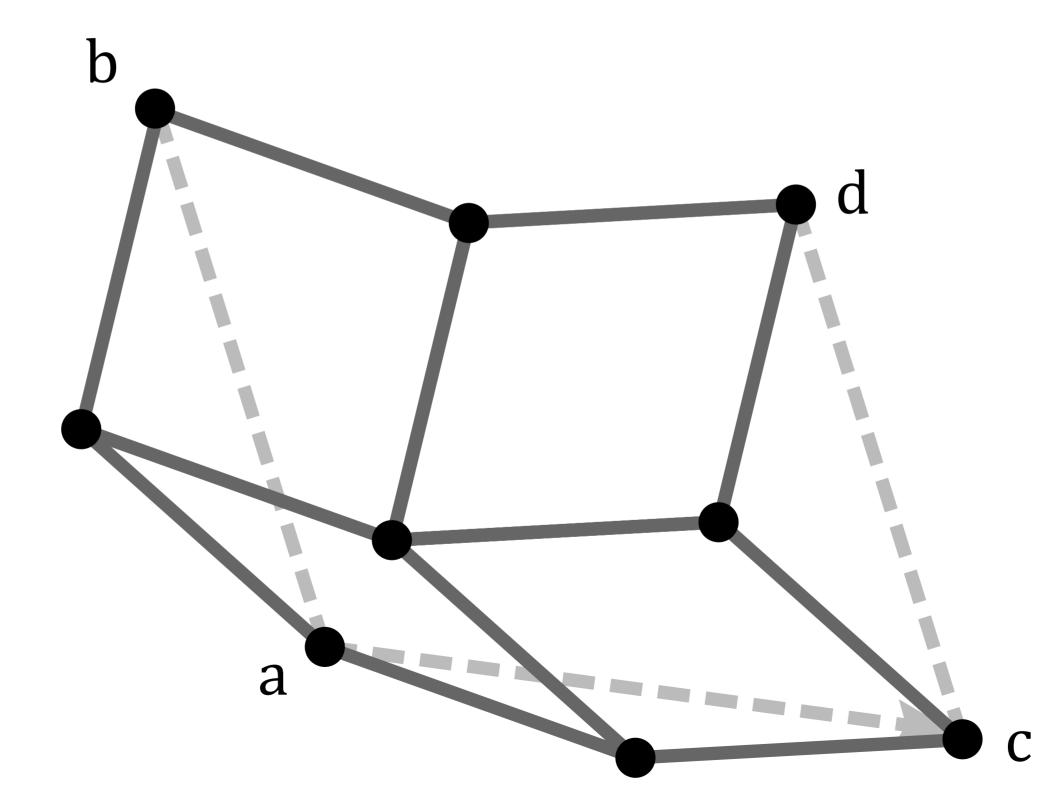


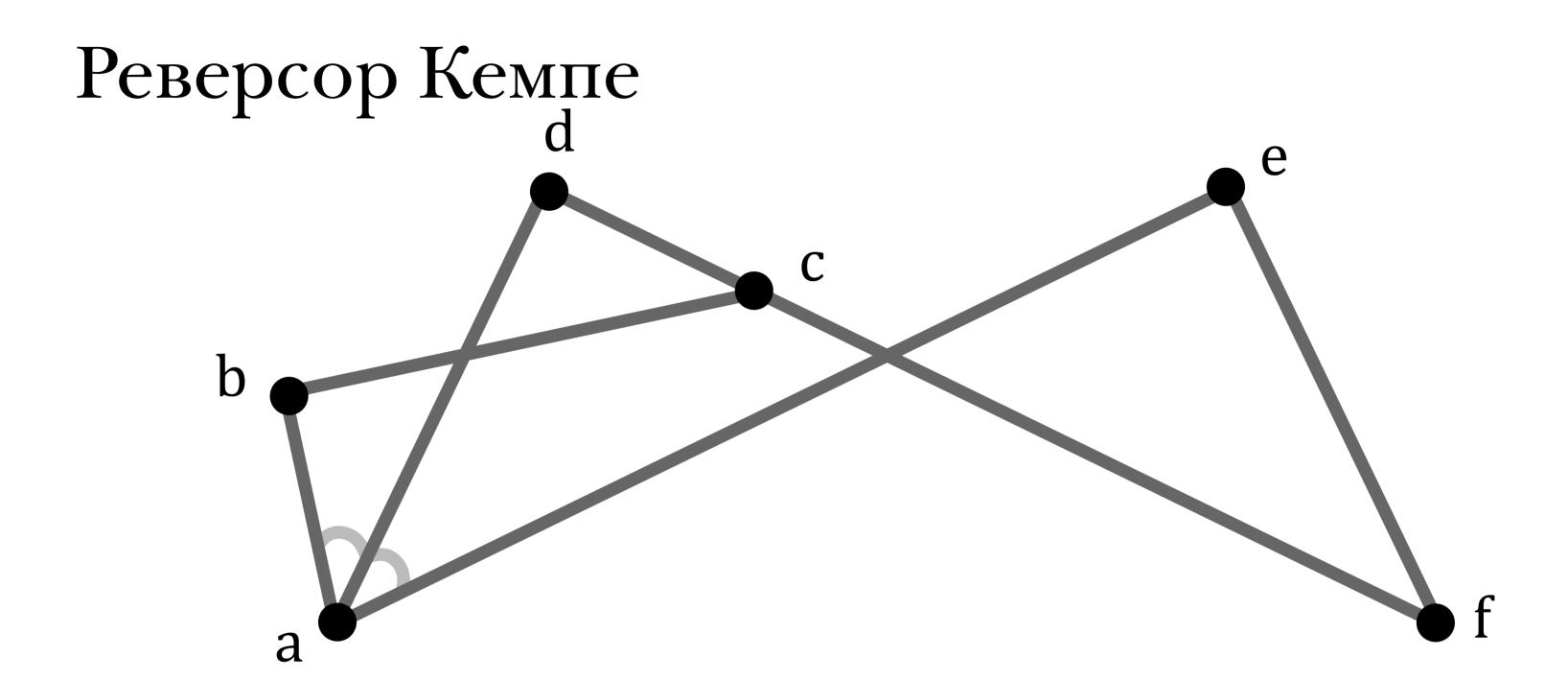












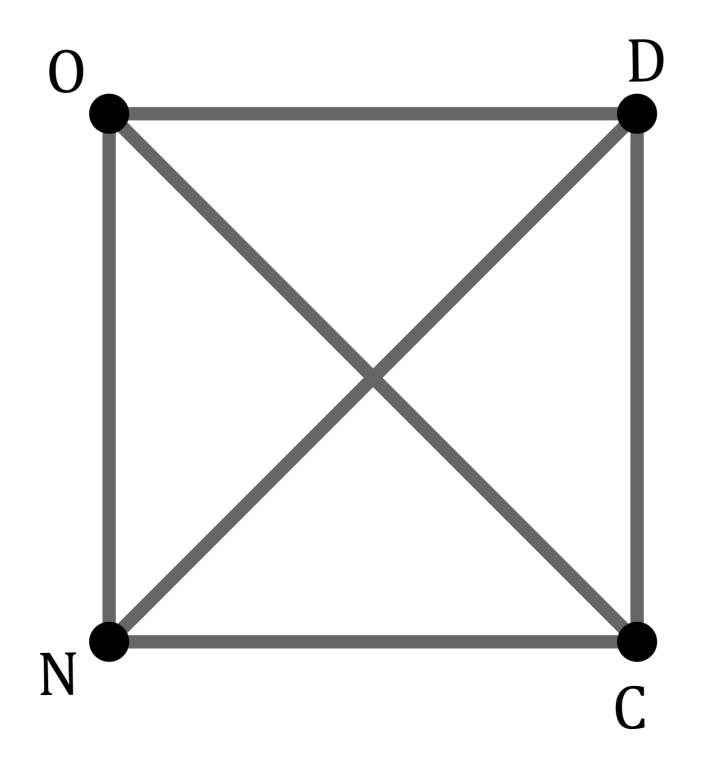
Реверсор Кемпе

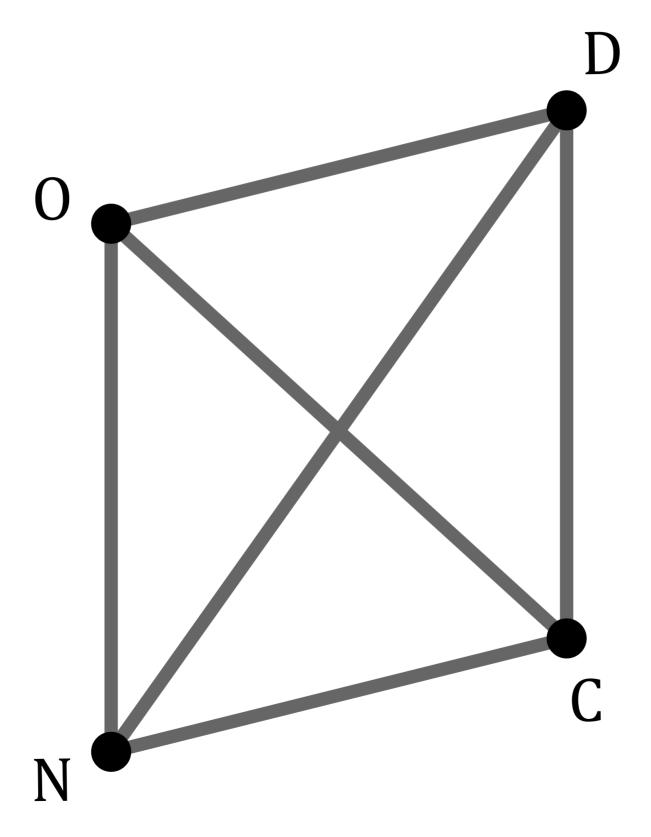
Другие примеры классических шарнирных механизмов

- Укреплённый параллелограмм
- Укреплённый антипараллелограмм
- Шарнирный треугольник
- Суммматор Кемпе
- Инверсор Поселье
- ...

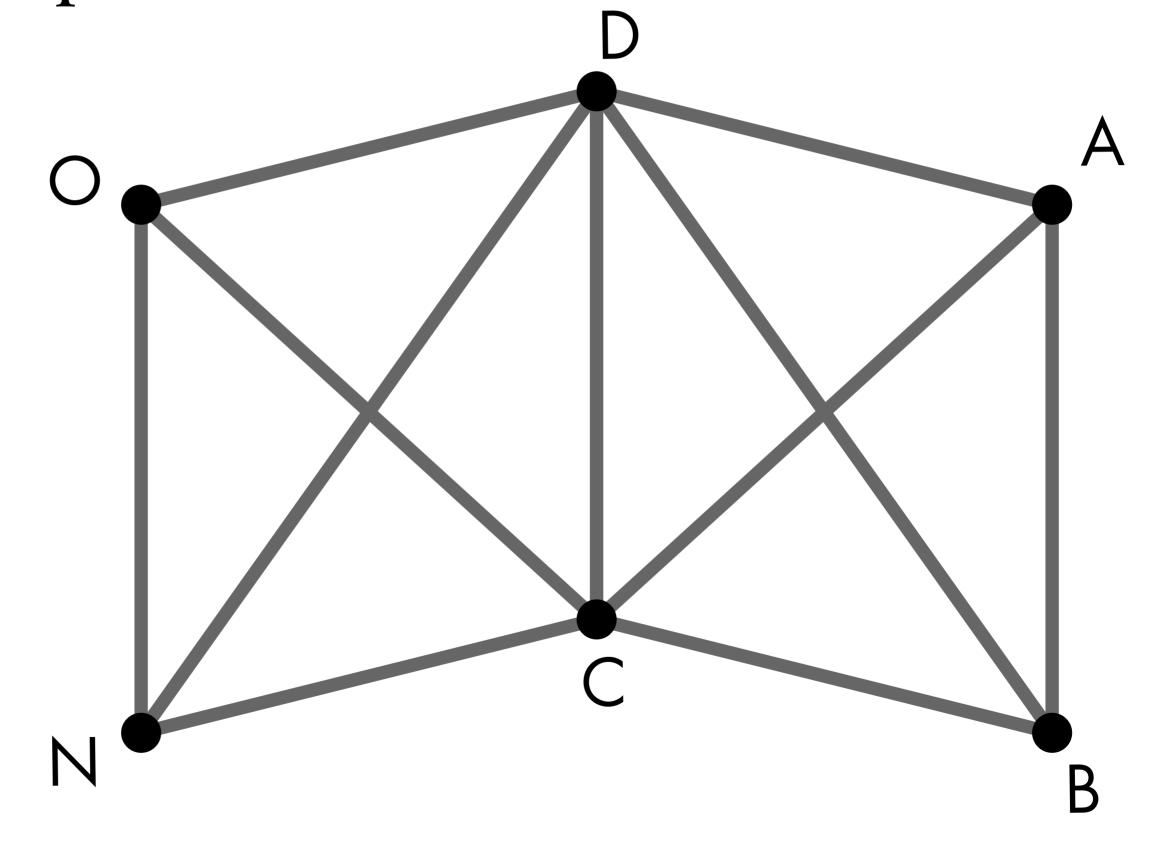
Вспомогательные шарнирные механизмы

Движение точек по прямой

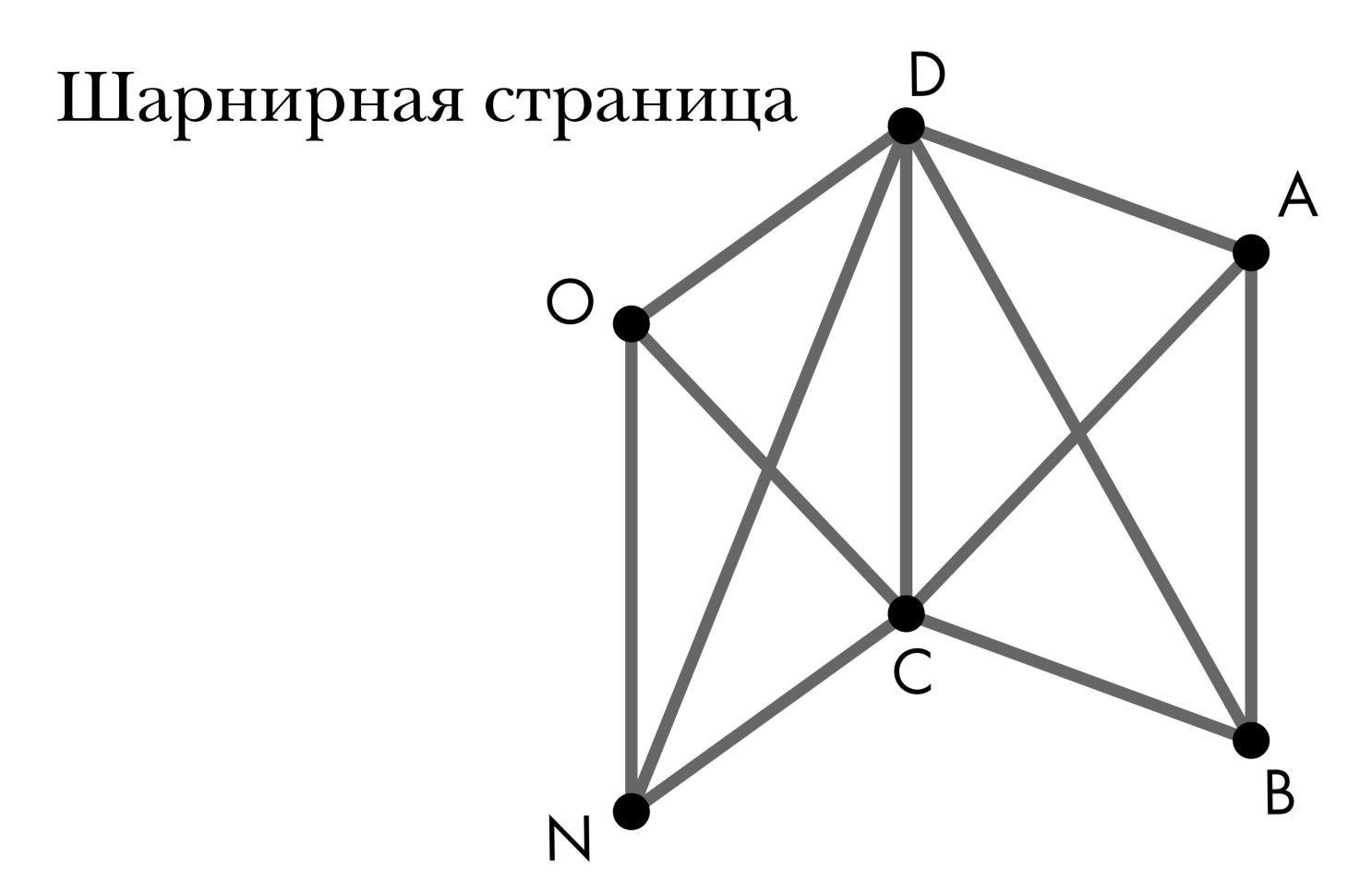


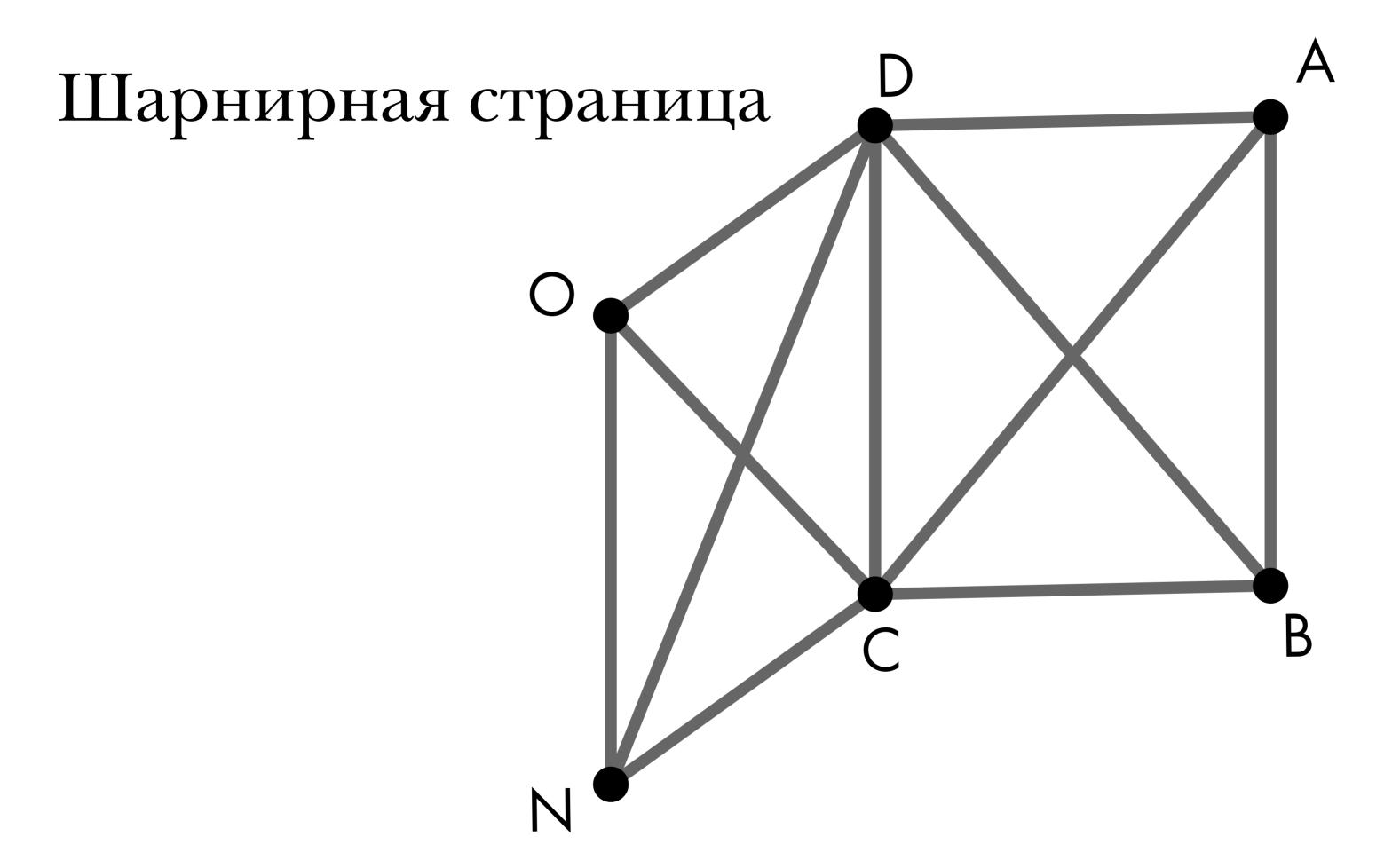


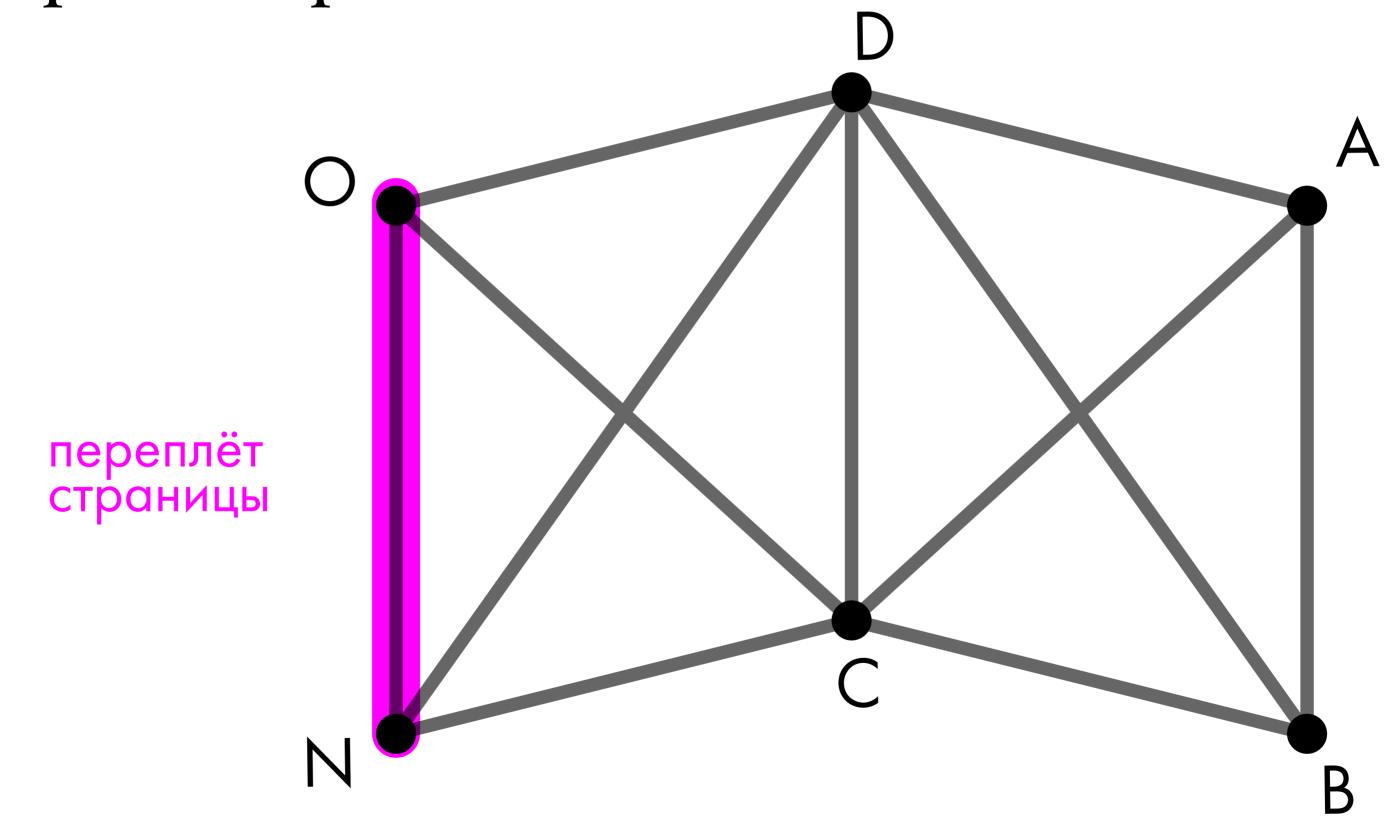
Шарнирная страница

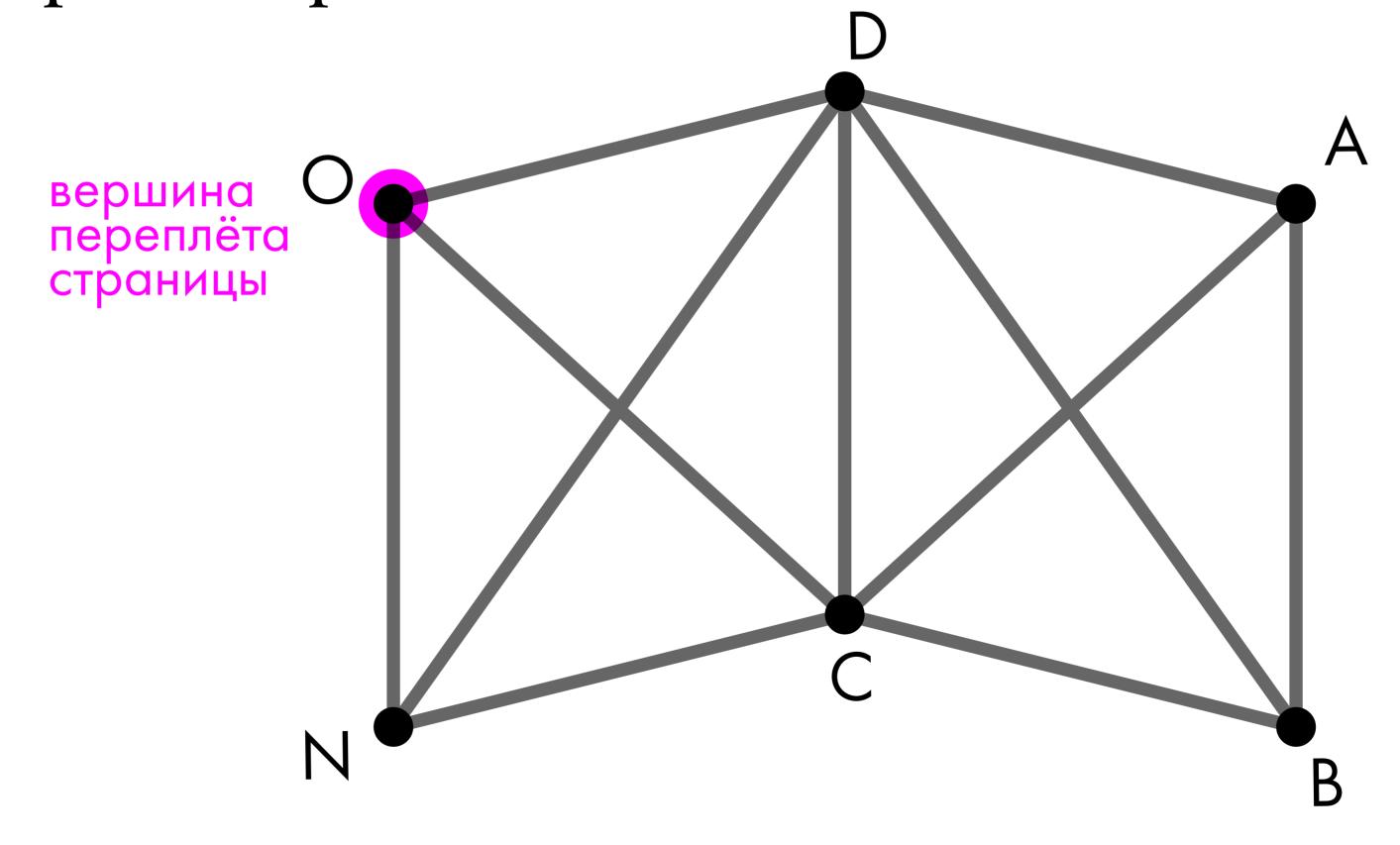


Шарнирная страница

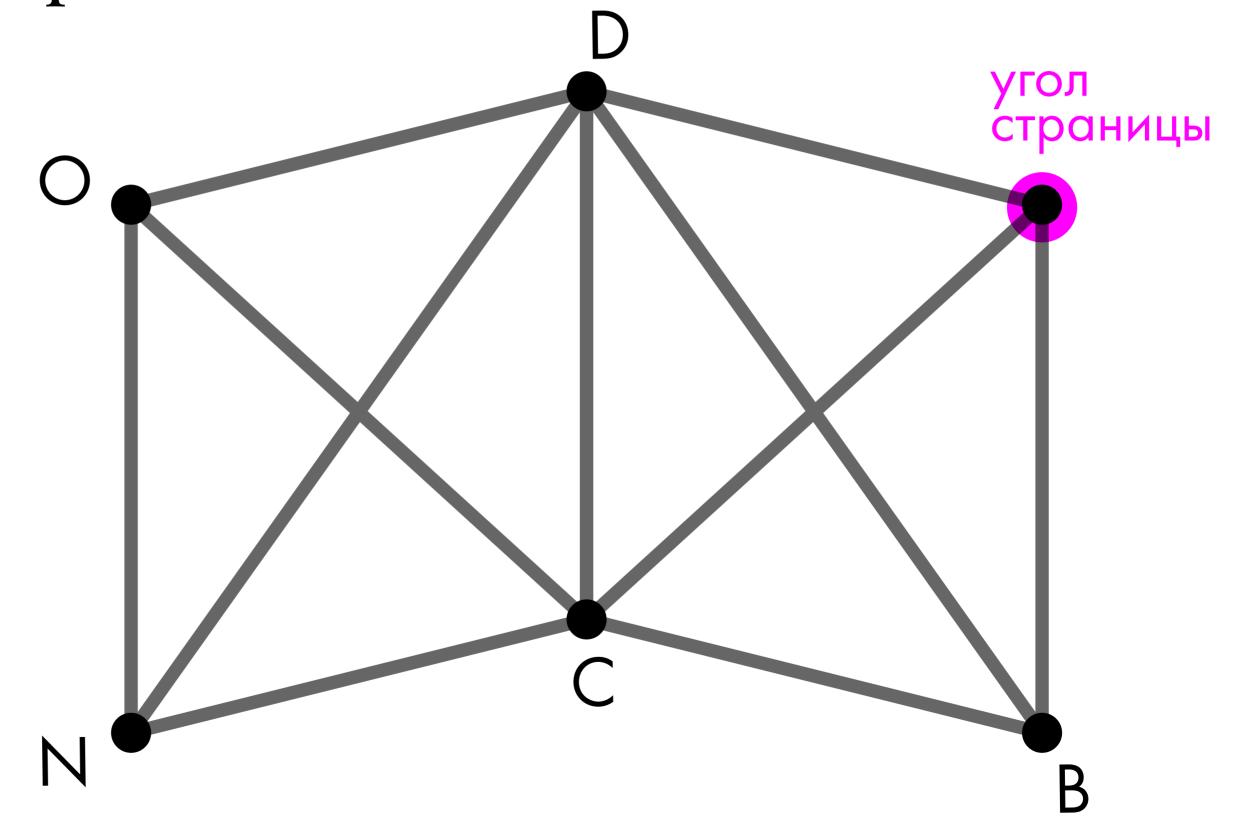


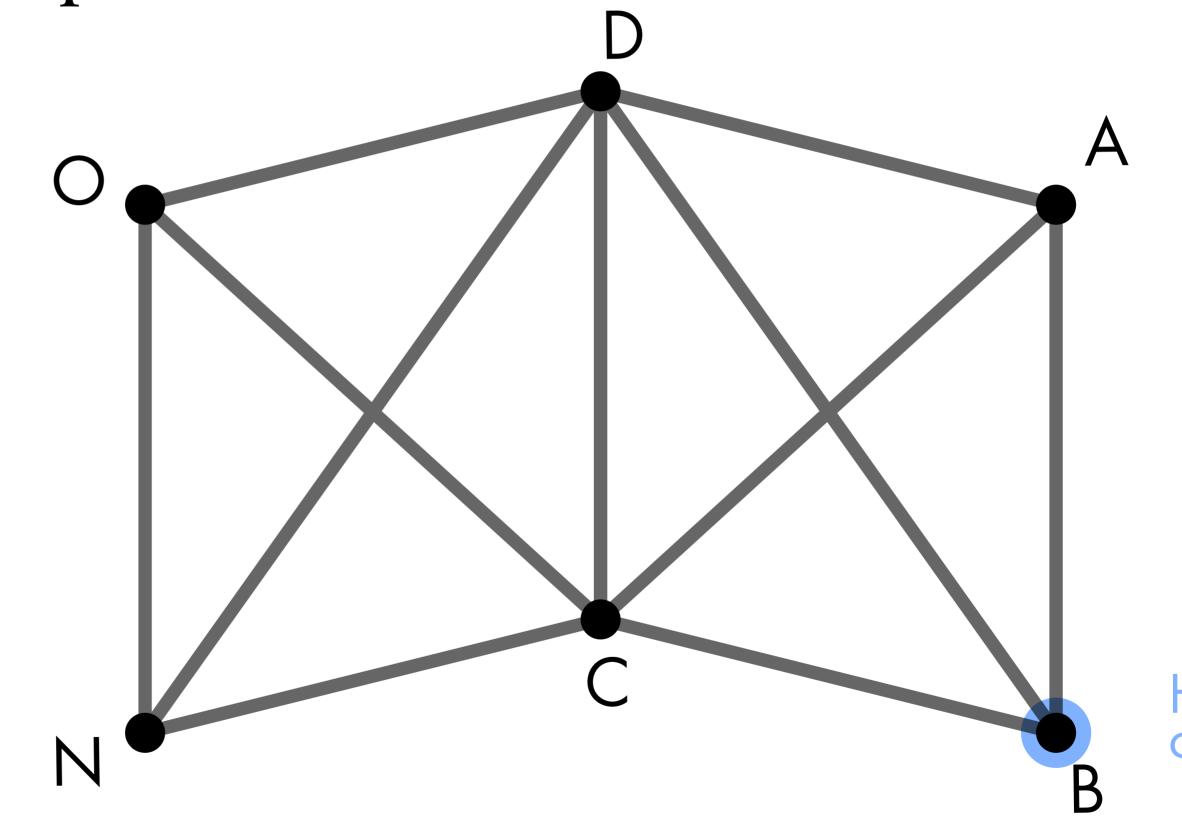


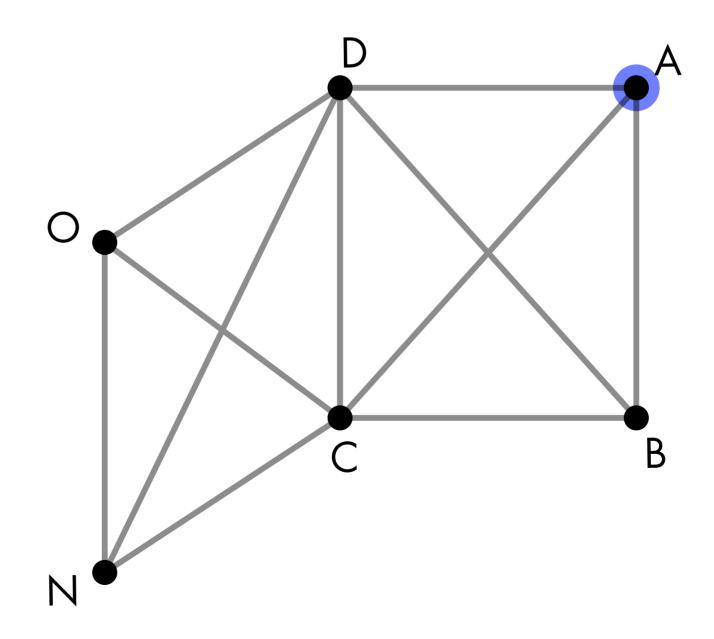


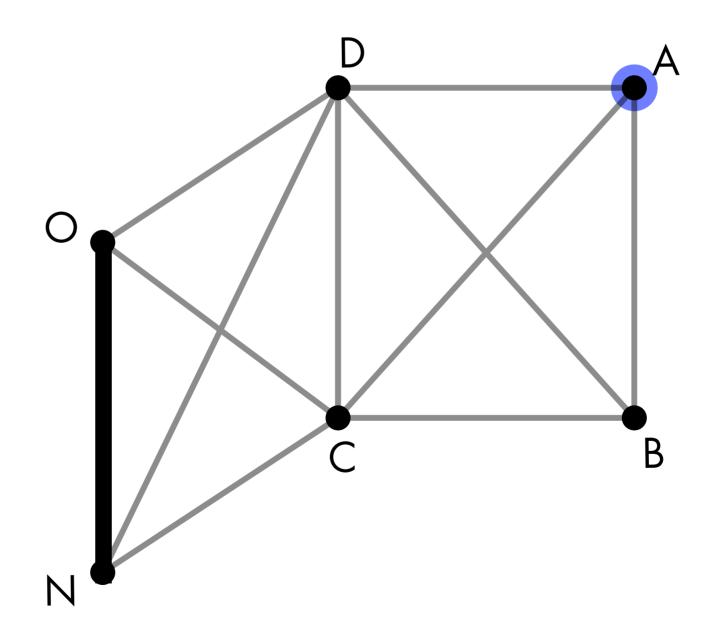


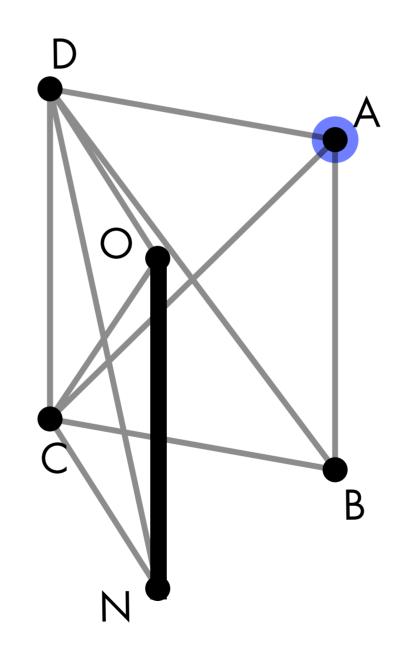
R3



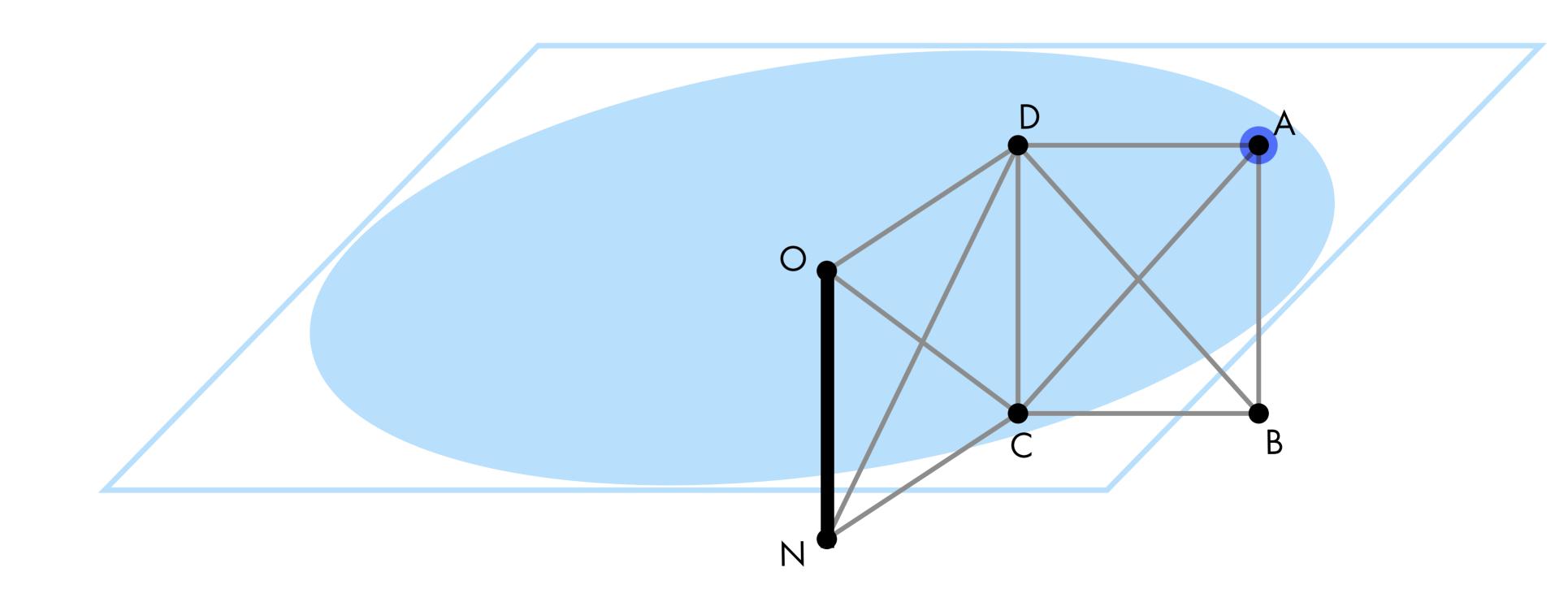


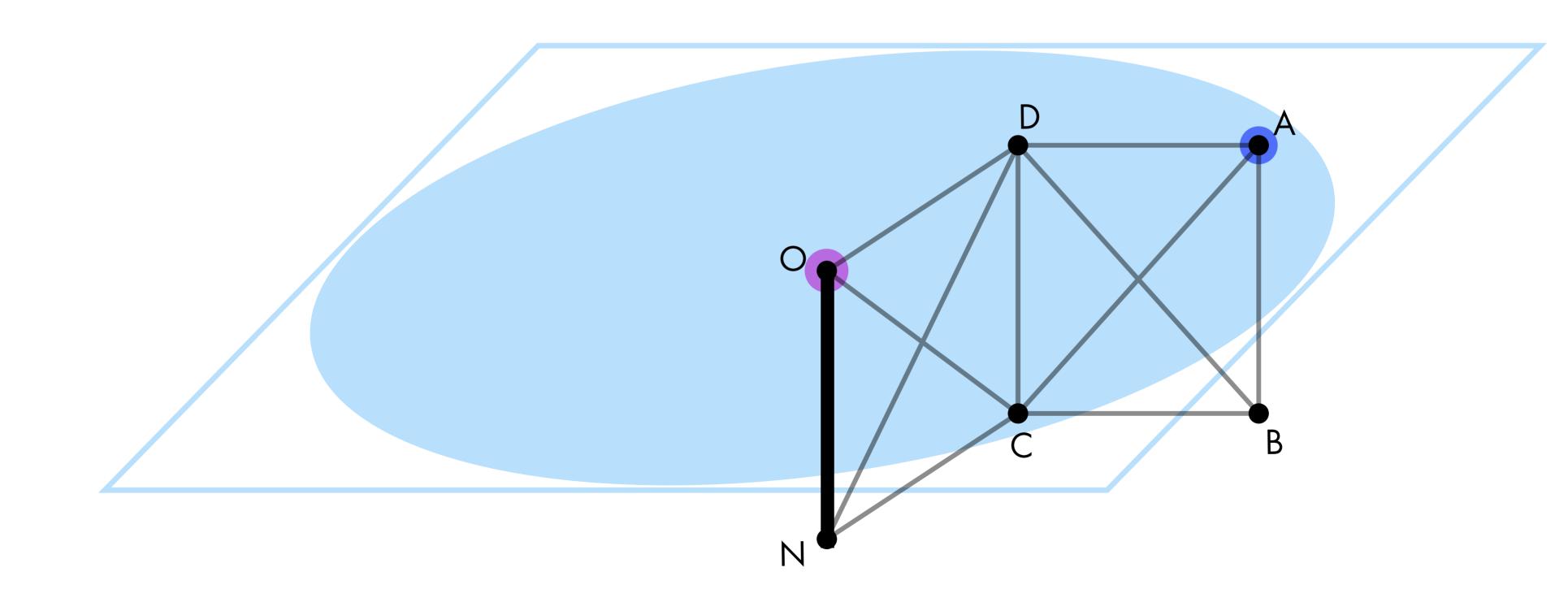


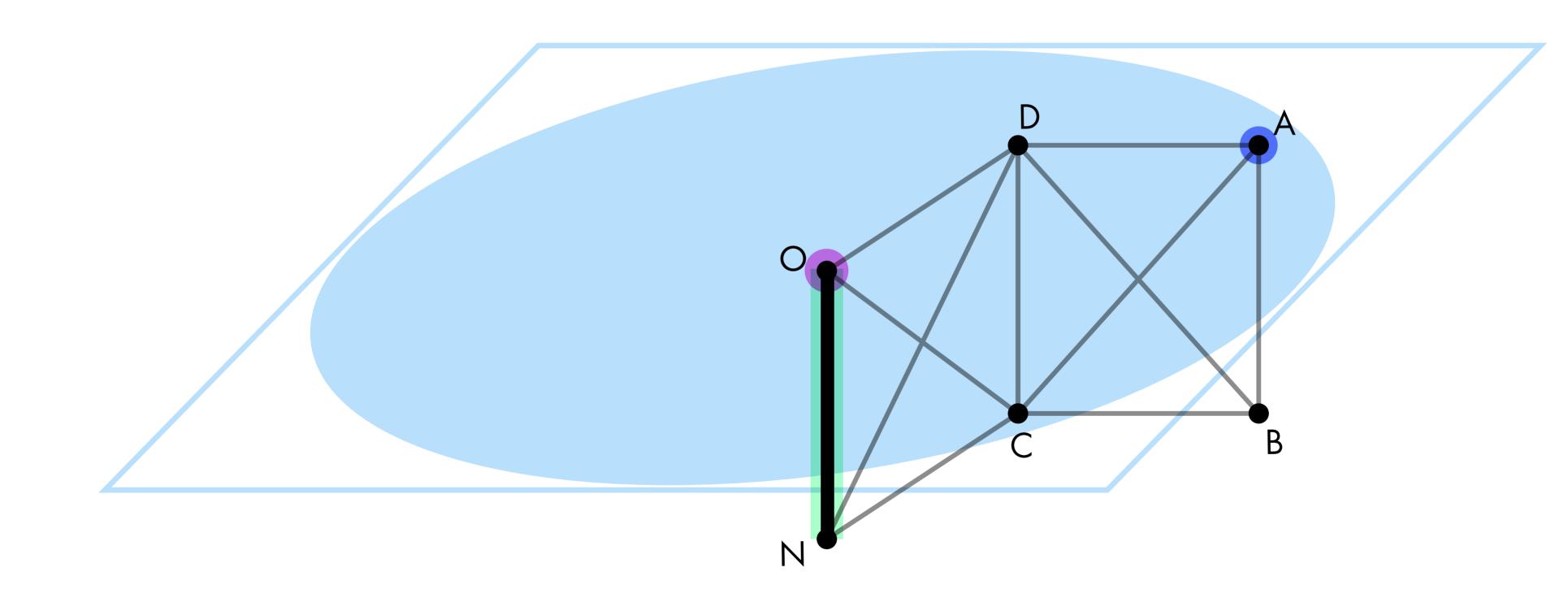




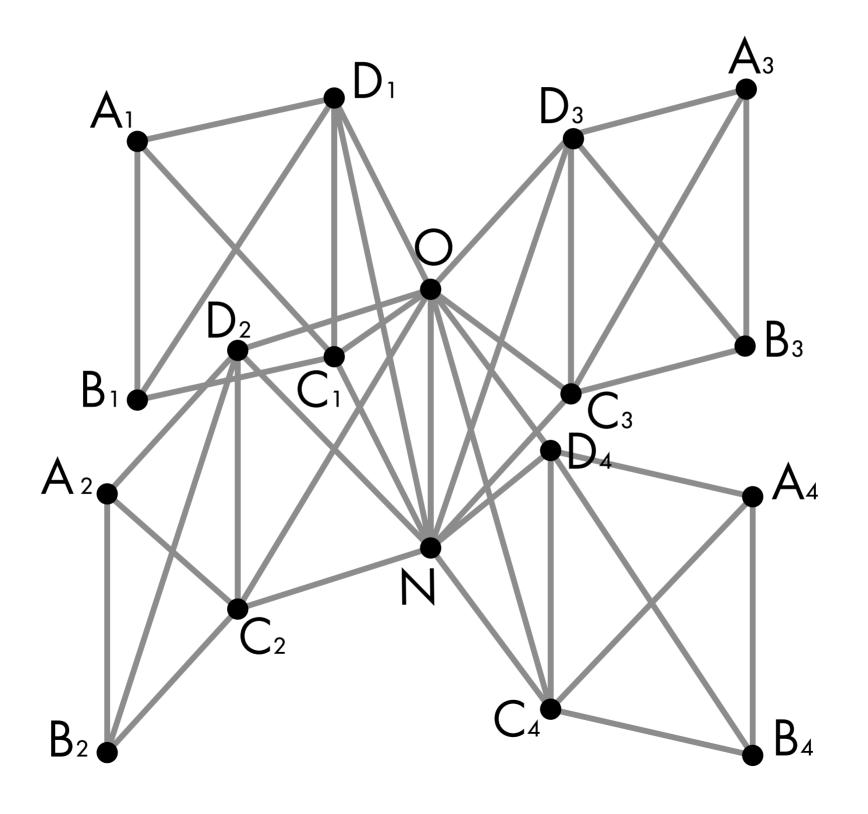




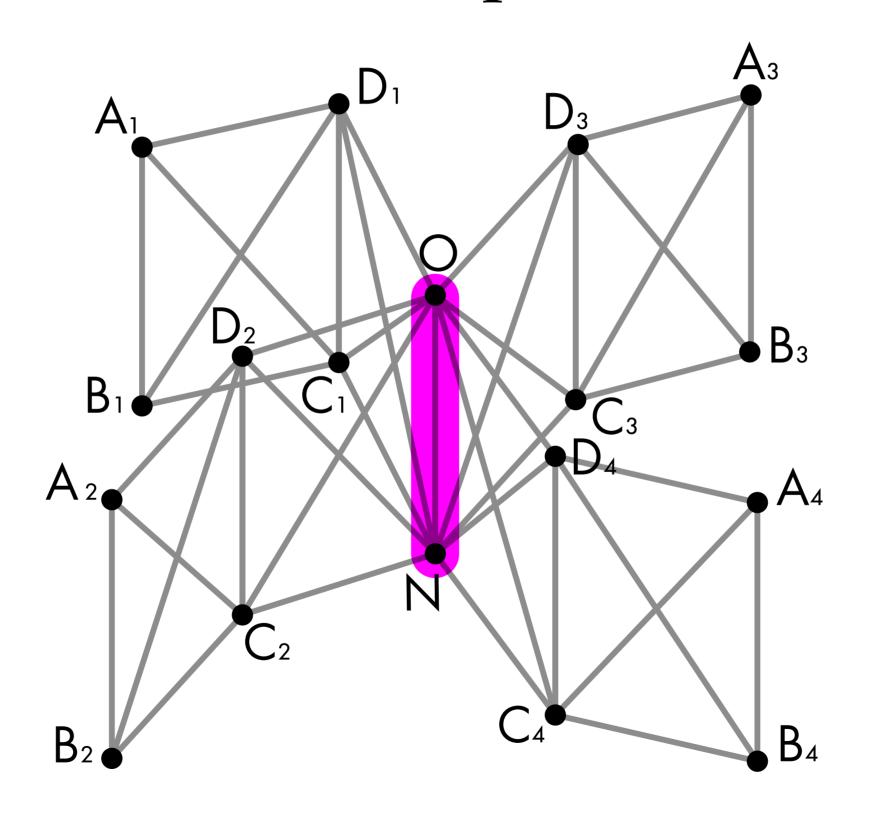




Шарнирная книга с 4 страницами

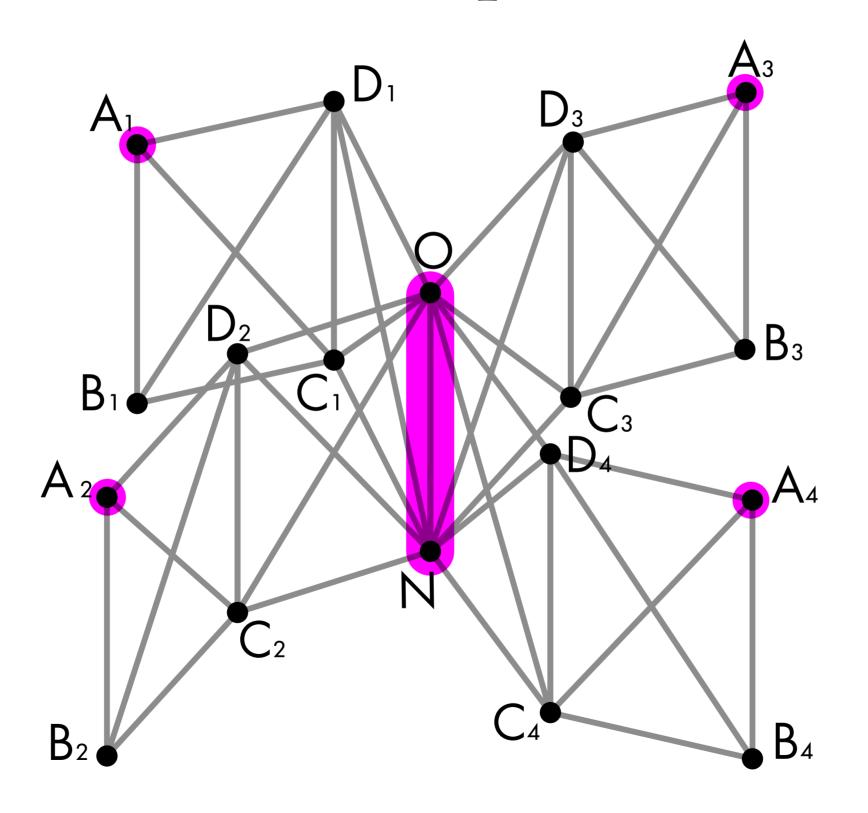


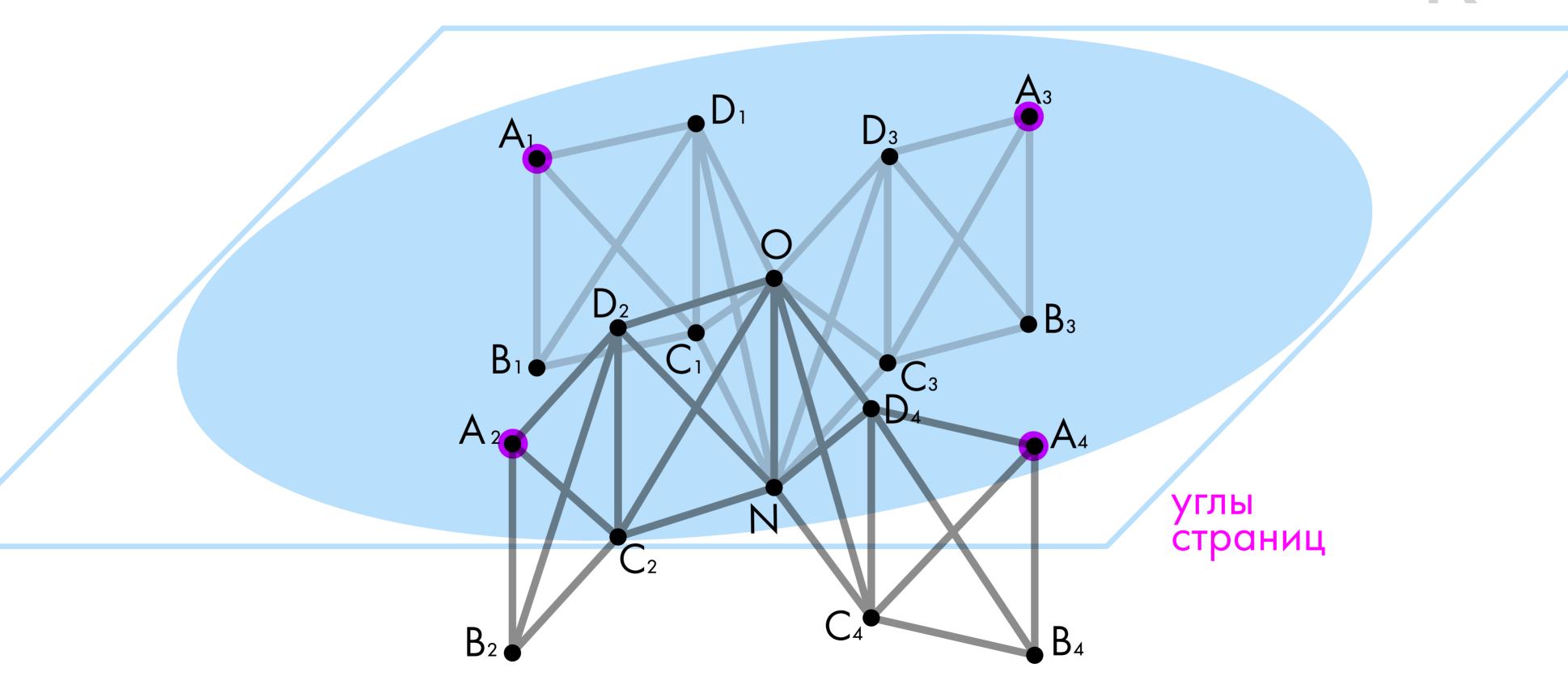
Шарнирная книга с 4 страницами



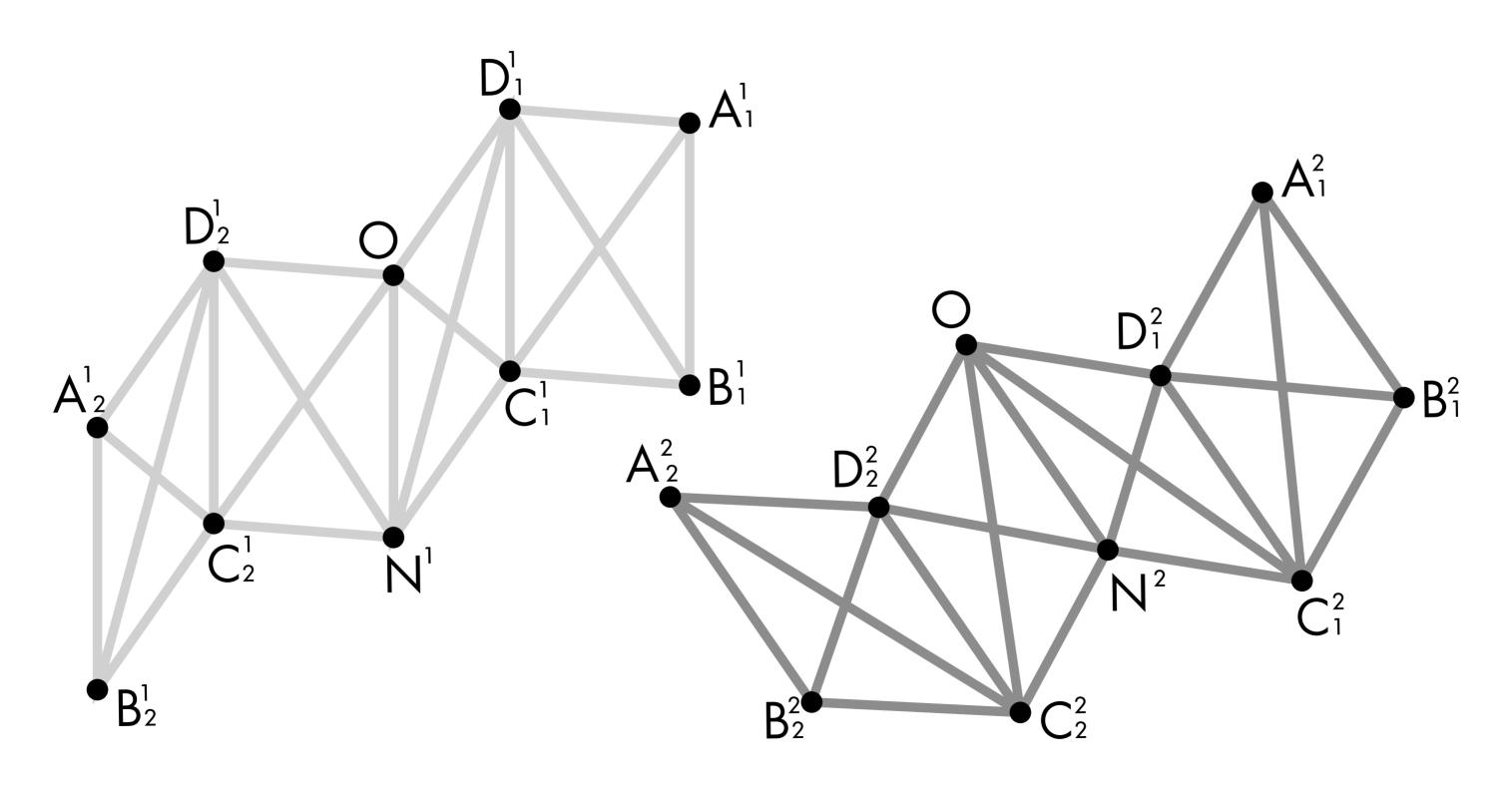
переплёт

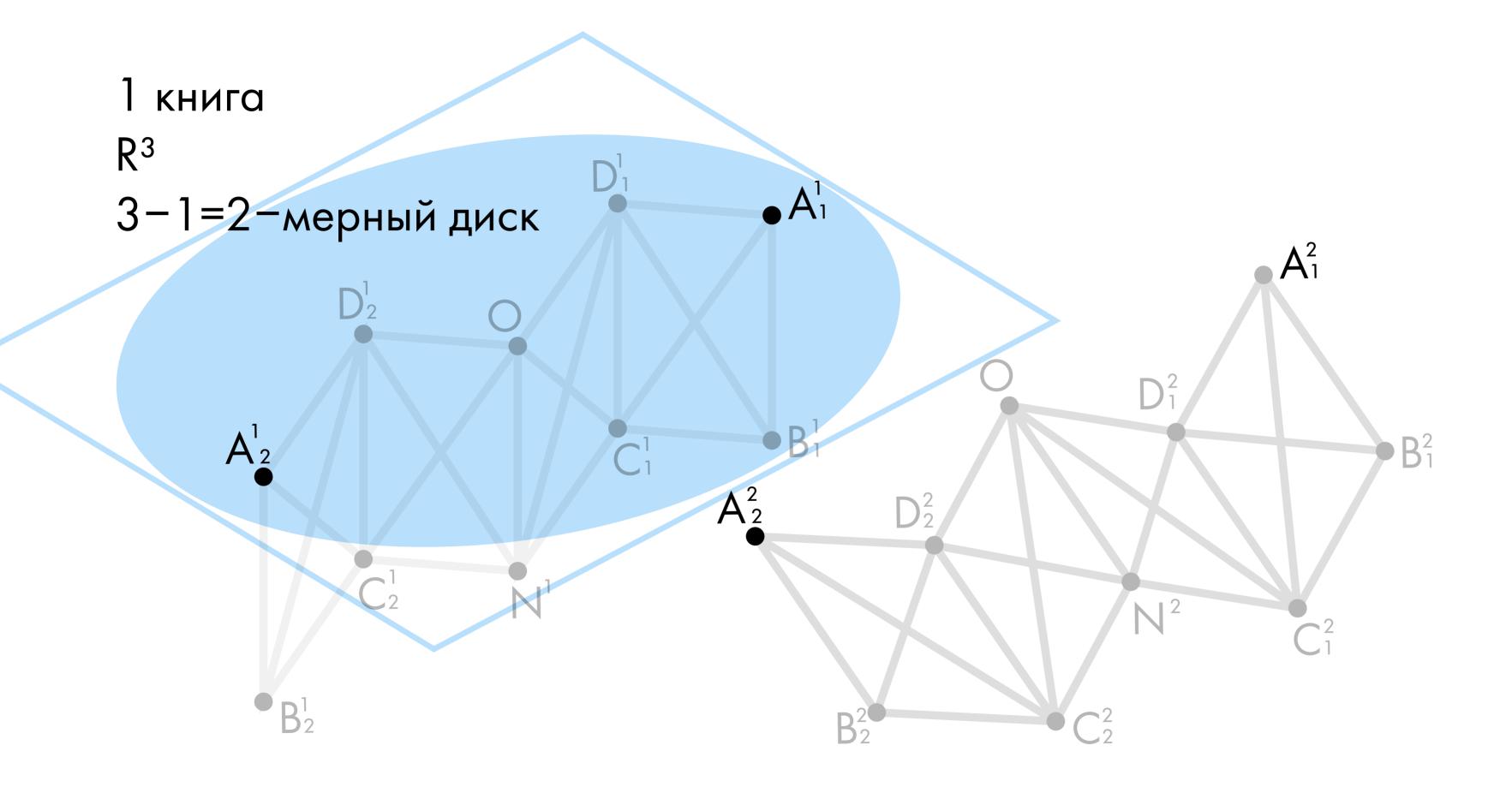
Шарнирная книга с 4 страницами



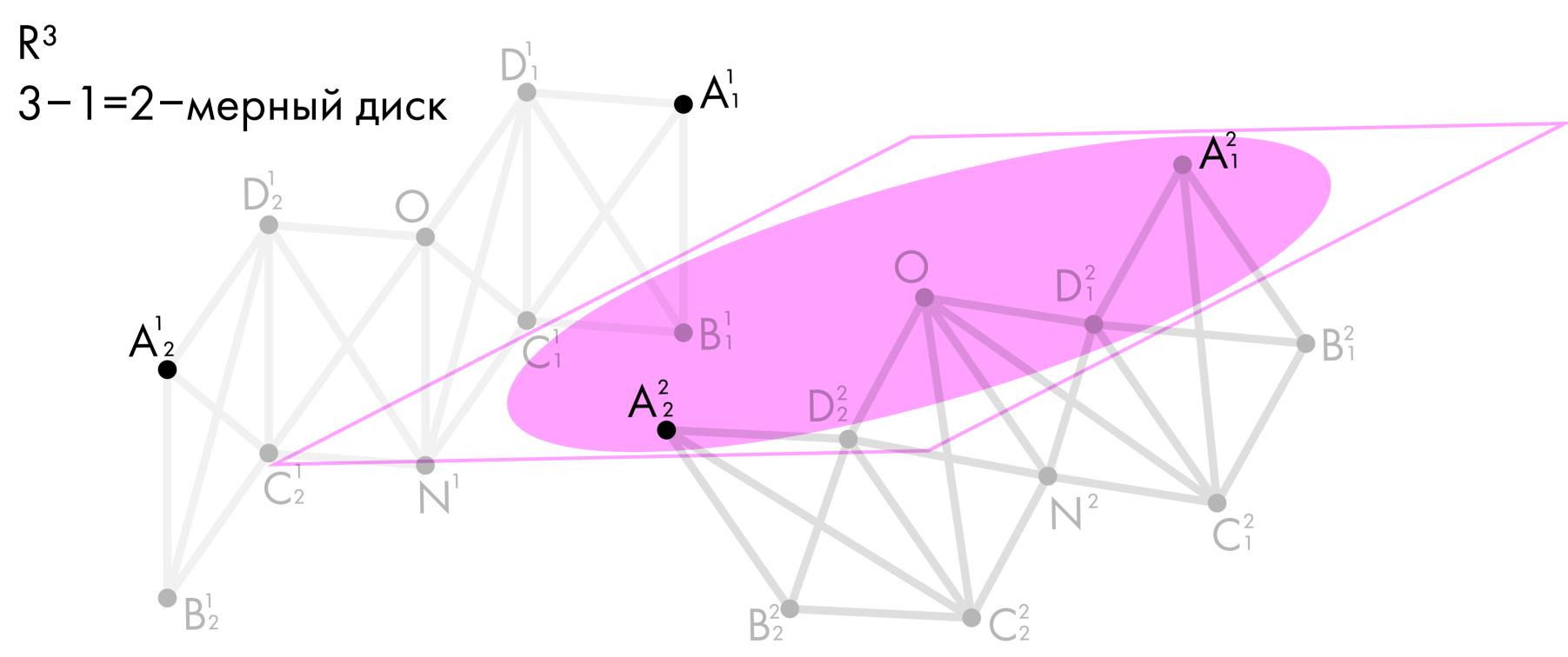


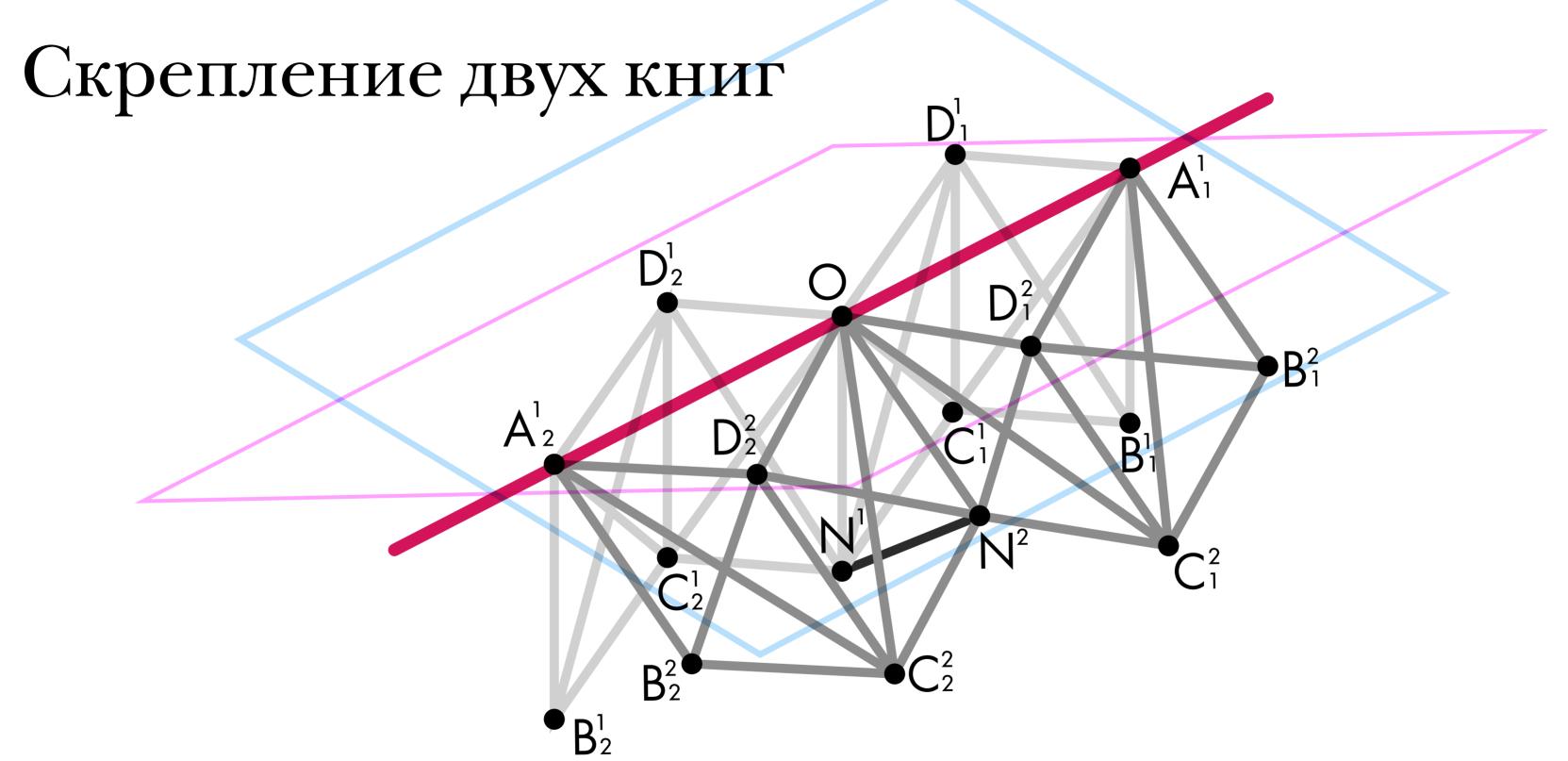
Две книги с двумя страницами

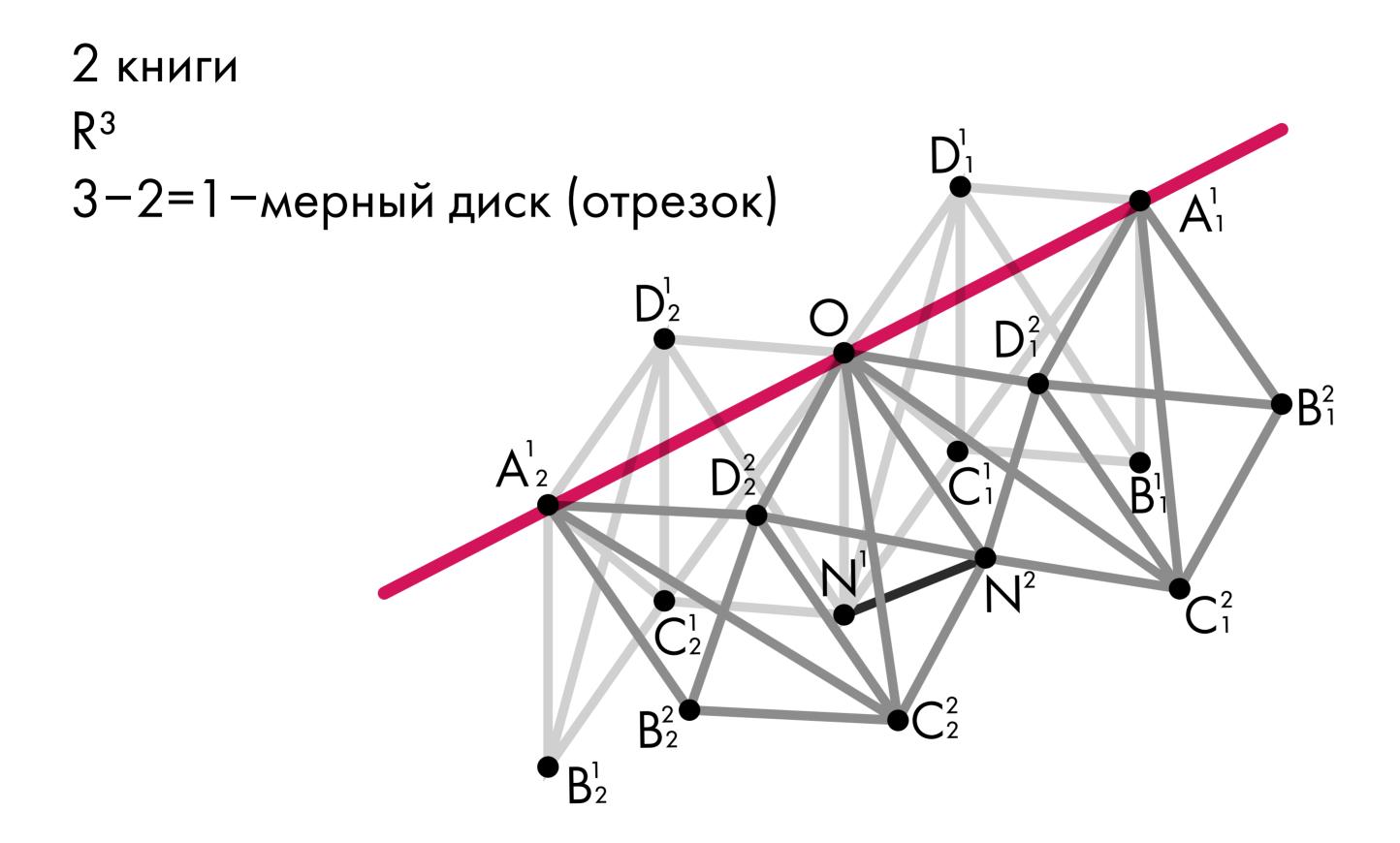




1 книга







Движение точек из пространства размерности n по подпространству размерности n-k (n≥3, 1 ≤k<n)

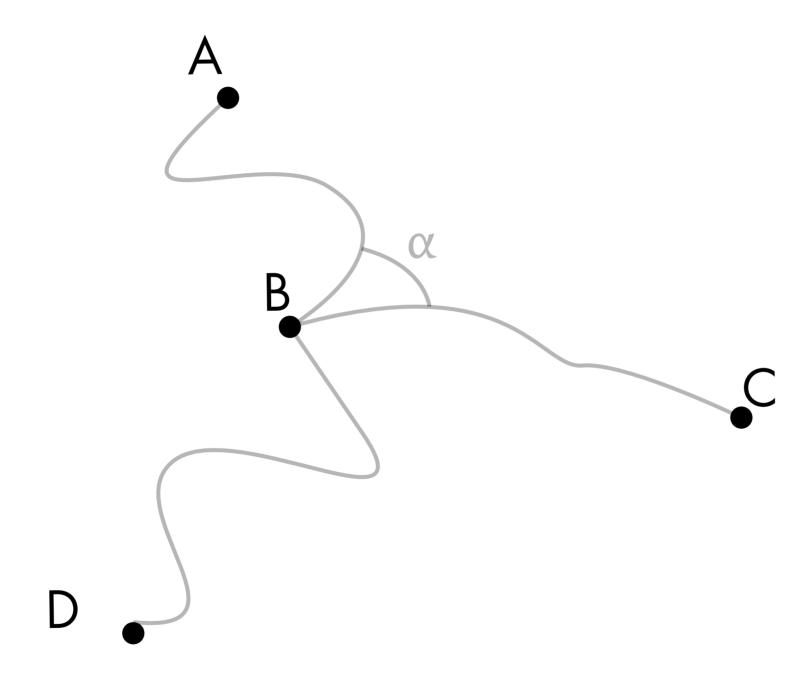
```
n=3, k=1
Трёхмерный механизм, двигающий набор точек по плоскости
n=3, k=2
Трёхмерный механизм, двигающий набор точек по прямой
k=n-2
п-мерный механизм, двигающий набор точек по плоскости
k=n-1
п-мерный механизм, двигающий набор точек по прямой
```

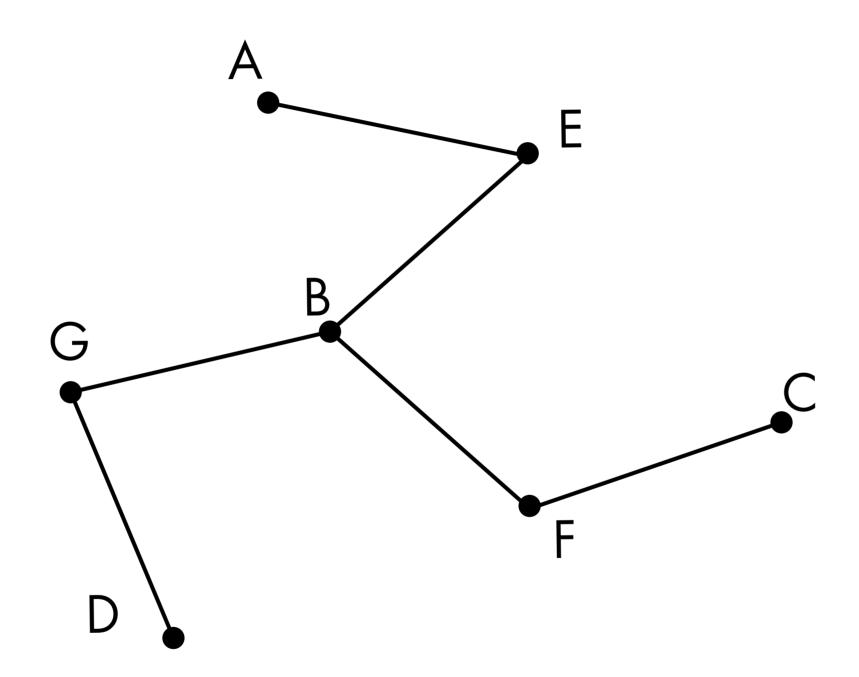
Основной результат часть I

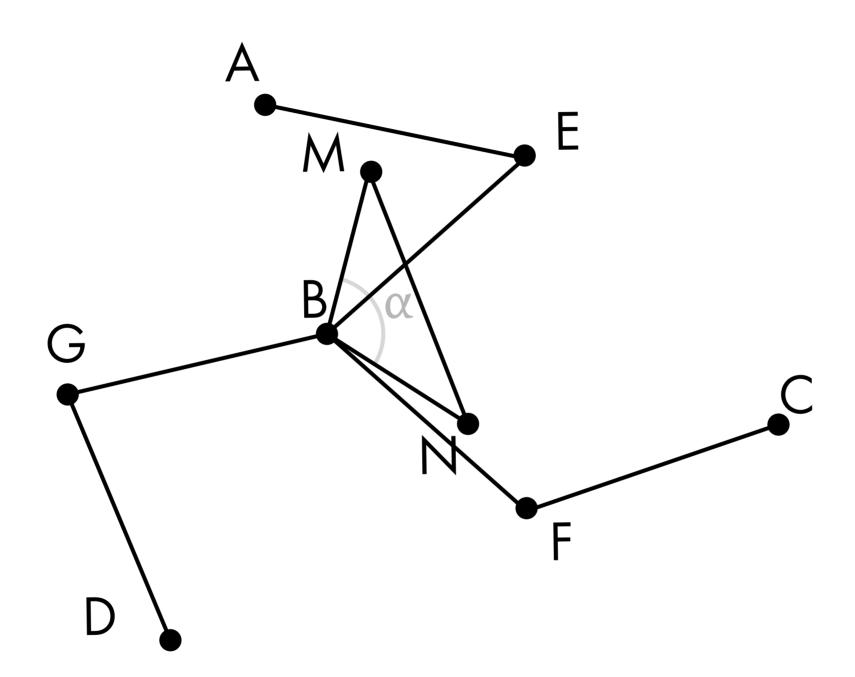
d

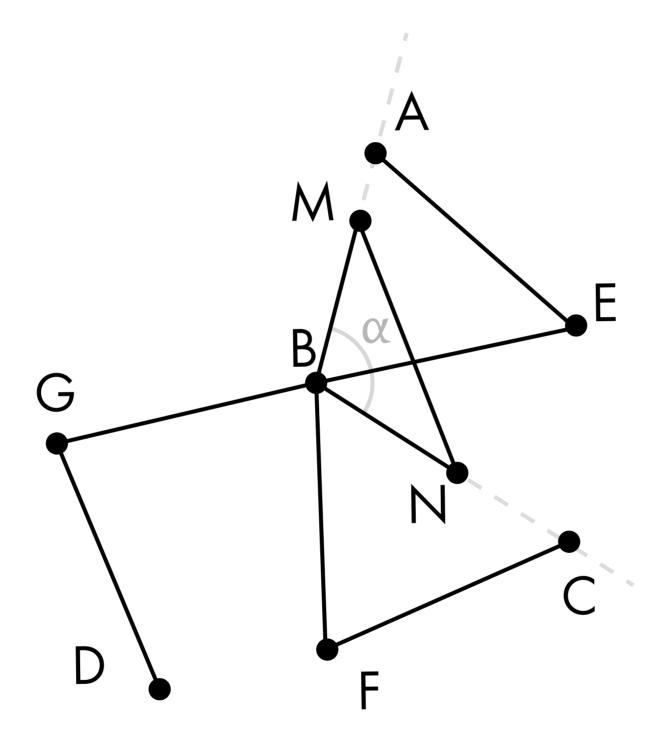
Теорема 1

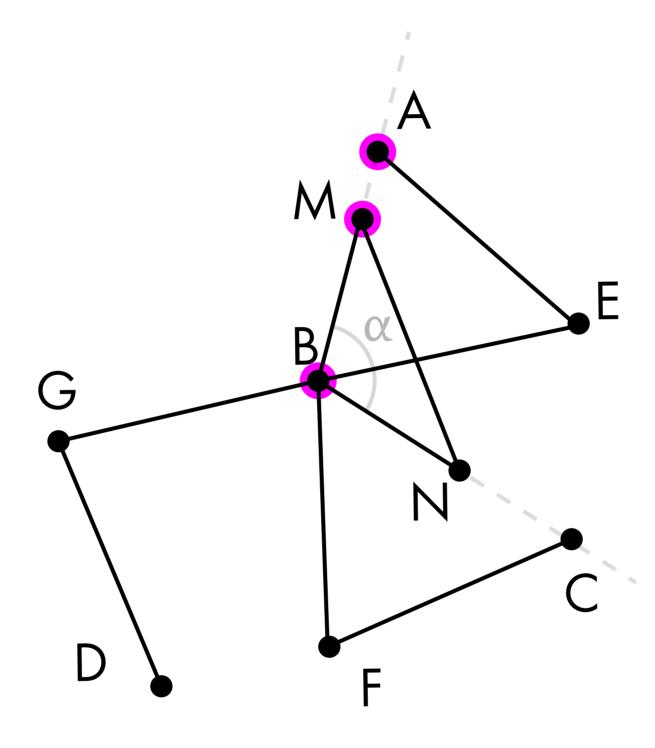
Теорема 0.1. Для любого множества $[G, \omega]_r$ сетей в пространстве $\mathbb{R}^d c$ заданной угловой структурой ω (строгой или релаксированной), максимальная длина ребра которых не превосходит r, существует d-мерный шарнирный механизм, который рисует $[G, \omega]_r$.

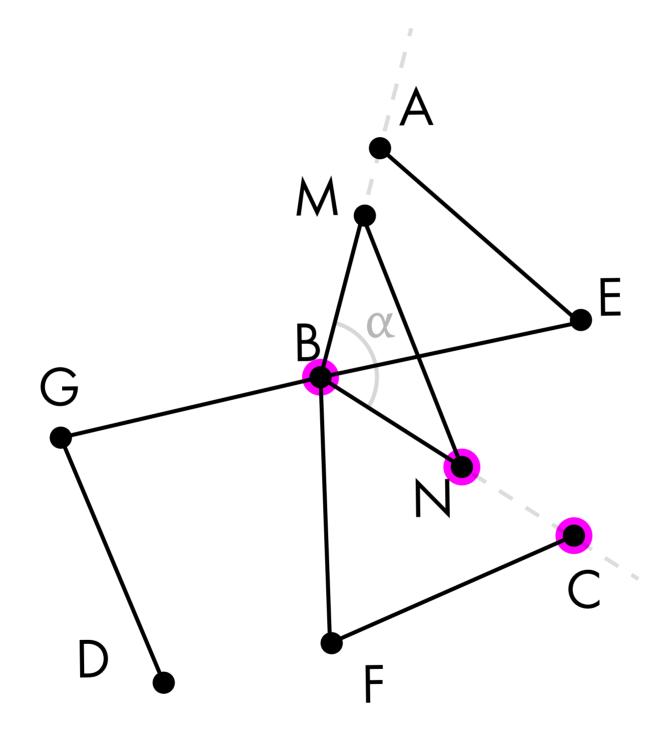












Кратчайшие сети

Сети Штейнера

 $M \subset \Omega$ — конечное множество

 Γ соединяет M, если $M = \Gamma(W)$

Если метрическое пространство ограниченно компактно (любое замкнутое ограниченное подмножество в нём компактно), то в таком пространстве для любой конечной границы M существует кратчайшая сеть, соединяющая M.

Будем её называть минимальная сеть Штейнера и обозначать Γ_0 .

Кратчайшие сети на евклидовой плоскости

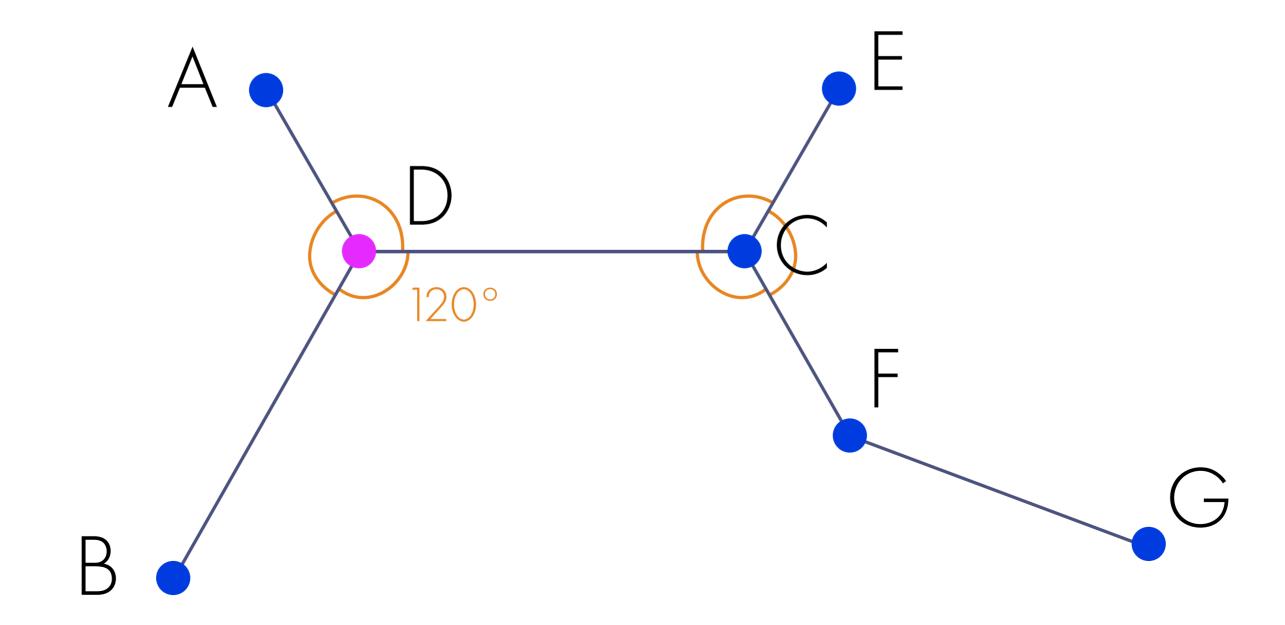
Деревья Штейнера

Граф с границей G^W- depeno Hmeйнера, если G^W- дерево, в котором степени вершин не превосходят 3, вершины степени 1 и 2- граничные

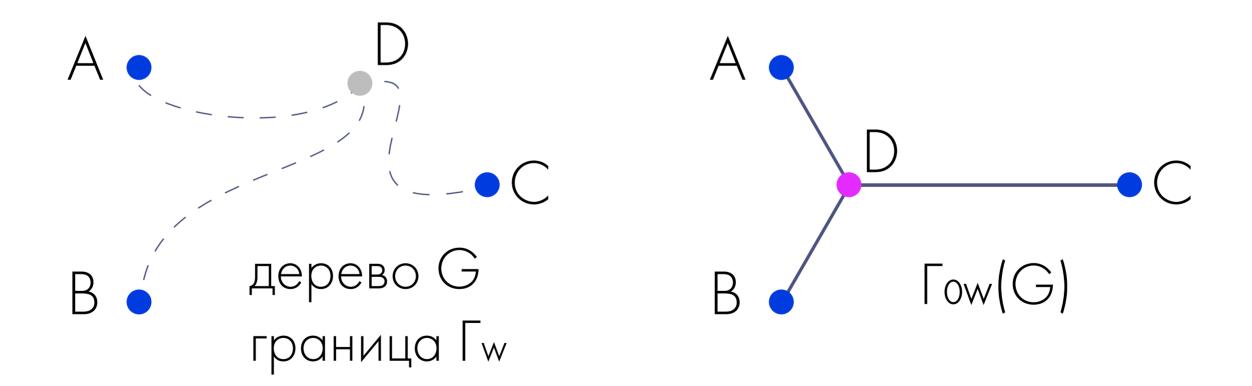
Дерево Штейнера *полное*, если все граничные вершины имеют степень 1

Локально-минимальная сеть

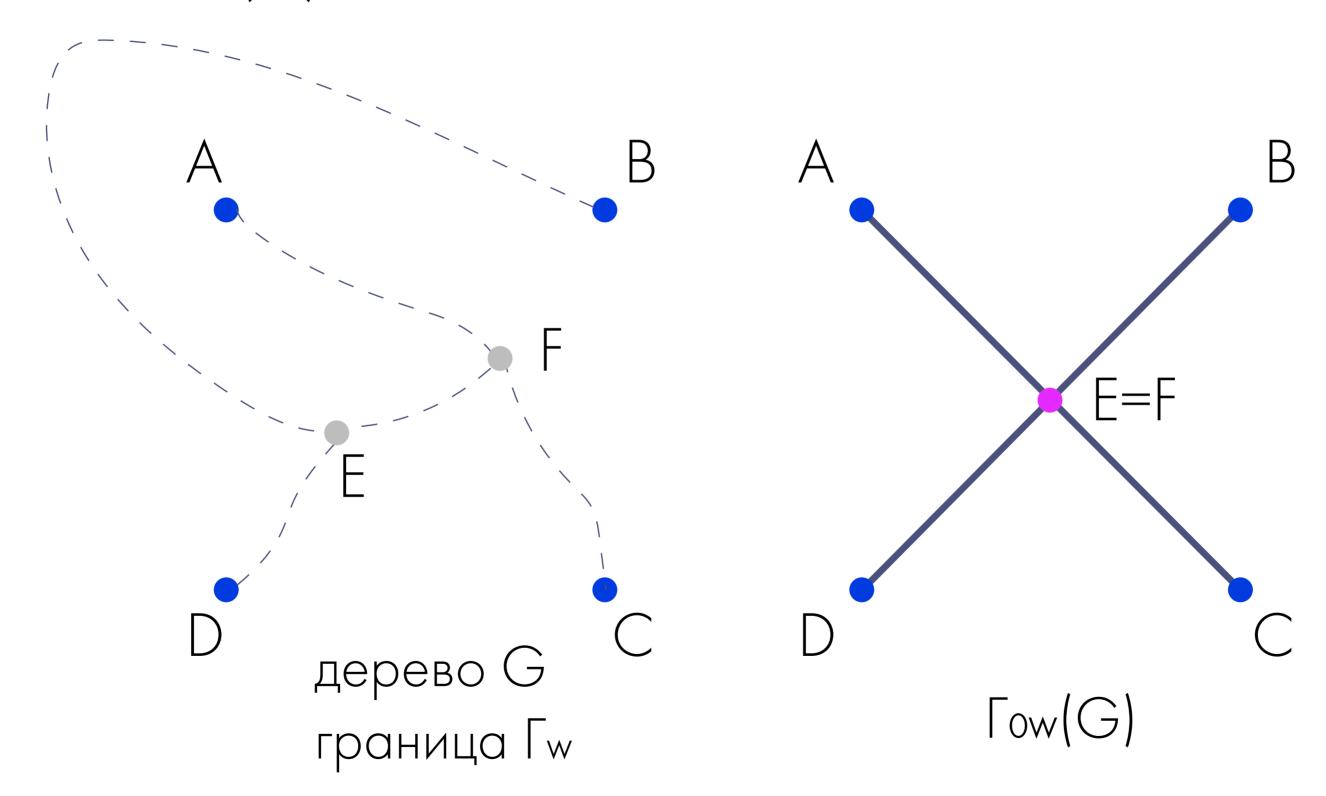
Сеть Г типа G — локально-минимальная, если G — дерево Штейнера и углы между любыми смежными рёбрами равны 120°



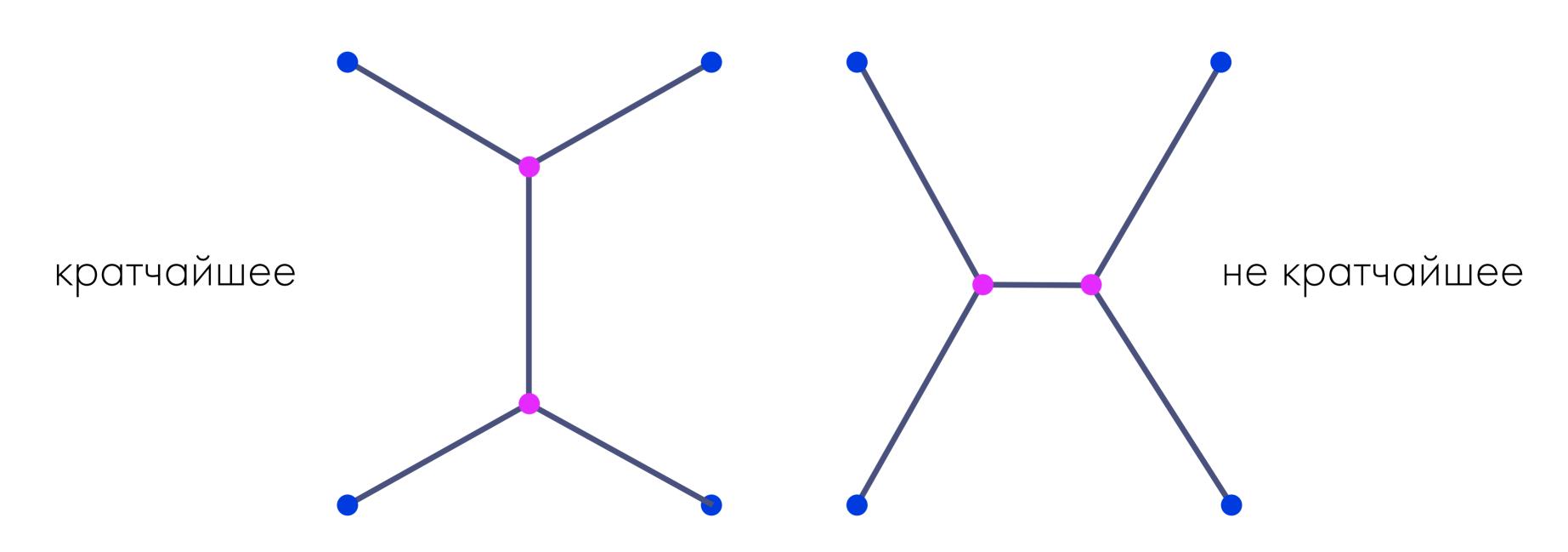
Рассмотрим множество сетей Гимеющих тип G и одинаковую границу Гм и выберем кратчайшую. Обозначим её Гом(G)



Гоw(G) может не быть локально-минимальным



локально-минимальные деревья



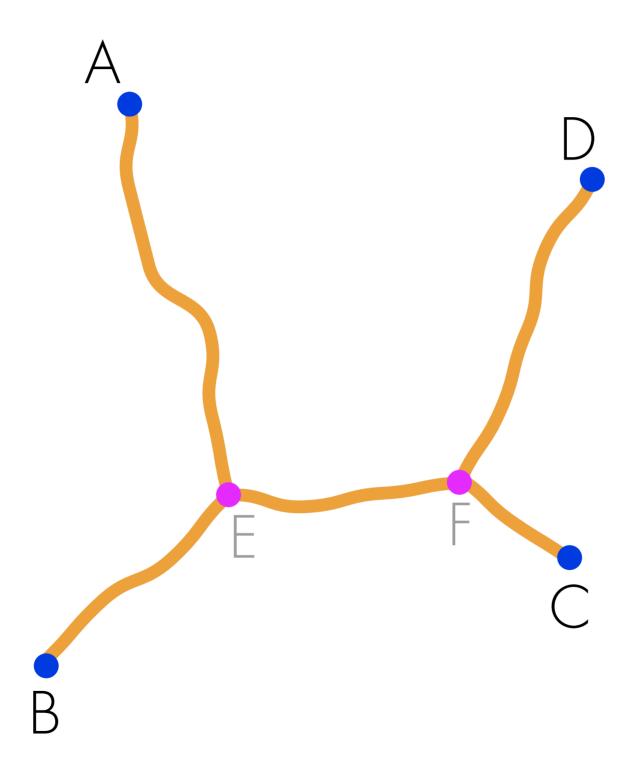
Кратчайшая сеть

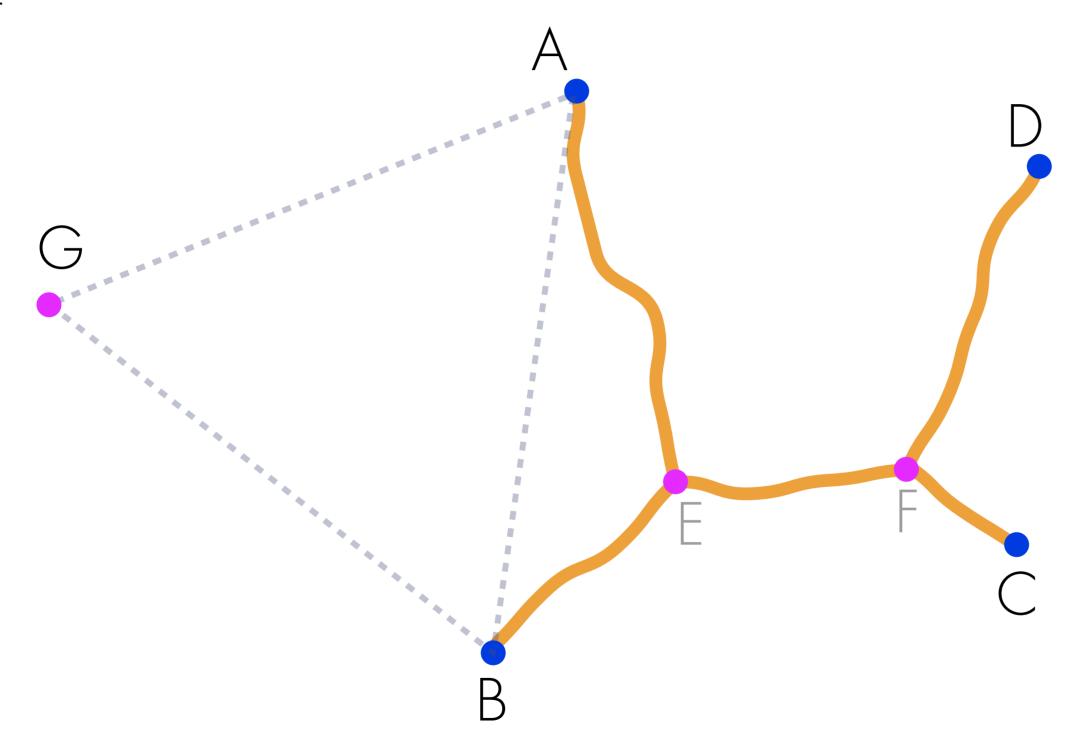
Кратчайшая сеть Го, соединяющая множество M на евклидовой плоскости имеет локально минимальную структуру.

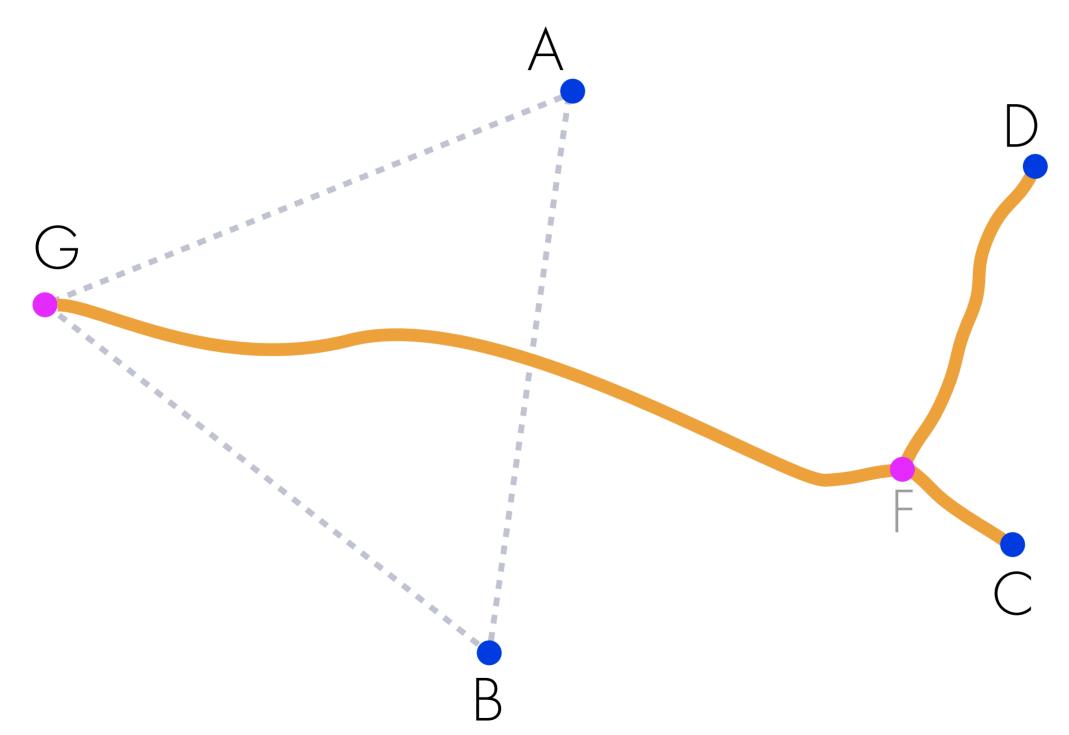
Будем искать кратчайшую сеть, перебирать всевозможные деревья штейнера Gw с границей, содержащей #М точек и для каждого такого дерева рассмотрим всевозможные сети имеющие тип Gw, отображающие границу на М.

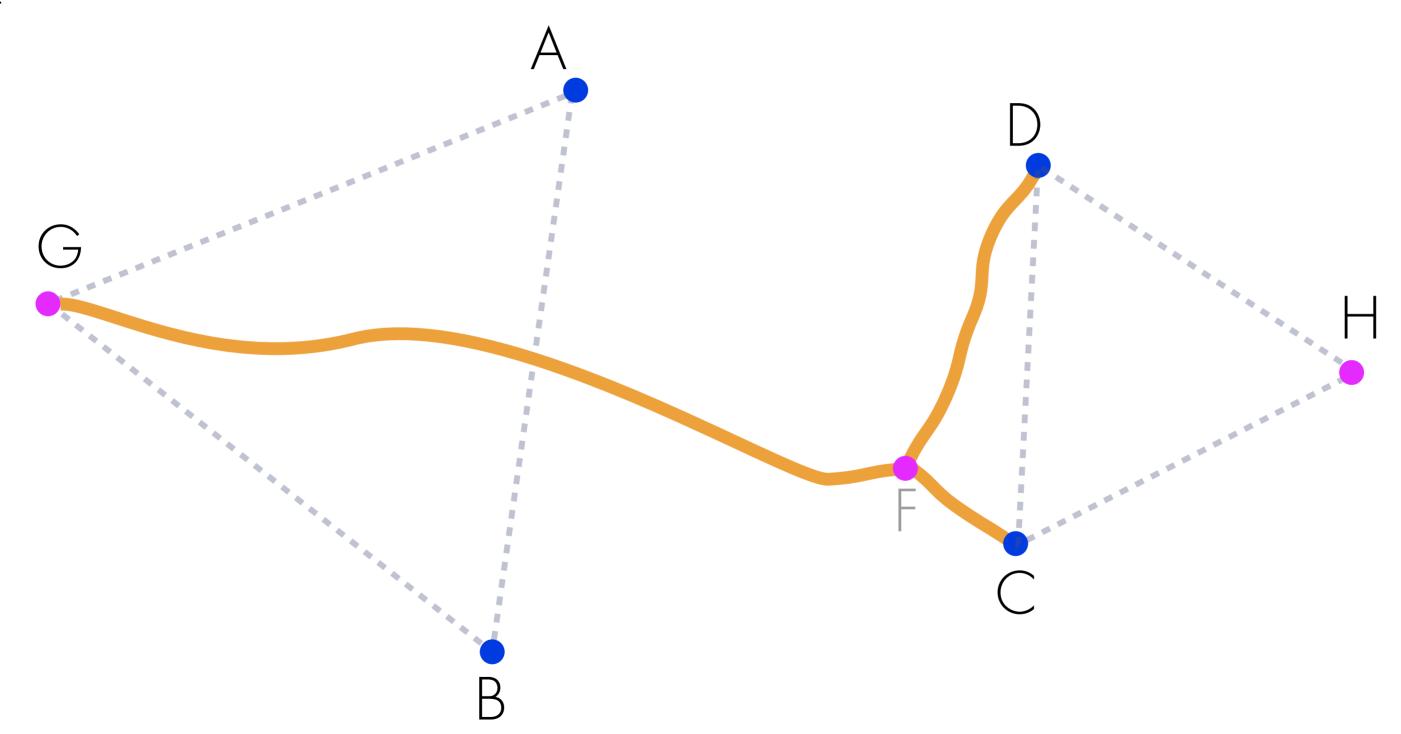
Классический алгоритм Мелзака

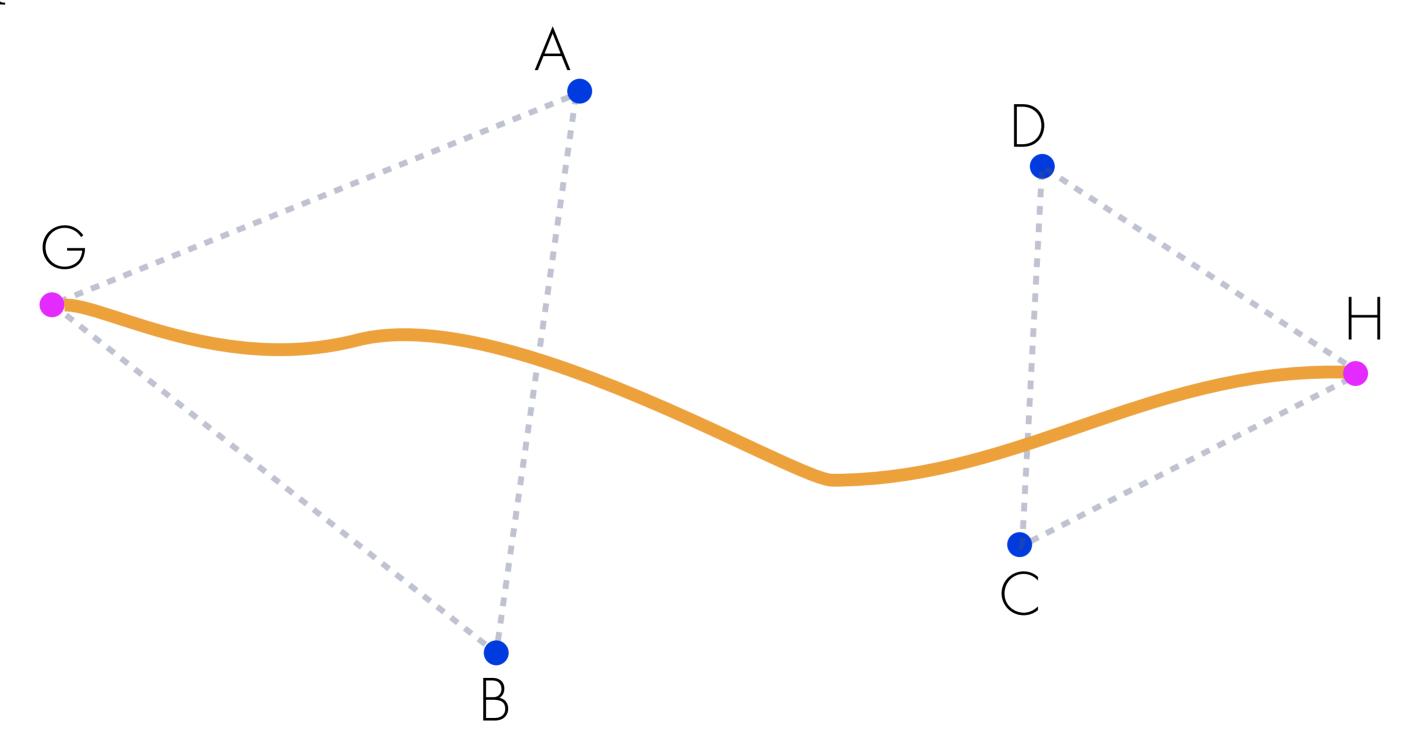
Алгоритм Мелзака проверяет для данного граничного отображения Гw и дерева Штейнера G, будет ли сеть Гоw(G) локально минимальной, и если да, то строит положения внутренних вершин.

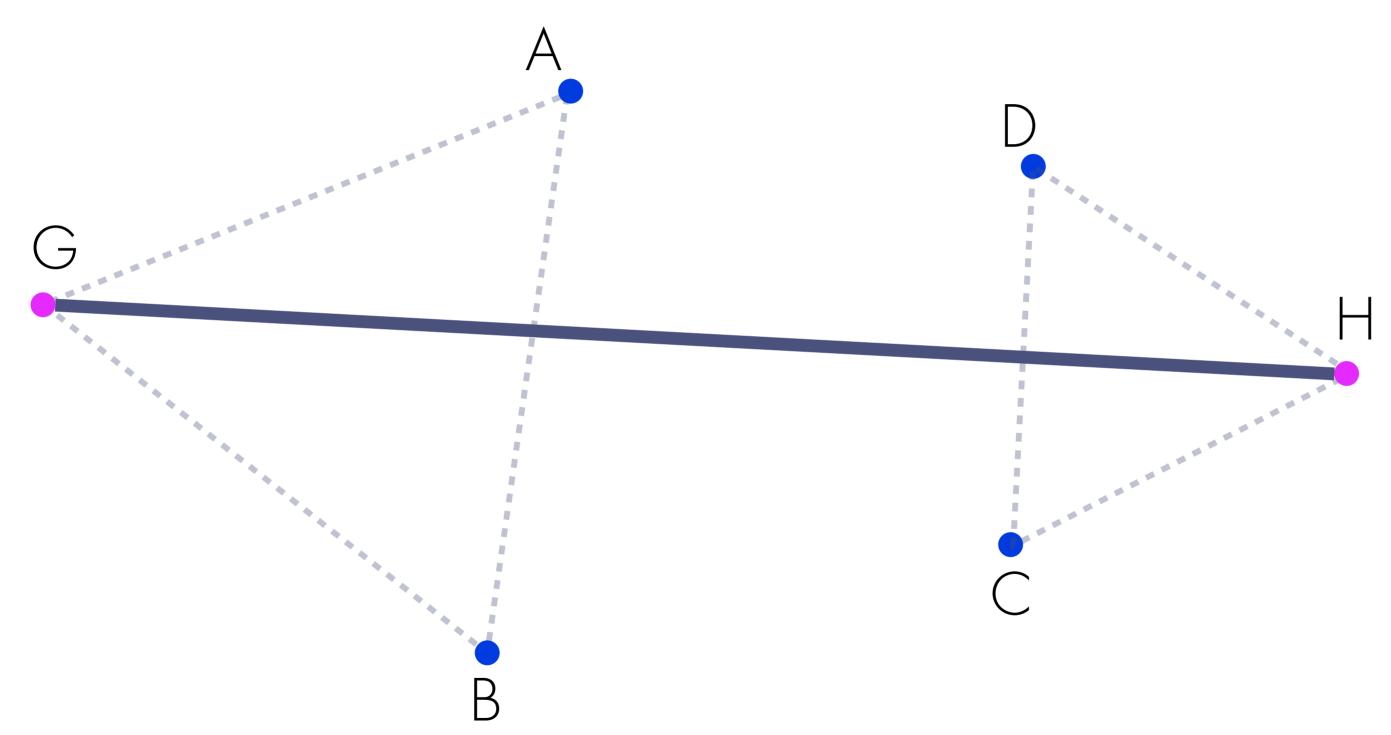


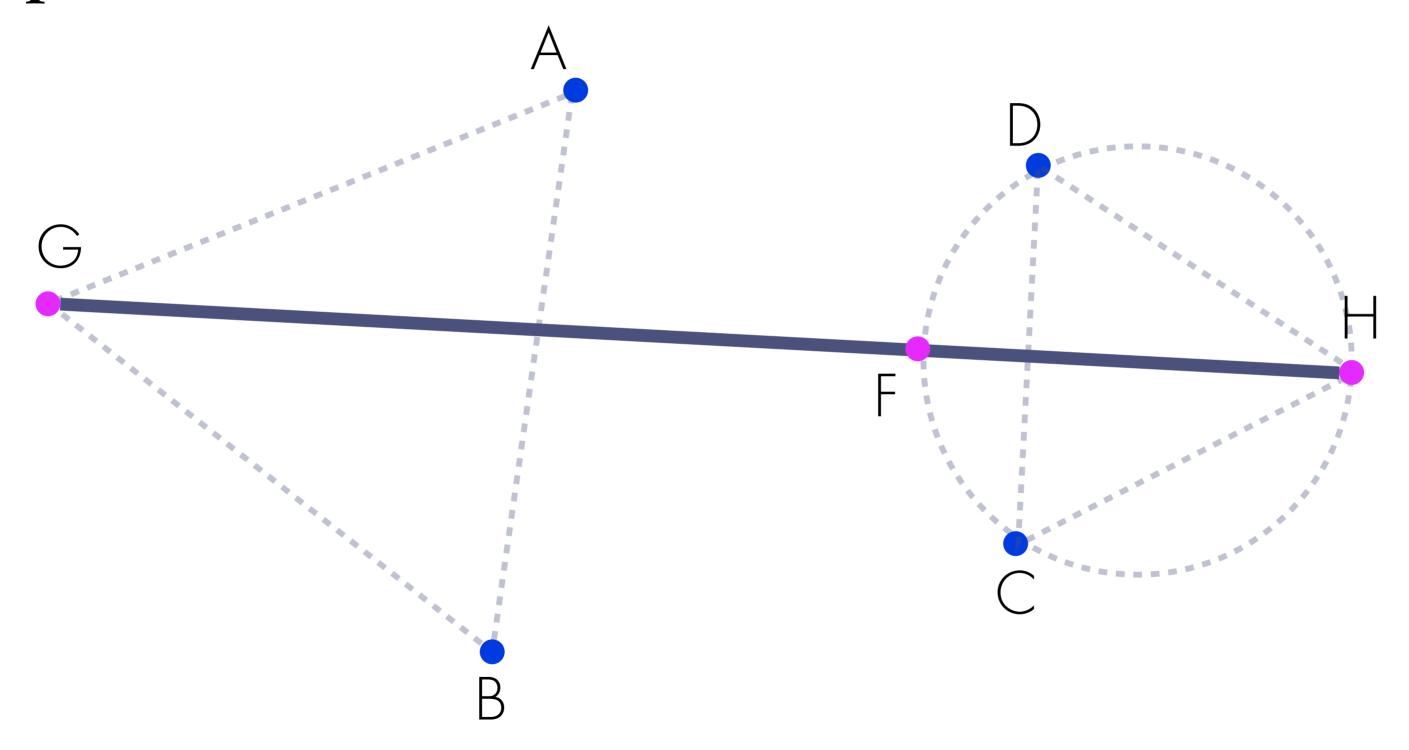




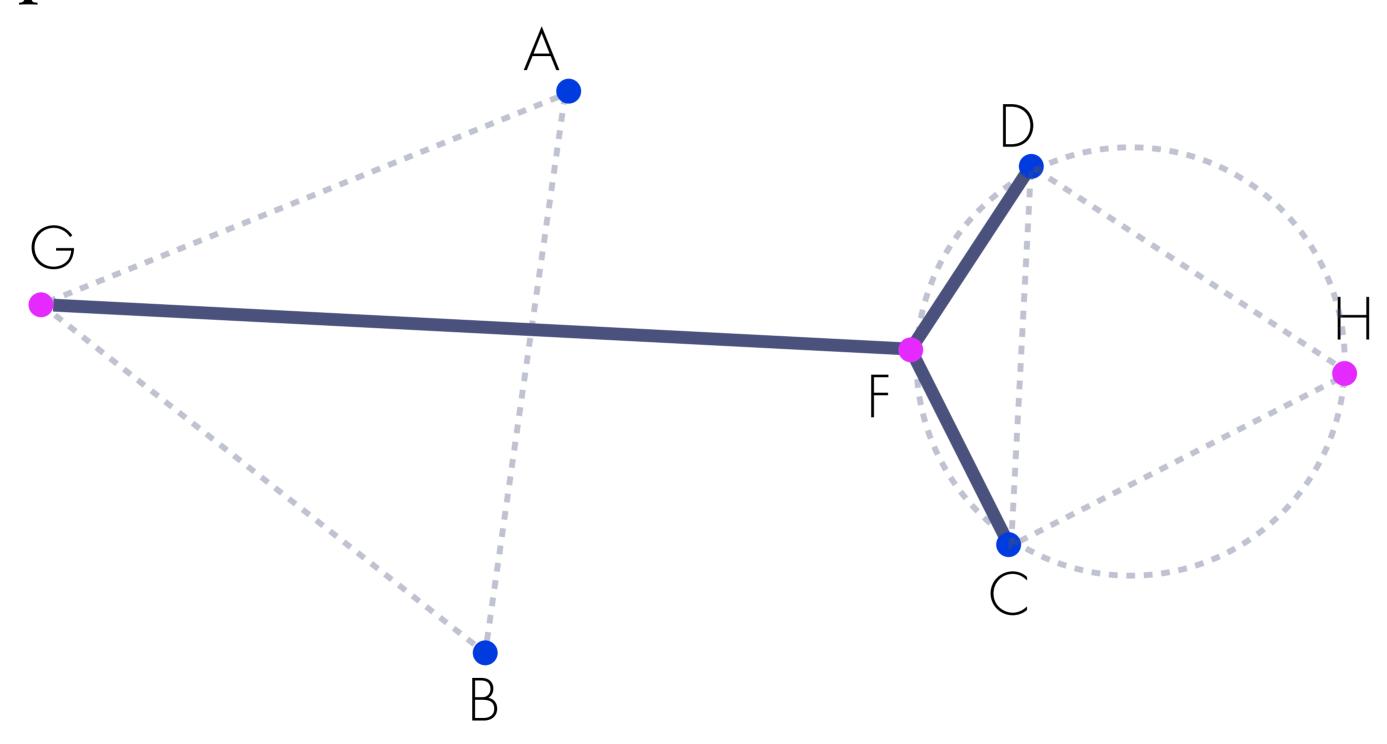


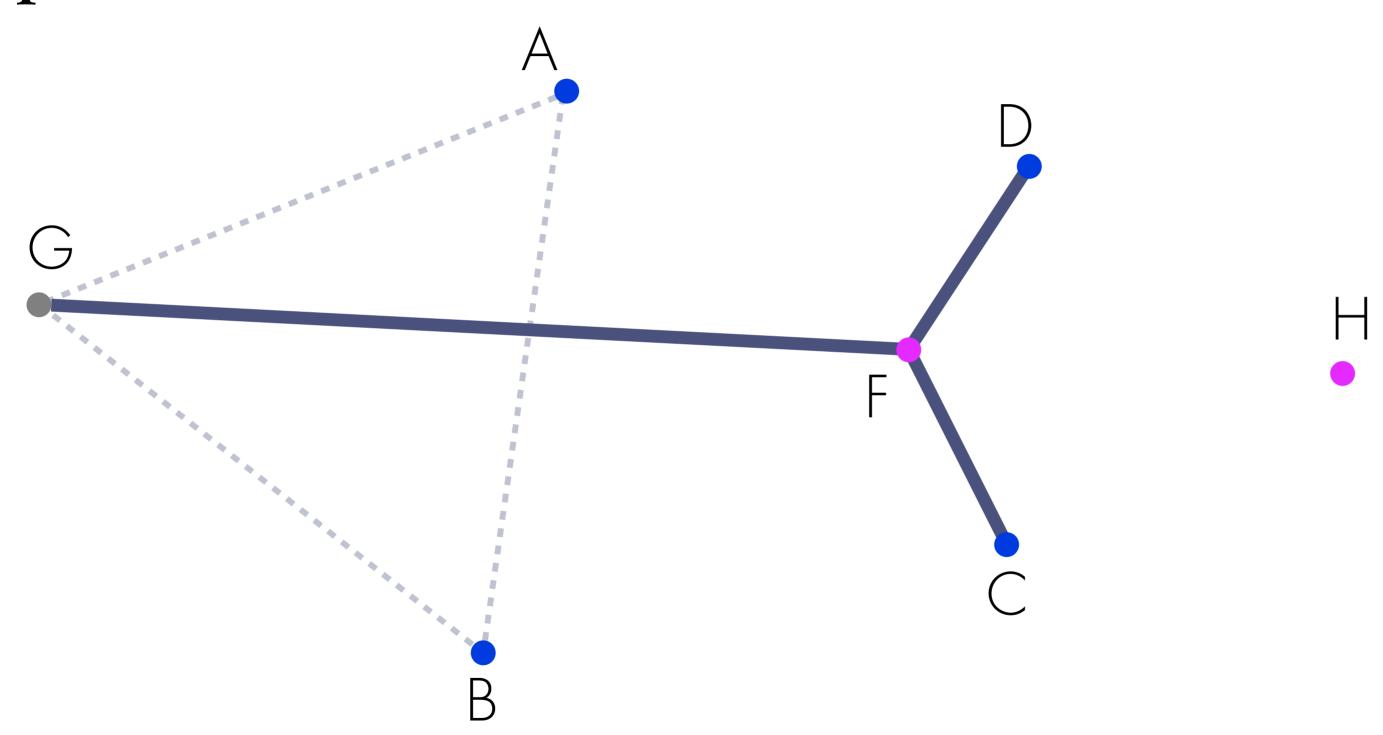


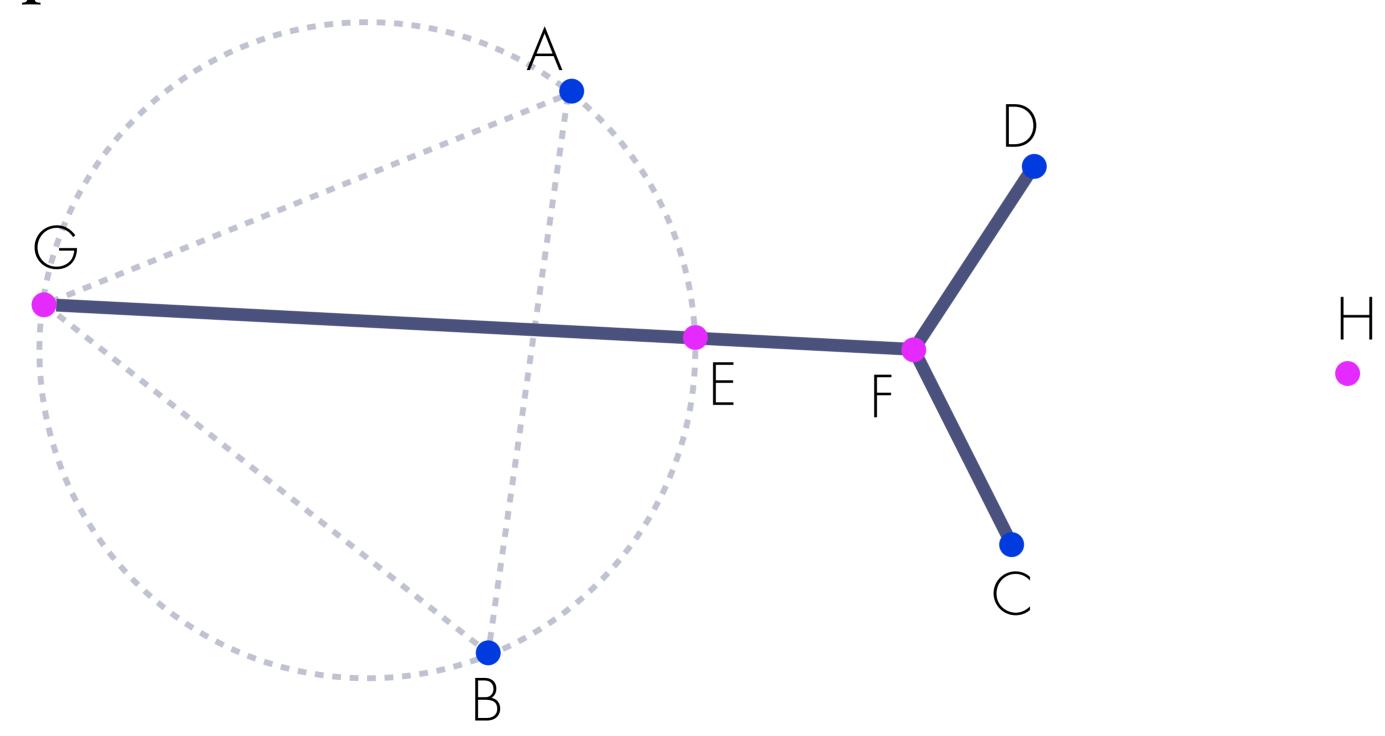


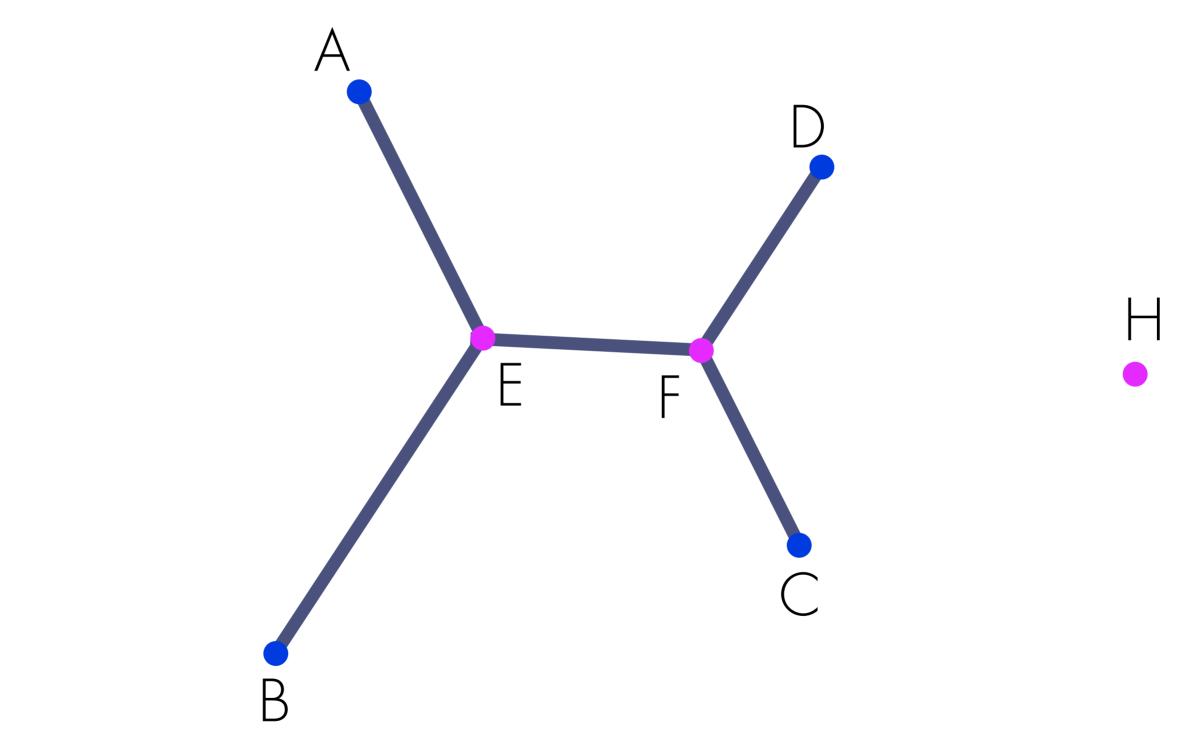


F – пересечение отрезка GH и меньшей дуги DC.







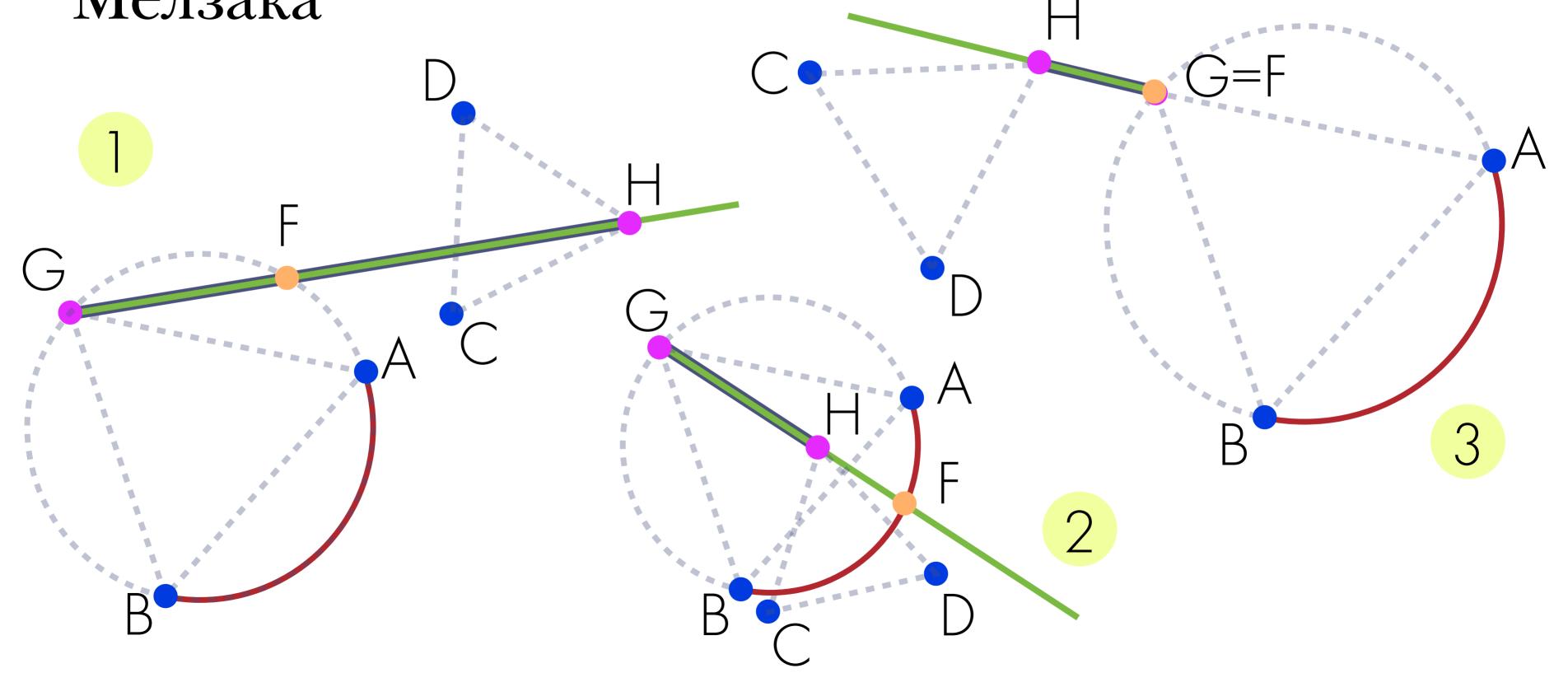


В обратном ходе алгоритма Мелзака возможны **ошибки**, в результате которых он останавливается. Причины:

- $\Gamma_{ow}(G)$ не локально минимально,
- есть неоднозначность, в какую сторону строить правильный треугольник во время прямого хода.

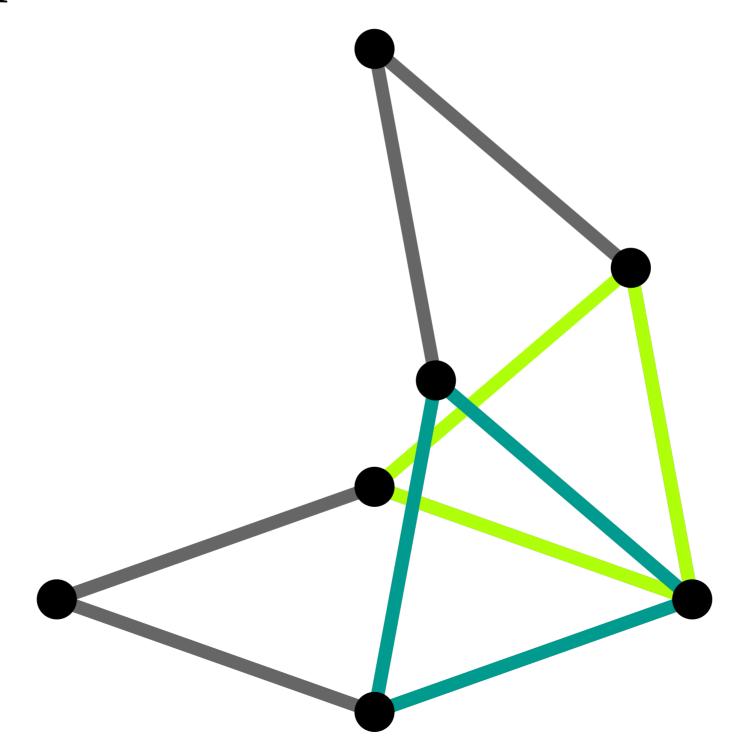
Суть ошибок в том, что отрезок GH может не пересечь меньшую дугу АВ.

Модифицированный алгоритм Мелзака

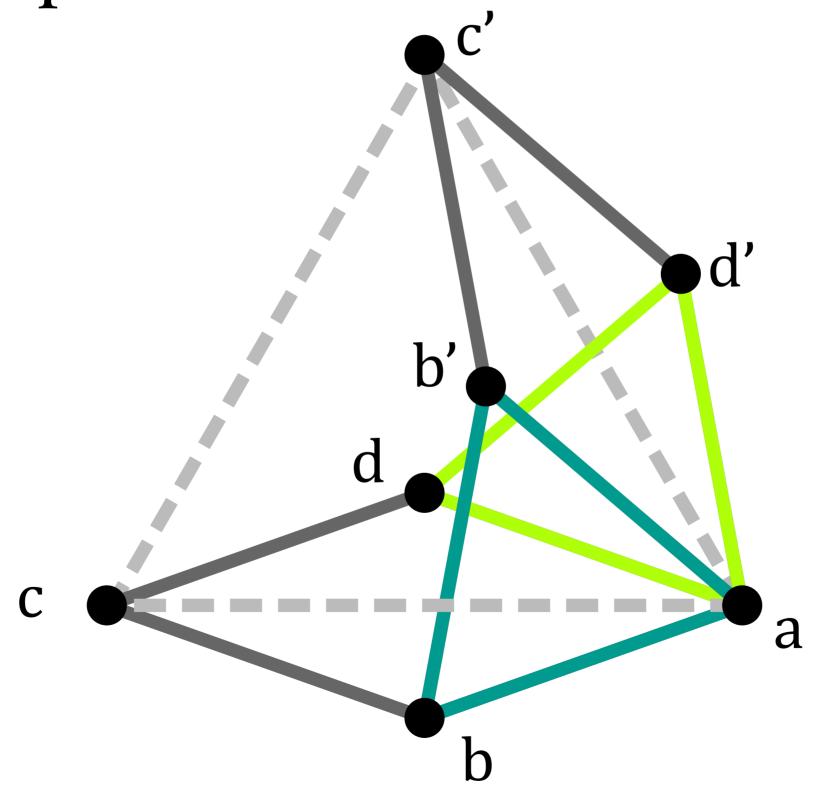


Вспомогательные механизмы

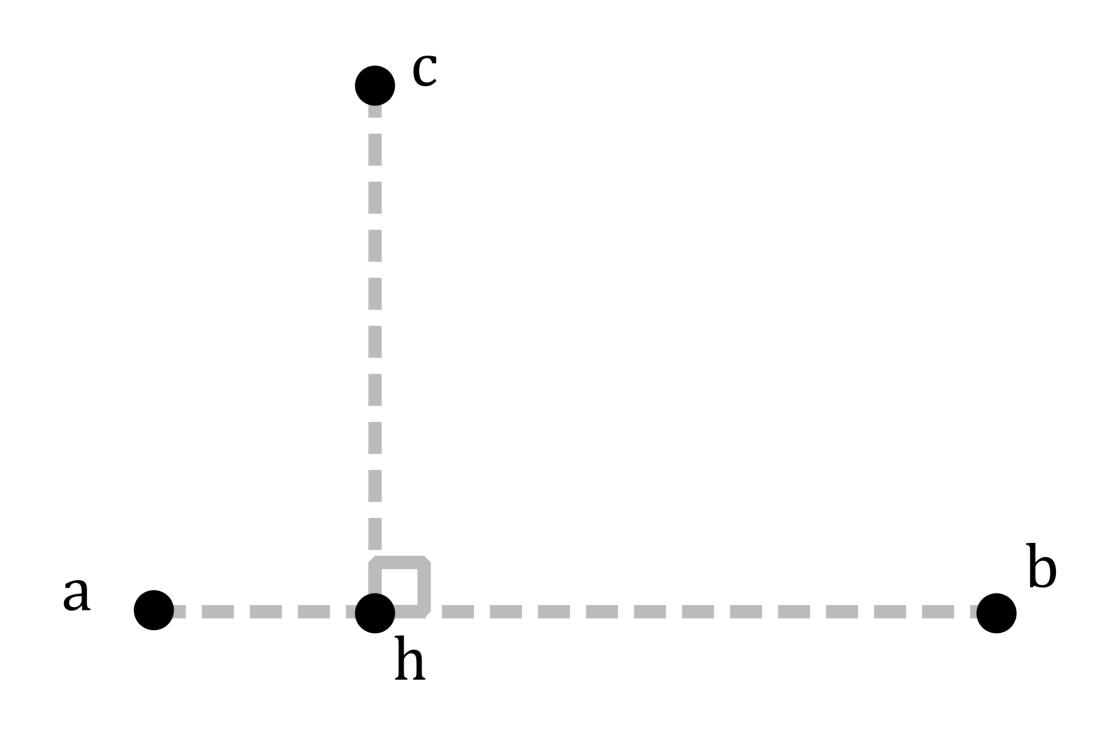
Правильный треугольник с заданной стороной



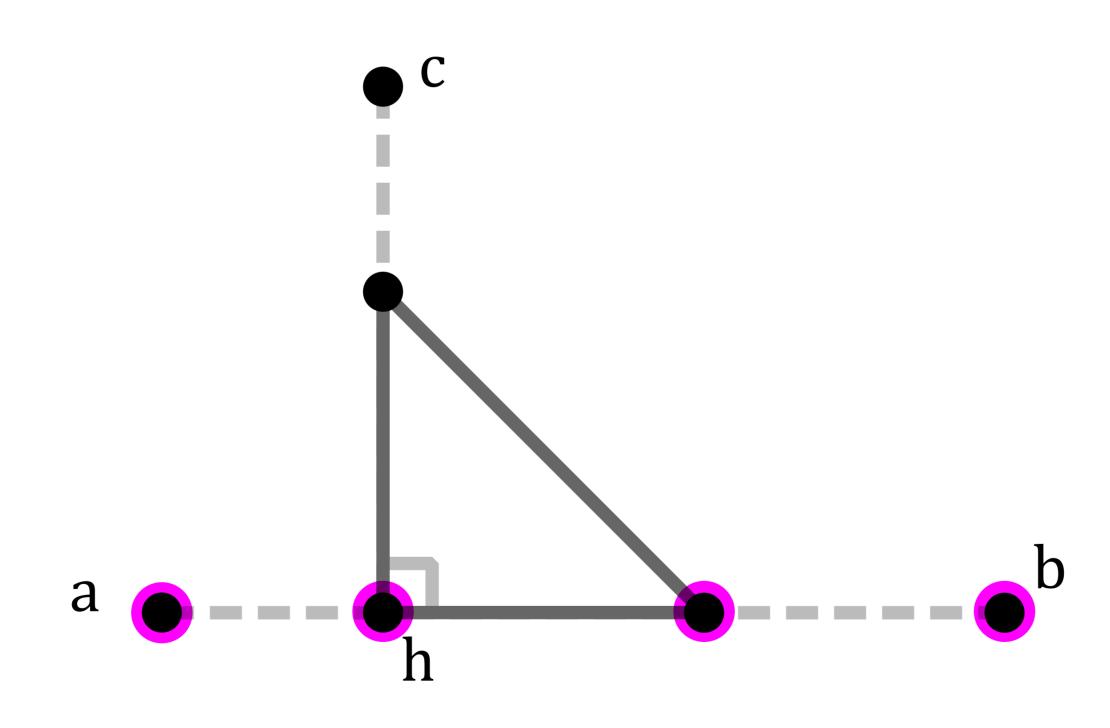
Правильный треугольник с заданной стороной



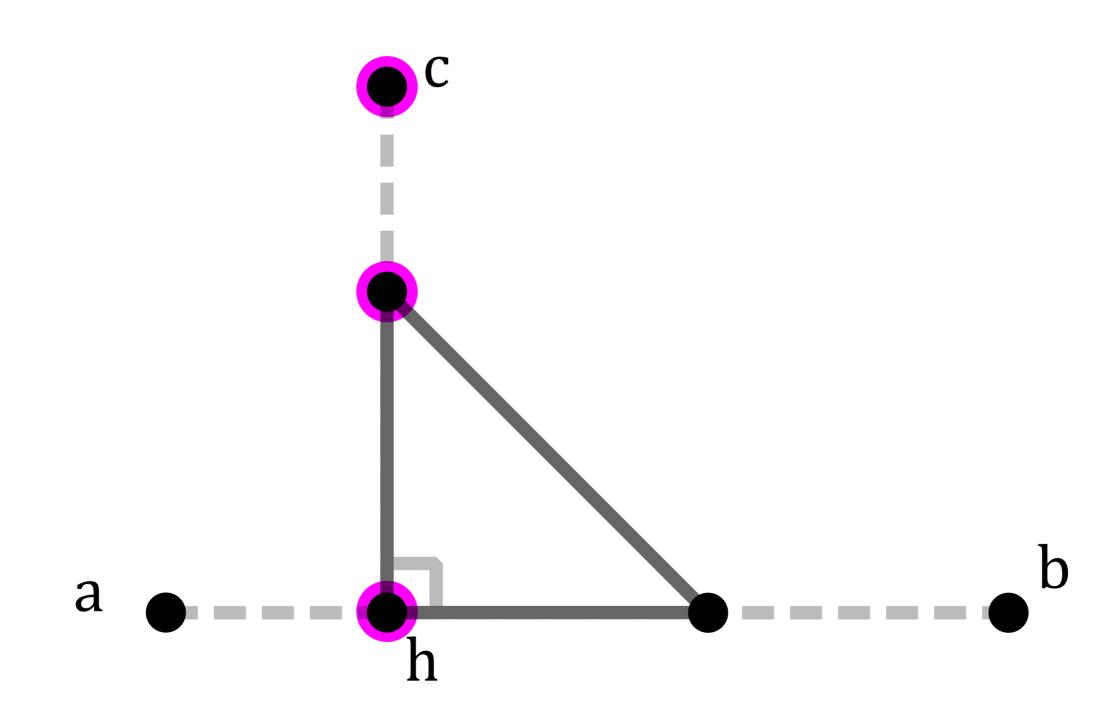
Проекция точки на прямую



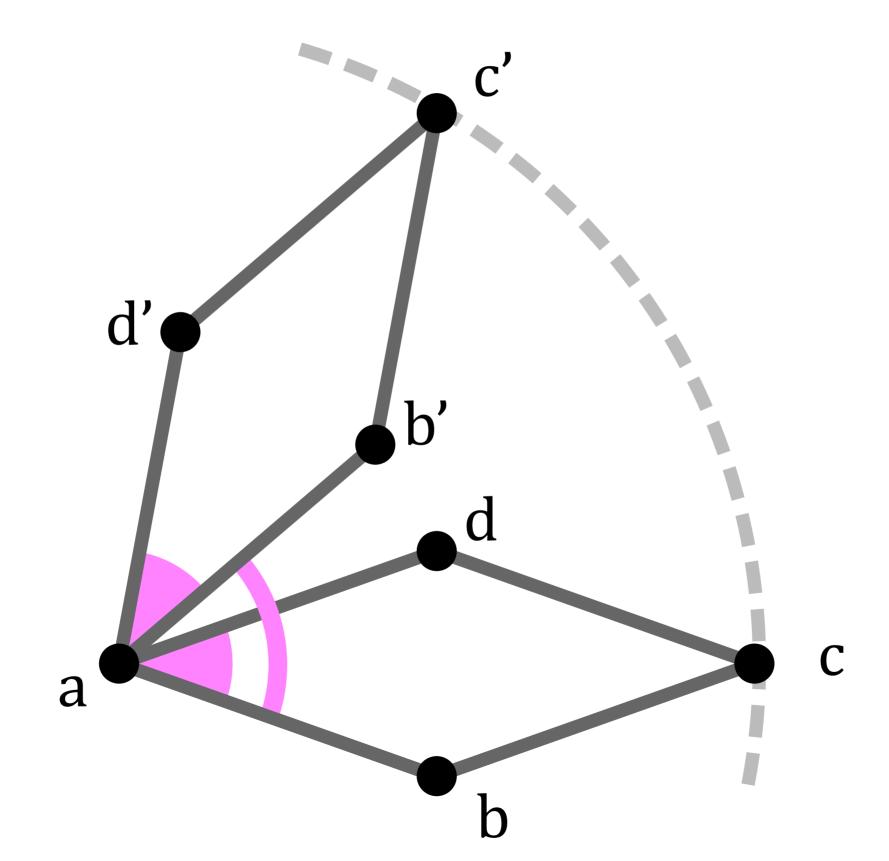
Проекция точки на прямую



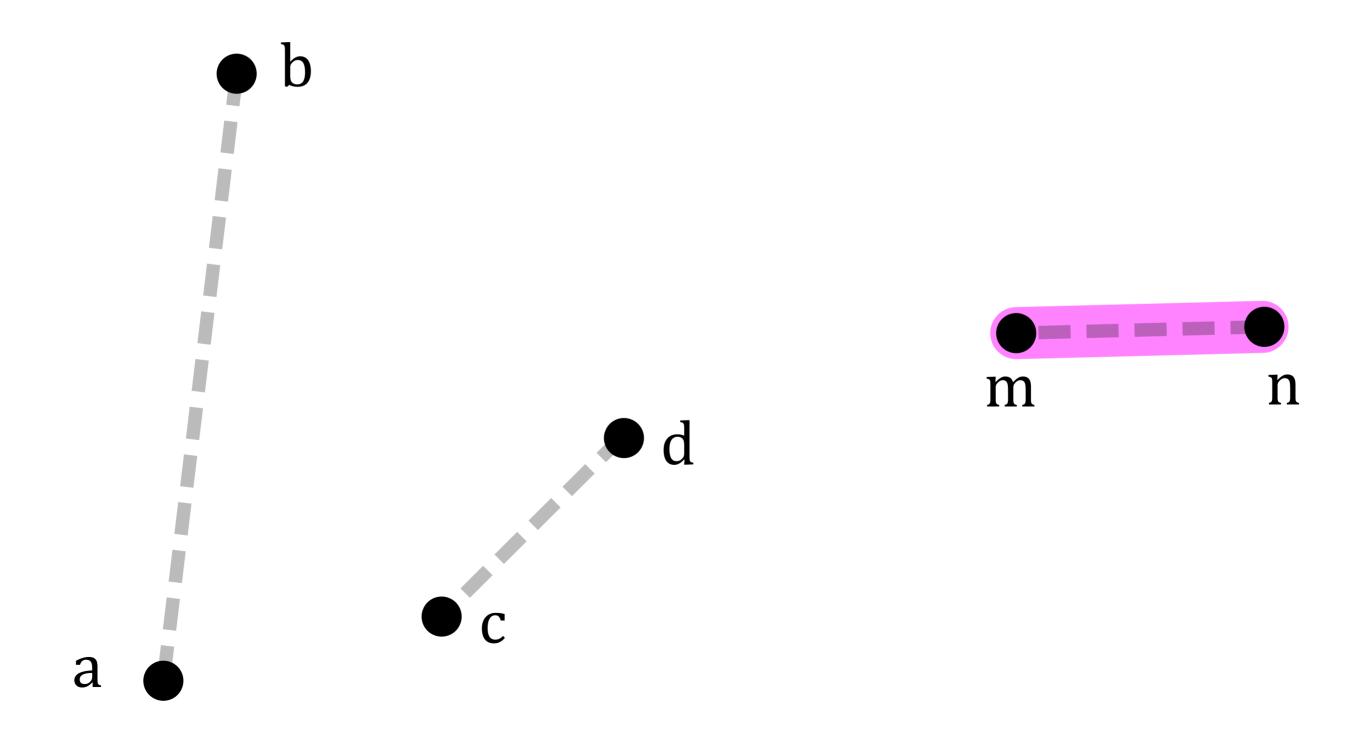
Проекция точки на прямую



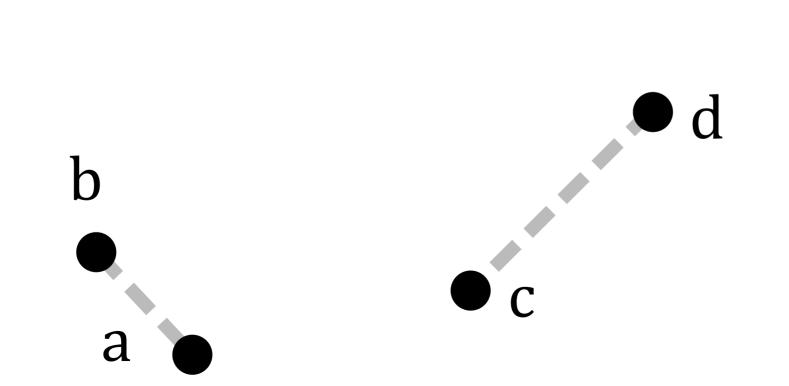
Окружность переменного радиуса



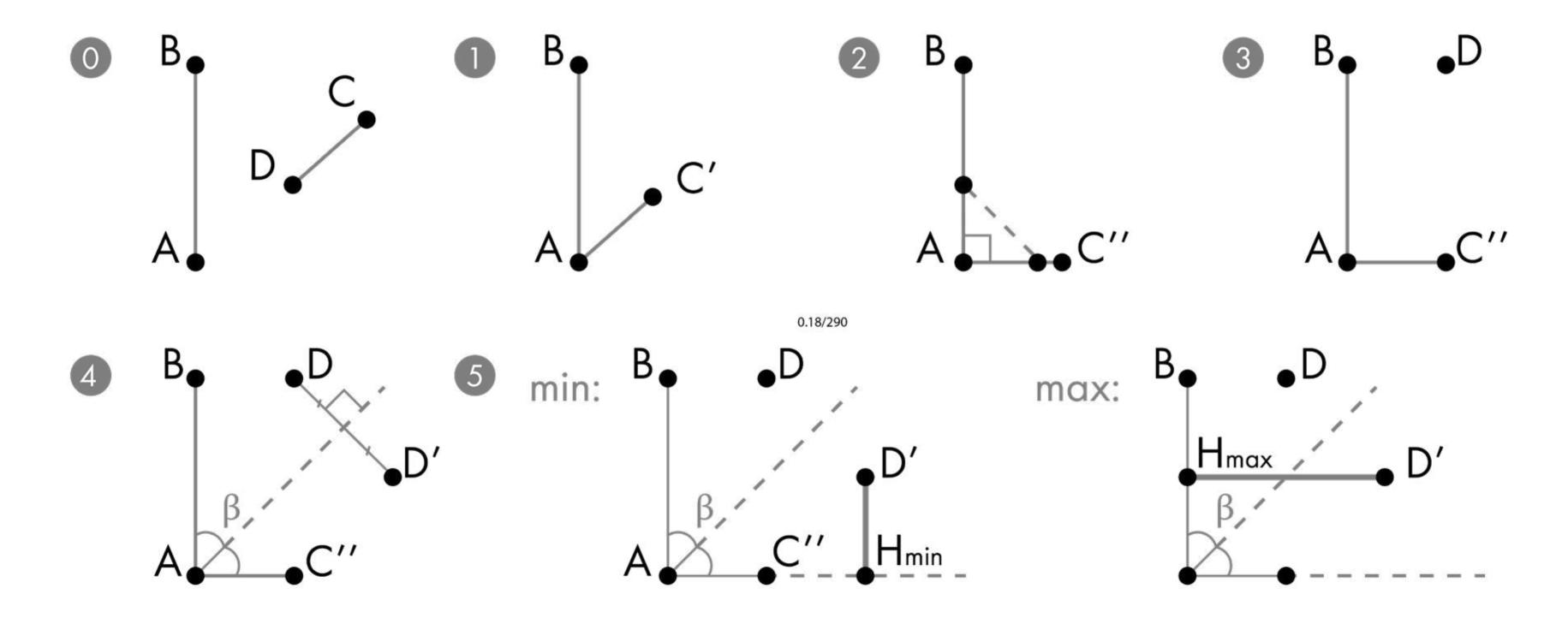
Построение отрезка равного минимальному из двух данных



Построение отрезка равного минимальному из двух данных



Построение отрезка равного минимальному из двух данных



Другие вспомогательные механизмы и предварительные результаты

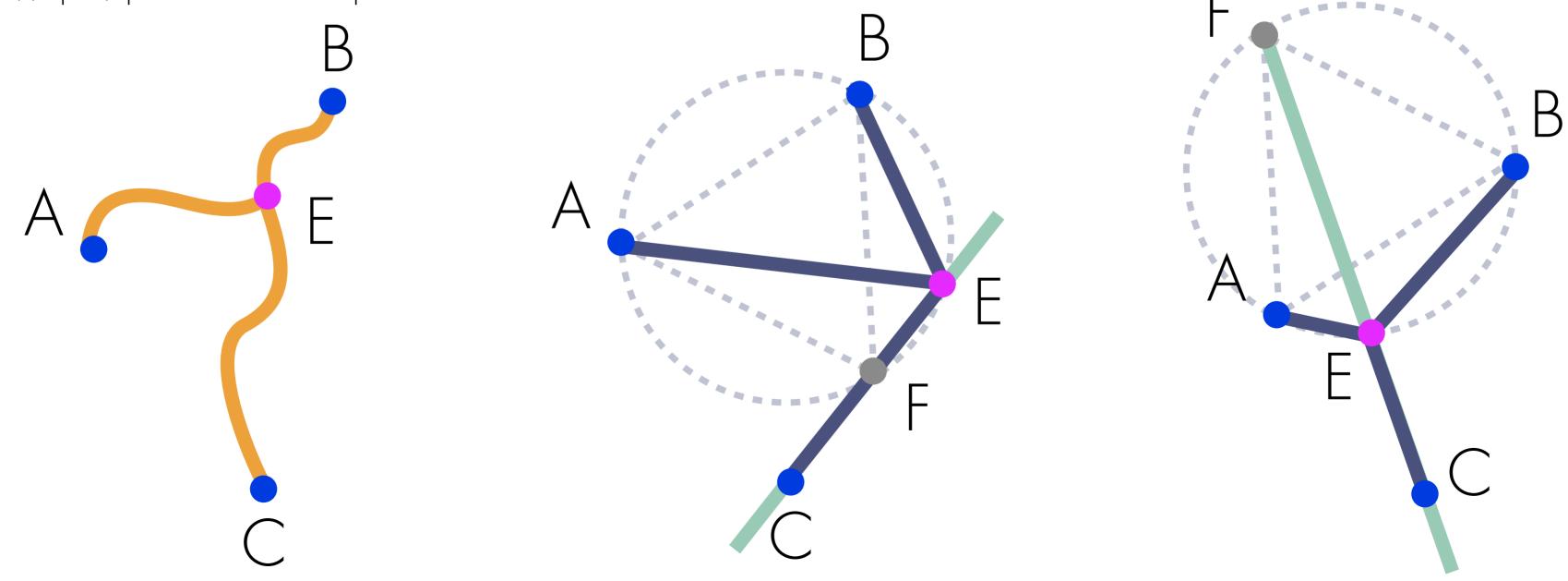
- Пересечение прямых
- Параллельный перенос отрезка в пространстве
- Построение узлов решётки Ханана
- Построение отрезка равного длине сети
- Поиск кратчайшей сети из заданного набора

Основной результат часть II

Предложение 1.

Для любого натурального n существует плоский шарнирный механизма, который для любого дерева Штейнера Gw, #W=n, и любого граничного отображения Гw, для которого существует некоторый круг радиуса г, который содержит образы вершин, существует шарнирный механизм, который строит наборы положений внутренних вершин всевозможных сетей, полученные в результате работы

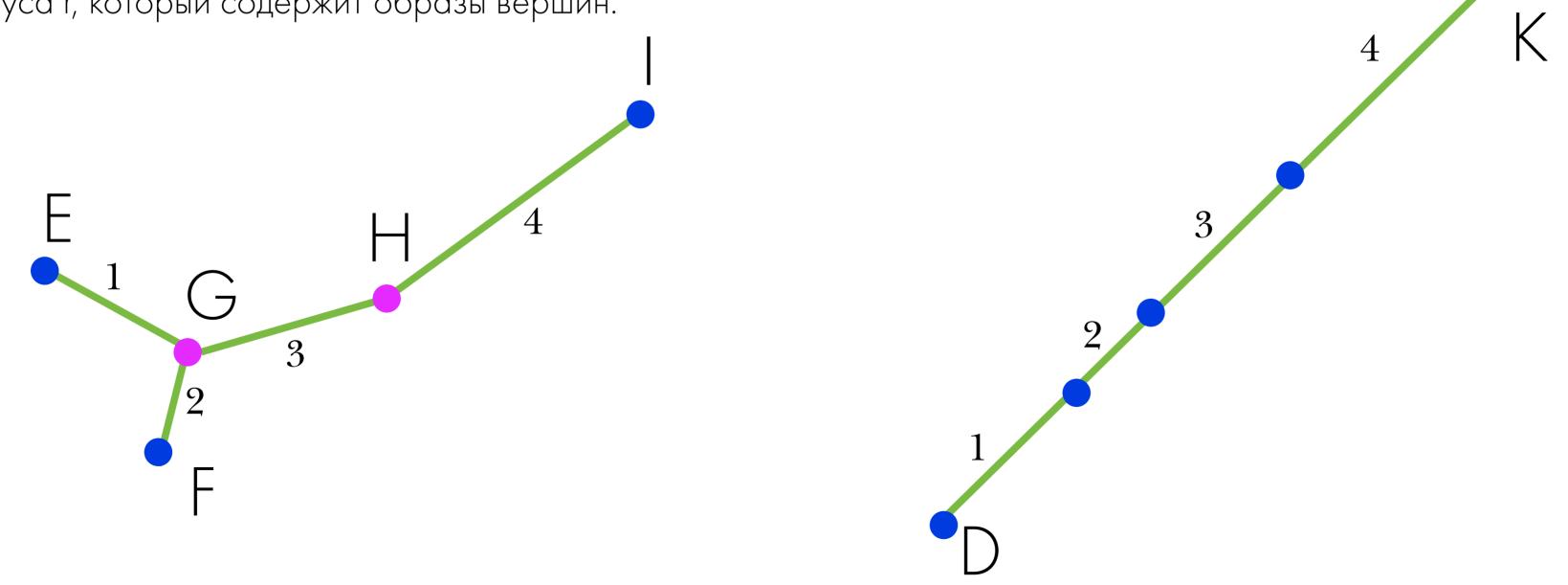
модифицированного алгоритма Мелзака.



Предложение 2

(построение отрезка, равного длине сети)

Для любого графа G=(V,E) существует шарнирный механизм L, множество шарниров которого содержит V и множество положений шарниров V — всевозможные сети, для которых существует круг радиуса r, который содержит образы вершин.

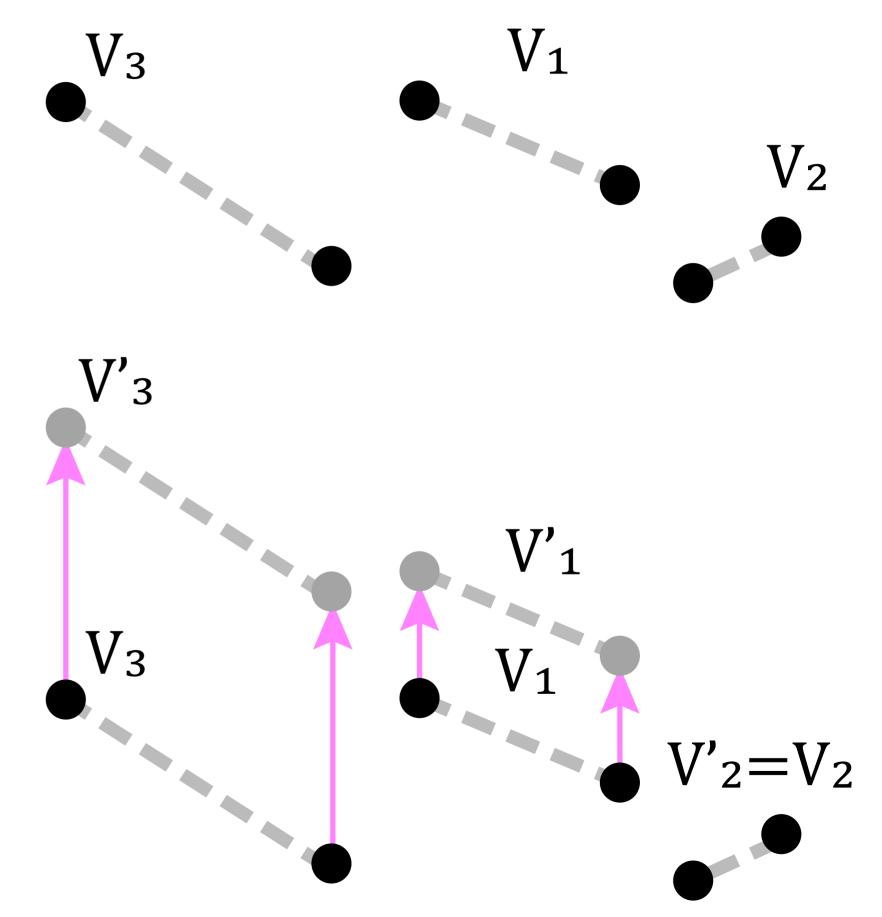


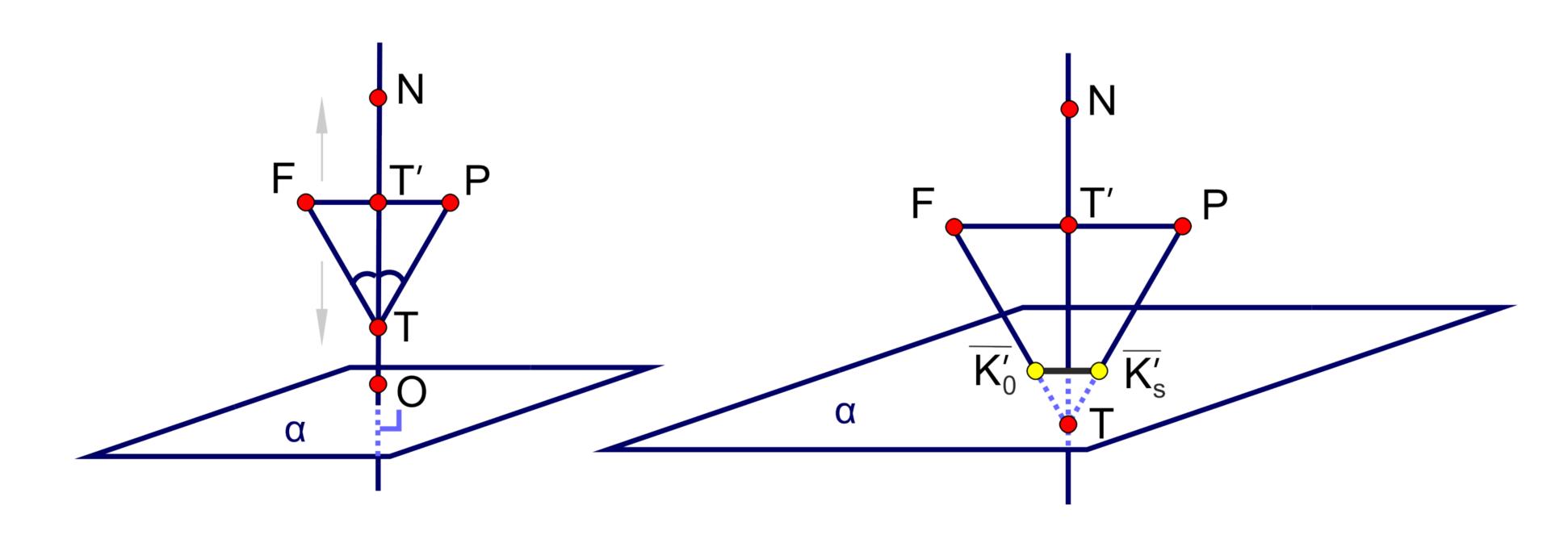
Предложение 3

(выбор кратчайшей сети)

L=((V,E),I) — произвольный механизм. В множестве его шарниров выделены подсножества V_i , и заданы графы $G_i=(V_i,E_i)$. L—трёхмерный, положения шарниров V_i —в плоскости z=0.

Этот механизм можно расширить так, чтобы в получившемся механизме L' множество положений шарниров V не изменится, а также в L содержатся наборы шарниров V_i , положения которых отличаются от положений шарниров V соответственно, параллельным переносом вдоль оси оz на вектор пропорциональный длине сети $X_i^{V_i}$ а кратчайшие из сетей всегда лежат в плоскости z=0.





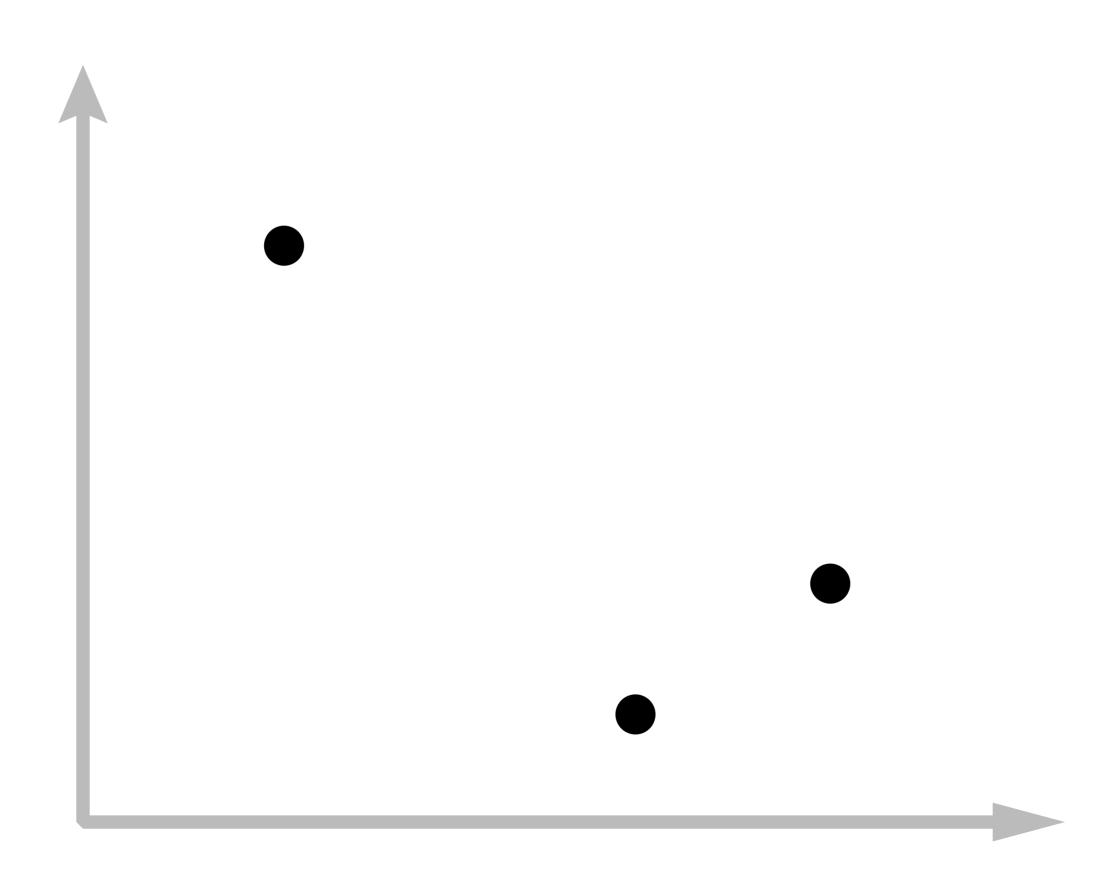
Теорема 2

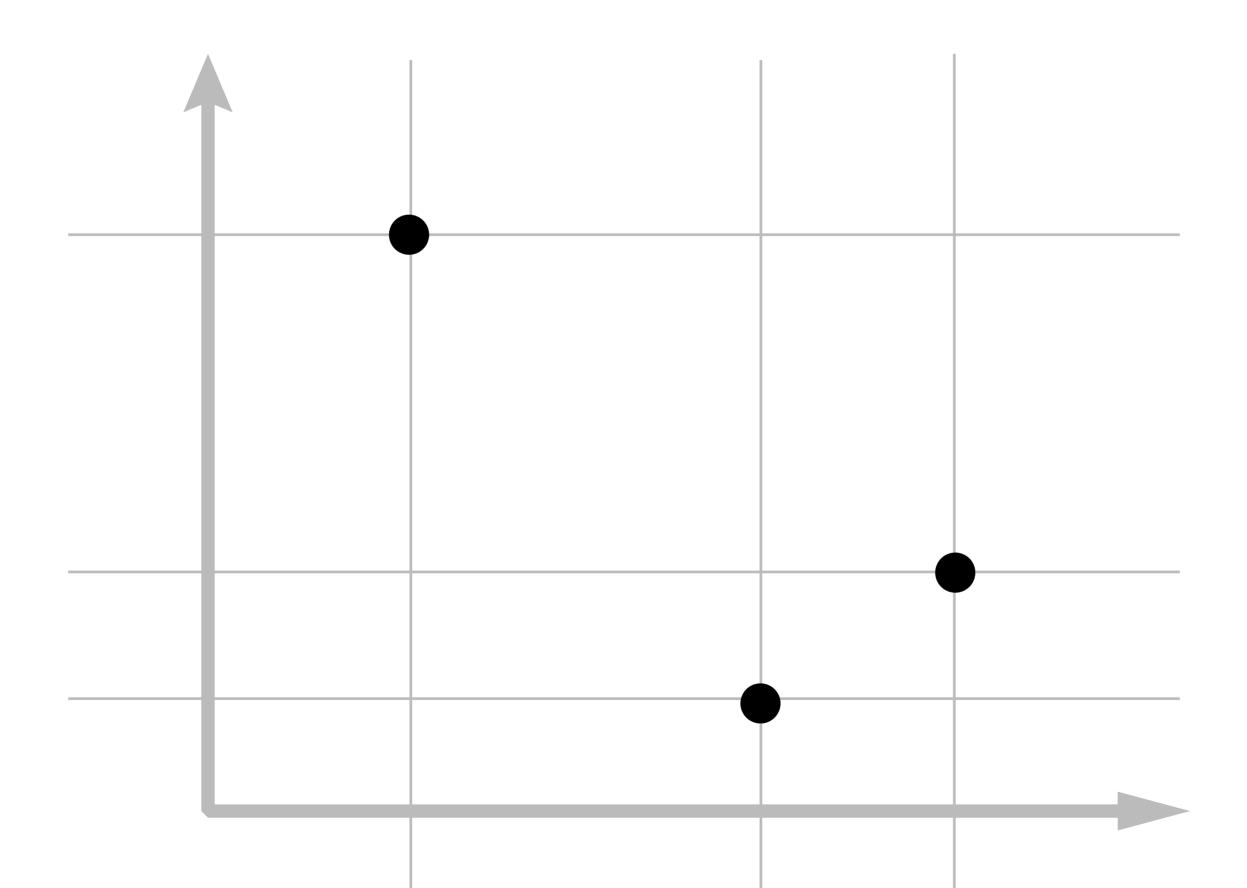
Для любого n существует трёхмерный шарнирный механизм, который строит набор кратчайших сетей для границы из n точек.

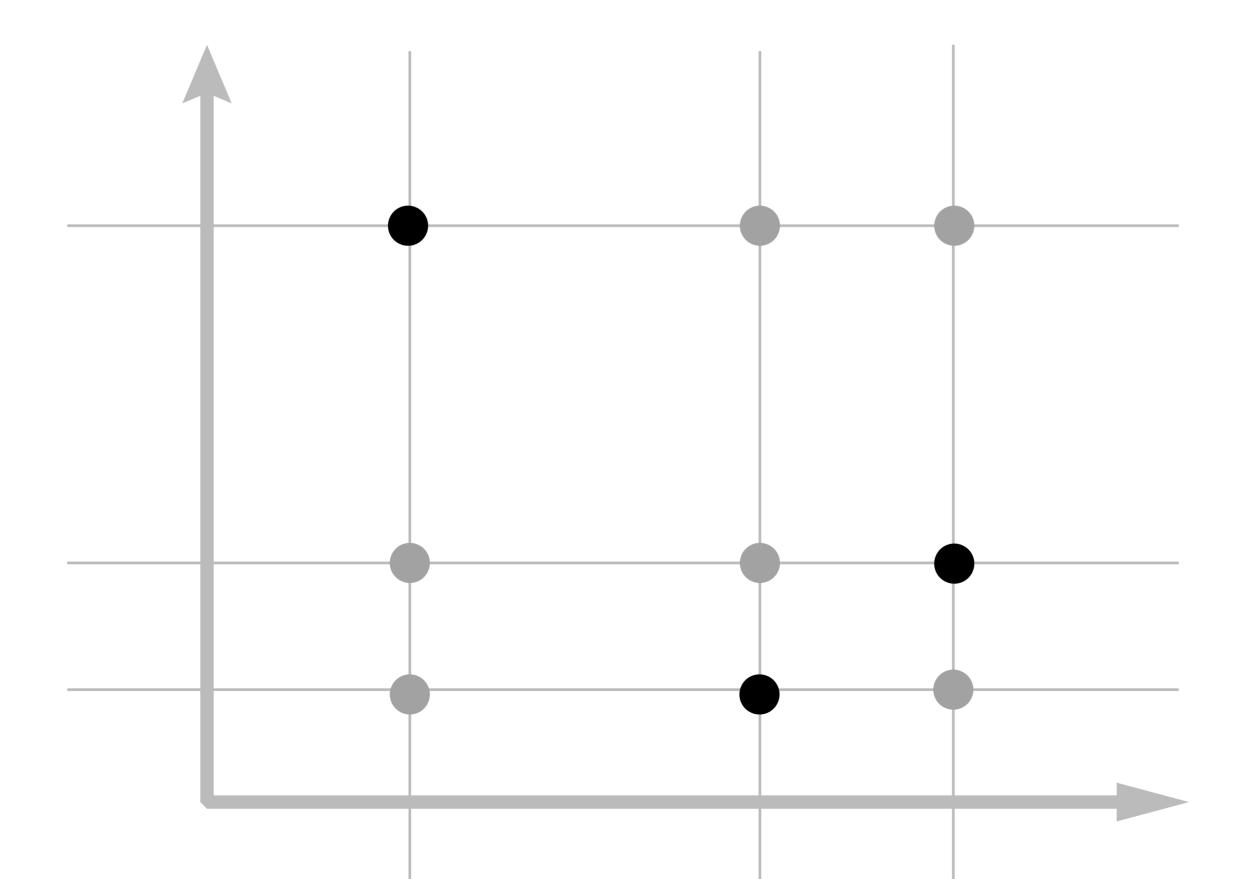
Кратчайшие сети в манхеттенском пространстве

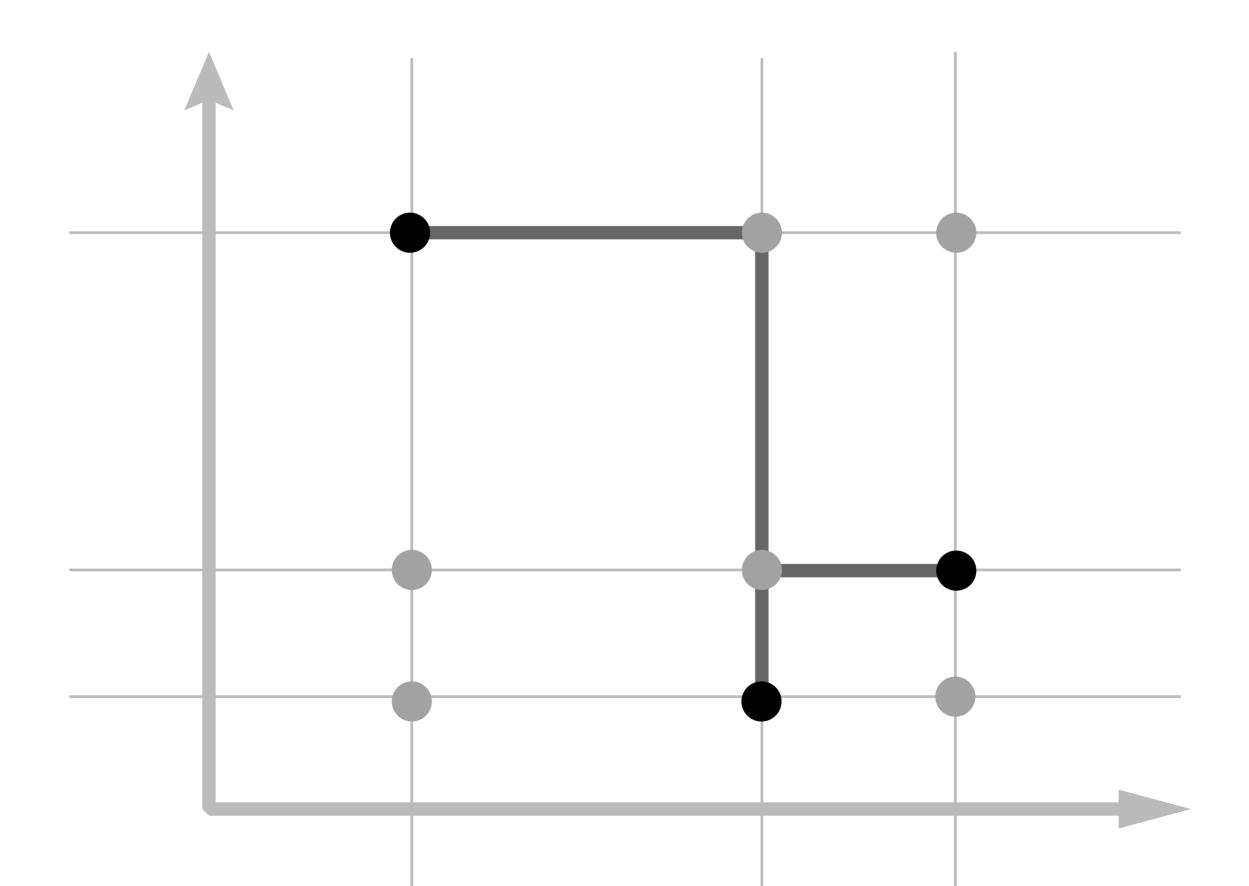
 Ω — манхеттенское пространство

$$||x|| = \sum_{i=1}^{n} |x_i|, x = (x_1, \dots, x_n)$$









Теорема 2

Для любого n существует шарнирный механизм, который строит набор кратчайших сетей в манхэттенском пространстве для границы из n точек.

План построения

- 1 Для граничного набора точек строим узлы решётка Ханана
- 2. Рассматрим всевозможные сети, вершины которых лежат в узлах решётки Ханана
- 3. Для каждой сети построим отрезок, равный её длине
- 4. Построим отрезок равный минимальному из всех построенный на предыдущем шаге
- 5. Параллельно перенесём все отрезки вдоль оси z на вектор, пропорциональный длине отрезка, так, чтобы кратчайший отрезок остался в плолоскости z=0.
- 6. Перенесём вершины каждой из сетей на соответствующий вектор
- 7. В результате получим, что для каждого положения граничных вершин в плоскости z=0 лежат вершины кратчайшей сети, соединяющей рассматриваемое граничное множество

Список литературы

- [1] Житная М. Ю. Моделирование оптимальных сетей с использованием шарнирных механизмов // Фундаментальная и прикладная математика. 2019. Т. 22, вып. 6. С. 95-122.
- [2] Житная М. Ю. Моделирование минимальных параметрических сетей в евклидовых пространствах с помощью шарнирных механизмов // Чебышевский сборник. 2022. Т. 23, № 2. С. 74-87.
- [3] Иванов А.О., Тужилин А.А. Теория экстремальных сетей. Москва: Наука, 2001. 320 с.
- [4] Ковалёв М.Д. Геометрические вопросы кинематики и статики. Москва: URSS Ленанд, 2019.
- [5] Ковалёв М.Д. Что такое шарнирный механизм? И что же доказал Кемпе? // Итоги науки и техники, серия Современная математика и ее приложения. Тематические обзоры. 2020. Т. 179. С. 16-28.

- [6] Ошемков А.А., Попеленский Ф.Ю., Тужилин А.А., Фоменко А.Т., Шафаревич А.И. Курс наглядной геометрии и топологии. Москва: УРСС, 2014. 360 с.
- [7] Ханан М. О проблеме Штейнера с использованием манхэттенских расстояний // Журнал прикладной математики SIAM. 1966. Т. 14. С. 255-265.
- [8] King, R. The Robotic Revolution. Oxford University Press, 1998.
- [9] King, R. Advanced Robotics: Theory and Application. MIT Press, 2005.
- [10] 4 Distance Measures for Machine Learning // MachineLearningMastery.com. 2020. URL: https://machinelearningmastery.com/distance-measures-for-machinelearning/.
- [11] Кемпе А. Б. О методе описания плоских кривых степени п с использованием шарнирных механизмов // Proceedings of the London Mathematical Society. 1876. T. 7. C. 213-216.
- [12] Револьвентные шарниры. [Электронный ресурс] URL: https://dorna.ai/blog/types-of-robot-joints/%23revolute-joints