Введение в специальность Мехмат 1 курс

Фирсов Леонид Генеральный директор «АЭРОЛАБ» Leonid.firsov@aerolab.world 11 декабря 2019

1

Фирсов Леонид

- Образование
 - Физический факультет МГУ кафедра акустики 2007
 - Аспирантура механико-математического факультета МГУ 2011
 - Кафедра Механики Композиционных Материалов
 - Toulose Business School Aerospace MBA 2015
- 2006-2007 Boeing 787
- 2007-2008 Spirit Aerosystems
- 2008-2009 Boeing 787
- 2009-2011 ОКБ Яковлева/Иркут МС-21, Як-130, Як-58, Як-54, Як-80
- 2011-2018 Гражданские самолёты Сухого SSJ-100, SSJ-NG, SSJ-130, SBJ
- 2014 2018 ОАК «НГТС» -> АО «ГСС» СК-929 (ШФДМС) совместно с СОМАС
- 2015 2019 ИРКУТ МС-21 Координация сертификационных работ (ПКМ EASA Panel 3)
- 2014 2016 ЦАГИ НИО 18 Трещиностойкость ПКМ крыла МС-21
- 2015- 2018 МАИ Лаборатория №2 «Композиционные материалы и конструкции», Магистратура ПКМ.
- <u>2018 н.в. Генеральный директор «АЭРОЛАБ»</u>
- <u>2018 н.в. МГУ</u>
- Член комитета СМН-17 и D30 ASTM.
- Работы по контракту: 2015, 2016, 2017 г ВИАМ, 2014 Транзас, 2011, 2013 Апатек, 2015 НИЦ ИРТ, 2018 СибНИА им. С.В. Чаплыгина.

Вопросы к аудитории

- Из Москвы?
- Иногородние?
- Твердотельная механика?
- Жидкости и газы?
- В совершенстве английский язык?
- В процессе совершенствования..
- Есть ли опыт работы?
- Несерьёзный опыт есть...

Общие сведения

Victorian (1837 - 1901)

Пример 1. Эволюция велосипеда 👌 спо Lab

Источник: Ashby

Цепочка создания стоимости

Интегральная формула представления решения неоднородной задачи

Рассмотрим трехмерное неоднородное упругое тело, находящееся в равновесии под действием внешних сил. В работах [1, 2, 3, 4] показано, что при любых граничных и начальных условиях в линейных задачах МДТТ перемещения $u_i(x, t)$ в неоднородном теле могут быть выражены, с помощью интегральной формулы, через перемещения $v_i(x, t)$ в однородном теле, той же формы и также нагруженного. В задачах статики неоднородного упругого тела соответствующая интегральная формула имеет вид [1]:

$$u_{i}(x) = v_{i}(x) + \int_{V} \varepsilon_{mn}^{(i)}(x,\xi) \left[C_{mnkl}^{o} - C_{mnkl}(\xi) \right] e_{kl}(\xi) \, dV_{\xi} \tag{1}$$

где $C_{ijkl}(x)$ и C_{ijkl}^{o} — компоненты тензоров модулей упругости неоднородного и однородного тела, $\varepsilon_{mn}^{(i)}(x,\xi) \equiv \varepsilon_{mn}^{(i)}(x_1,x_2,x_3;\xi_1,\xi_2,\xi_3)$ — компоненты тензора деформаций Грина исходной задачи теории упругости для неоднородного тела (обозначения заимствованы у В. Новацкого [5]), $e_{ij} = (v_{i,j} + v_{j,i})/2$ — компоненты тензора малых деформаций в однородном теле.

Оставим только первый член, соответствующий q = 0.

$$\sigma_{IJ} \approx \widetilde{C}_{IJKL}\gamma_{KL} + \left(x_{3}\widetilde{C}_{IJKL} + \widetilde{C}_{IJKL3}\right)\varkappa_{KL}, \qquad (34)$$
$$\widetilde{C}_{IJKL} = C_{IJmn} N_{mKL,n} + C_{IJKL} =$$
$$= J_{IJMN}^{-1} N_{MKL,N} + 2C_{IJM3} N_{\underline{M}KL,\underline{3}} + C_{IJ33} N_{3KL,3} + J_{IJKL}^{-1}, \qquad (35)$$

$$\begin{split} \widetilde{C}_{IJKL3} &= C_{IJmn} \, N_{mKL3,n} + C_{IJm3} \, N_{mKL} = \\ &= J_{IJMN}^{-1} \, N_{MKL3,N} + 2 C_{IJM3} N_{\underline{M}KL3,\underline{3}} + C_{IJ33} N_{3KL3,3} + C_{IJm3} \, N_{mKL} \end{split}$$

По подчеркнутым индексам в формулах (35) предполагается симметризация, например

$$N_{\underline{M}KL,\underline{3}} = \frac{1}{2} \left(N_{MKL,3} + N_{3KL,M} \right)$$

$$\left(J_{IJMN}^{-1} N_{MKL,N} + 2C_{IJM3} N_{\underline{M}KL,\underline{3}} + C_{IJ33} N_{3KL,3} + J_{IJMN}^{-1} \right)_{,J} + \left(C_{I3MN} N_{MKL,N} + 2C_{I3M3} N_{\underline{M}KL,\underline{3}} + C_{I333} N_{3KL,3} + C_{I3KL} \right)_{,3} = 0$$

$$(C_{3JMN} N_{MKL,N} + 2C_{3JM3} N_{\underline{M}KL,\underline{3}} + C_{3J33} N_{3KL,3} + C_{3JKL})_{,J} + + (C_{33MN} N_{MKL,N} + 2C_{33M3} N_{\underline{M}KL,\underline{3}} + C_{3333} N_{3KL,3} + C_{33KL})_{,\underline{3}} = 0 = 9 \circ 0 \circ 0$$

Традиционные уравнения на мехмате (3 курс)

Направления работ по унификации: совершенствование и НТЗ (научно-техническому заделу) (уровни готовности технологии)

	Описание уровней готовности технологии
TRL 9	Успех системы подтверждён многолетней серийной эксплуатацией
TRL 8	Система собрана в серийном исполнении и показала дееспособность при приёмочных испытаниях
TRL 7	Демонстратор работает в реальных условиях
TRL 6	Прототип системы или подсистемы работает в реальный условиях
TRL 5	Прототип системы или подсистемы работает в смоделированных внешних условиях
TRL 4	Прототип системы или подсистемы работает в лабораторных условиях
TRL 3	Аналитический и экспериментальный образец
TRL 2	Разработан принцип применения найденного фундаментального эффекта
TRL 1	Фундаментальный принцип работы системы найден и может быть воспроизведён

Схема взаимодействия по созданию

Схема взаимодействия по совершенствованию

eroLab

Общий объём рынка ПКМ (полимерных композиционных материалов, или пластиков)

- 100 000т. Препрегов производится в мире.
- SSJ-100 (30 в год)
 - 20 т. В год на 40 самолётов.
- MC-21
 - Оперение 500 кг
 - Крыло 5т
- АЗ50 (14 самолётов в месяц)
 - 70 т на планер. 14 в месяц.
- В787 (10 самолётов в месяц)
 - 60-65 т на самолёт
- Росатом 1500 т. Волокна в год

Пр-во волокна, т

Волокно по секторам, т

olymer: 9.41

Thermoplasti 2.258; 24%

Hybrid; 0.74; 5%

Metal: 1.10:

Ceramic: 1.47:

Carbon; 1.98

13%

Total: US\$ 14.7 billion

7.15; 76%

Пр-во препрегов, т

Выручка по регионам, млрд\$

Связующее по типам

Метод производства,

Композиционные материалы в авиации

Удлинение крыла А320 - 8,5 Удлинение MC-21 - 11,5

- Доля конструкций из ПКМ растёт.
- Три тенденции
 - Широкофюзеляжные самолёты (50-55% ПКМ)
 - Среднемагистральные самолёты (30-35%)
 - Военные самолёты (25-30% ПКМ)

Главные цели внедрения: снизить вес и стоимость

Ключевые отличия

- Сопротивление удару
- Влияние внешних факторов: температура, влага
- Методы и стоимость ремонта
- Сложность соединений ПКМ
- Анизотропные свойства
- Металлизация, статическое электричество, электросеть.
- Методы неразрушающего контроля
- Большое количество методов производства: Инфузия, инжекция, автоклав, плетение, прошивка, прессование, термопластичные материалы

Пример: Boeing 787

eroLab

SSJ-100

SUKHOI SUPERJET 100

Схема распределения материалов в конструкции

eroLab

- А Высокопрочная углеродная лента для первичных конструкций
- В1 Углеродная ткань для вторичных конструкций в сочетании с углеродной тканью для соединения общивки с сотовым заполнителем (для сотовых конструкций)
- D Стеклоткань для вторичных конструкций

4% Прочие материалы

- D1 Стеклоткань для вторичных конструкций в сочетании со стеклотканью для формирования соединения общивки с сотовым заполнителем (для сотовых конструкций)
- Полимерные композиционные панели пола
- Металлы

Широкофюзеляжный самолёт Россия- Китай

Пути увеличения эффективности раменения ПКМ

- Обобщение опыта и введение отраслевых стандартов
- Изменение парадигмы проектирования
- Применение ещё большего числа моделирования

Парадигма проектирования ПКМ

eroLab

Системы мониторинга технического состояния конструкций (SHM системы)

Ключевое направление – архитектура системы, резерв, энергетика.

Новые процессы: аддитивные технологиии

ДЕТАЛИ ОБЛЕГЧЕННОЙ КОНСТРУКЦИИ СО СЛОЖНЫМИ ПОВЕРХНОСТЯМИ

 Примеры изделий, изготавливаемых аддитивными

ными методами

ОБЪЕДИНЕНИЕ НЕСКОЛЬКИХ ДЕТАЛЕЙ В ОДНУ

ДЕТАЛИ СО СЛОЖНЫМИ ВНУТРЕННИМИ ПОЛОСТЯМИ И КАНАЛАМИ

Лазерные технологии

• Ремонтные технологии (Лазерная наплавка)

• Технология сварки лазером

• Технология нанесения покрытия

Новые техпроцессы: Покрытия

Высокоскоростное газопламенное напыление

(до 9 скоростей звука)

- Адгезия более 80МПа
- Пористость 0,5%-1%
- Нанесение карбидов, сплавов на основе железа, кобальта, никеля.

- Покрытия из керамики
- Толщина 0,05 5мм
- Нанесение на внутренние (диаметр от 50 мм) и внешние поверхности

Лазерная наплавка + лазерная закалка

- Износостойкие покрытия с металлургической связью
- Толщина 0,5 10мм или Упрочнение на глубину до 0,7 мм

Электродуговая металлизация

- Протекторные покрытия на металлические конструкции большой площади
- Толщина 0,15-3,0мм

Газопламенное напыление

- Восстановление геометрии изношенных деталей 0,1 до 20 мм
- Напыление баббита, цинка, алюминия, сталей и сплавов.

Детонационное напыление

- Высококачественные покрытия на небольшие поверхности
- Толщина 0,05 0,5 мм
- Адгезия до 160 Мпа

 Холодное динамическое напыление
 Нанесение покрытий из пластичных материалов на небольшие площади

Плазменная порошковая наплавка • Наплавка твердых покрытий для защиты клапанов ДВС, стеклоформ, бурового инструмента

- Необходимо наладить внедрение новых фундаментальных разработок в промышленность
- Улучшить связь фундаментальных исследований с нуждами отрасли
- Учёт требований будущих изделий на этапе фундаментальных разработок
 - Сертификация
 - Стоимость жизненного цикла

Текущие научные задачи

- Рост трещин между слоями ПКМ (линейная механика разрушения)
- Исследование задачи в 2D и 3D постановке
- Определяющие соотношения для ПКМ с моделью вязкопластичного связующего
- Модель накопления повреждений на уровне волокно и матрица.
- Конечно-элементное моделирование НДС (напряжённодеформированного состояния) для статического и усталостного расчёта
- Применение суперкомпьютерных вычислений для механики композитов.

Текущие задачи CFD

Постоянно развивающийся валидационный базис позволяет расширять спектр решаемых задач, а так же использовать его элементы для сертификации. В настоящий момент валидационный базис содержит более 800 задач по различным физическим процессам.

Перерыв

Метод моделирования остаточной прочности после удара с редукцией жесткоскостных коэффициентов (Мезо-уровень)

Моделирование сжатия с непроклеем

u2 U1

Displacement of load point, u

u u+δu

Fig. 2. Detail of delaminated specimen in post-buckled state.

u, between load points is

Fig. 8. Construction of experimental specimens.

S. ILIC and J.F. WILLIAMS COMPRESSION FAILURE MODES IN COMPOSITES Theoretical and Applied Fracture Mechanics 6 (1986) 121-127

F

Load P

Fig. 7. Mid-point deflection of delaminated region as a function of applied load, compared to predicted local buckling load.

eroLab

КСС анизогридной конструкции

<u>Преимущества</u>

- Весовая эффективность по сравнению с «чёрным алюминием» 30%
- Стойкость к ударным повреждениям
- Большая степень интегральности конструкции
- Опыт применения в космической технике

<u>Недостатки</u>

 Консерватизм при сертификации мешает применять новые конструкции

Совместная задача аэродинамики и прочности

Outlet. Pressure 11 bars

Aerodynamic model

Aberus/Explicit 6.14-1 Mon Jun 2018 37:58 (SMT+63/08 201 S6169: Step Time = 0.8200 Stress Model Step: Step-1 Frame: Total Time: 0.000000 S, Mises SNEG, (fraction = -1.0) (Avg: 75%) Step: Step-1 Increment 0: Step Time = 0.0 Primary Var: S, Mises Deformed Var: U Deformation Scale Factor: +1.000e+00

Mises stress

Aerodynamic model

eroLab

Системы принятия решений

normal ribs

CroLab

◆1 ■2 ▲3 ×4 ×5 ●6 +7 -8

Определение действующих напряжений

- Глобальная модель ламината –
 2D
 - Эффективные свойства
 - Укладка и монослои
- Послойная модель -3D
 - Эффективные характеристики
 - Послойное моделирование
- Определение НДС
 - Оценка концентрации напряжения на концентраторе
 - Оценка проходящего потока напряжения

eroLab

Определение действующих напряжений

Step Time = 1.00

0: Step Time = 0.4651

Deformation Scale Fastor: +2.520e+01

Проблема определения остаточной прочности ПКМ

КЭ модель

Модель матрицы

This idea gives formal rules for transformation of energy:

$$En = \frac{(\varepsilon_{22}^1 - \varepsilon_{22}^2)Yt}{2} \sim \frac{\left(\frac{Yt}{E_2^1} - \frac{Yt}{E_2^2}\right)Yt}{2} = \frac{Yt^2}{2E_2^0}(1 - 1/\psi)$$

where

 ε_{22}^1 – deformation at point 1

 ε_{22}^2 – deformation at point 2

- Yt failure stress in case of transversal tension
- E_2^1 transversal modulus at point 1
- E_2^2 transversal modulus at point 2
- E_2^0 transversal modulus of not damaged material
- ψ damage parameter associated with stiffness reduction

Задача оптимизации

Max by $\psi(x, y, z)$ of $1/2 \int_{\Omega} E_{ijkl} \varepsilon_{ij} \varepsilon_{kl} d\Omega$

$$E_{ijkl} = \begin{bmatrix} \frac{1}{E_{11}} & -\frac{\psi v_{21}}{E_{22}} & -\frac{\psi v_{31}}{E_{33}} & 0 & 0 & 0 \\ -\frac{\psi v_{12}}{E_{11}} & \frac{1}{\psi E_{22}} & -\frac{\psi v_{32}}{E_{33}} & 0 & 0 & 0 \\ -\frac{\psi v_{13}}{E_{11}} & -\frac{\psi v_{23}}{E_{22}} & \frac{1}{\psi E_{33}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\psi G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\psi G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\psi G_{23}} \end{bmatrix}^{-1}$$

with restrictions that
$$1 \ge \psi > 0 \qquad En = \int_{V} e_n dV \sim \int_{V} \frac{Yc^2}{2E_2^0} (1 - 1/\psi) dV = Const$$

eroLab КЭ модель Optimizing material NON-Optimizing material

Результаты

Результаты

Задачи для смежных направлений

Усталостная прочность для ламината

Schematic damage mechanism maps for a T800/5245 $[(\pm 45,0_2)_2]_s$ CFRP laminate tested in repeated tension fatigue (R = 0.1).⁵

- Сложно выделения типового «концентратора»
- Большой объём испытаний
- Переход от одной усталостной кривой к другой сложно обнаружить
- Зависимость от внешний факторов и повышенная чувствительность к ударным повреждениям

Производственные процессы

Автоклавное формование

1) Preparation of mould 2) Automatic tape laying 3) Stringer integration 4) Vacuum bagging

5) Curing

6) Non destructive testing

7) Milling

8) Painting

Инфузионное формование

С появление растворного биндера – припитка однонаправленных лент (2006-2008)

Автоматическая выкладка сухой ткани – 2011 год

Первый сертификат на крыло Businessjet -2014 год

C-series сертификат AIR Transport Canada - декабрь 2015 года.

Термопластичные материалы 🔭 сго Lab

Новые возможности с термопластами. Автоматическая выкладка 2011 год. Высокая цена. Более высокая степень интеграции. Возможность сварки

Цели и задачи

Целью работы является:

- Определение технологических остаточных напряжений и предсказания искажений формы крупногабаритных композитных конструкций с термореактивным связующим в процессе изготовления.
- Анализ отклонений от теоретического контура крыла и выработка предложений (технологических, конструктивных) для уменьшения остаточных напряжений и устранения возможных дефектов.

Актуальность:

Применения для закрытия пунктов CS/FAA.603, CS/FAA.605 и частично пункт CS/FAA 25.613 сертификационных требований, предъявляемых EASA.

Математическая модель

1. Модуль Юнга связующего

$$E_m(T^*) = \begin{pmatrix} E_m^0, & T^* < T_{C1} \\ E_m^0 + \frac{T^* - T_{C1}}{T_{C2} - T_{C1}} (E_m^\infty - E_m^0), & T_{C1} \le T^* \le T_{C2} \\ E_m^\infty, & T^* > T_{C2} \end{pmatrix}$$

- E_{m}^{∞} E_{m}^{0} T^{*} T_{c1}
- 2. Уравнение кинетики полимеризации $\frac{d\alpha}{dt} = \frac{\partial \alpha}{\partial t} + u \frac{\partial \alpha}{\partial x_3} = K_0 (1 - \alpha)^n exp\left(-\frac{E}{RT}\right)$

3. Уравнение теплопроводности $\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x_1} \right) = \frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial t} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial t} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial T}{\partial t} \right) + q(\alpha, T)$

 $q(\alpha, T) = p_r H_{tot} \frac{d\alpha}{dt} (1 - V_f)$ - скорость высвобождения энергии на единицу объема

4. Температура стеклования

 $T_g(\alpha) = T_{g0} + \left(T_{g\infty} - T_{g0}\right) \frac{\lambda \alpha}{1 - (1 - \lambda)\alpha}$

5. Химическая усадка

$$\varDelta \varepsilon_m^{ch} = \sqrt[3]{1 + \varDelta V^{ch}} - 1$$

Определение остаточных деформаций на примере пластины

Технология: автоклавное формование

Материал: HexPly® 8552 UD Carbon Prepregs, IM7

Укладка:[0°/0°/0°/0°/90°/90°/90°/90°]

Блок-схема подпрограммы

Действия на одном шаге

Step 3 Increment 2

Результаты моделирования 🔭 croLab

Перемещения в образце после полимеризации:

Напряжения в образце после полимеризации:

Результаты моделирования

Данные эксперимента были взяты из статей: <u>https://link.springer.com/article/10.1007/s11831-016-9167-2</u> http://www.escm.eu.org/eccm15/data/assets/1343.pdf Температура стеклования, С°

eroLab

Необходимые входные данные для моделирования

1. Циклограмма техпроцесса изготовления деталей из ПКМ.

<u>График 1:</u> Температура=f(время)

HexPly[®] 8552 Epoxy matrix (180°C/356°F curing matrix) Product Data <u>http://www.aerosparesltd.com/file</u> <u>s/hexcel/hexply_8552.pdf</u>

2. Зависимость модуля Юнга связующего в зависимости от времени в процессе полимеризации.

<u>График 2:</u> Модуль Юнга=f(время)

https://www.researchgate.net/publicatio n/268811393 PROGRESSIVE FAILURE AN ALYSIS OF POLYMERIC COMPOSITES IN MICROMECHANICS_LEVEL Зависимость объемной усадки связующего (ε₁₁+ε₂₂ + ε₃₃) от времени в процессе полимеризации.

<u>График 4:</u> Объемная усадка=f(время)

 Зависимость температуры стеклования связующего от времени и от степени полимеризации в течение процесса полимеризации.

<u>График 5:</u> Температура стеклования связующего=f(время)

 Зависимость для связующего степени полимеризации от времени в течение процесса полимеризации, либо зависимость скорости полимеризации от времени. Степень полимеризации принимает значения [0,1].

<u>График 6:</u> Степень полимеризации=f(время)

https://link.springer.com/article/10.1007/s11831-016-9167-2

https://www.researchgate.net/profile/Andrew Johnston/publication/44047687 Cure Kin etics and Viscosity Model of 8552 Epoxy Resin -FULL PAPER/links/53d2b5f30cf228d363e95140/Cure-Kinetics-and-Viscosity-Model-of-8552-Epoxy-Resin-FULL-PAPER.pdf Зависимость теплопроводности, удельной теплоемкости от времени для ПКМ.
 <u>График 7:</u> Теплопроводность =f(время)

<u>График 8:</u> Удельная теплоемкость=f(время)

https://www.researchgate.net/publication/285987016 Thermal C haracterization_of_IM78552-1_Carbon-Epoxy_Composites

Исходные данные

N⁰	Параметр	Обозначение	IM7/8552
1	Модуль Юнга волокна в	E _{1f} [Pa]	263E9
	направлении 1		
2	Модуль Юнга волокна в	E _{2f} [Pa]	19E9
	направлении 1		
3	Коэффициент Пуассона волокна	nu _{12f}	0.2
	в направлении 12	121	
4	Коэффициент Пуассона волокна	nu _{23f}	0.35
	в направлении 23	_01	
5	КЛТР волокна в направлении 1	CTE _{1f [1/C°]}	-0.64E-7
6	КЛТР волокна в направлении 2	$CTE_{2f^{[1/C^{\circ}]}}$	5.1E-6
7	Объемная доля волокна	Vf	0.577
8	Коэффициент Пуассона	nu _m	0.35
	матрицы		
9	КЛТР связующего в (до	CTE ⁰ m [1/C°]	15.6E-5
	полимеризации)		
10	КЛТР связующего в (после	CTE∞m [1/C°]	7E-5
	полимеризации)		
11	КЛТР композита/монослоя (до	CTE ⁰ [1/C°]	0.8E-6
	полимеризации)		
12	КЛТР композита/монослоя	CTE [∞] [1/C°]	32.6E-6
	(после полимеризации)		
13	Плотность композита/монослоя	ρ [кг/м3]	1570

Результаты моделирование процесса пултрузии.

Модели материалов

Модель поведения монослоя

$$E_D = \frac{1}{2}\sigma^T S\sigma = \frac{1}{2}\sigma^T \begin{pmatrix} S_{11} & 0\\ 0 & S_{22} \end{pmatrix} \sigma$$

$$S_{11} = \begin{pmatrix} \frac{1}{E_1^0(1-d_f)} & -\frac{v_{12}^0}{E_1^0} & -\frac{v_{13}^0}{E_1^0} \\ -\frac{v_{12}^0}{E_1^0} & \frac{1}{E_2^0(1-[\sigma_{22}]^+d')(1-[\sigma_{22}]^+\bar{d}_{22})} & \frac{-v_{23}^0}{E_2^0(1-[\sigma_{22}]^+\bar{d}_{22})} \\ -\frac{v_{13}^0}{E_1^0} & \frac{-v_{23}^0}{E_2^0(1-[\sigma_{22}]^+\bar{d}_{22})} & \frac{1}{E_3^0(1-[\sigma_{33}]^+d')} \end{pmatrix} \qquad S_{22} = \begin{pmatrix} \frac{1}{G_{12}^0(1-d)(1-\bar{d}_{12})} & 0 & 0 \\ 0 & \frac{1}{G_{13}^0(1-d)} & 0 \\ 0 & 0 & \frac{1}{G_{23}^0(1-d_{23})(1-\bar{d}_{23})} \end{pmatrix}$$

 d_f – параметр повреждения, связанный с направлением волокна, $d, \ d'$ и d_{23} – параметры повреждения, связанные с рассеянным повреждением, где:

$$d_{23} = 1 - \frac{1 - d'}{1 - \frac{v_{23}^0}{1 + v_{23}^0} d'}$$

 $\bar{d}_{12},\ \bar{d}_{22}$ и \bar{d}_{23} — параметры повреждения, связанные с образованием поперечных трещин,

верхний индекс 0 соответствует неповрежденному материалу,

[x]⁺ равен 1, если x положителен и равен 0 в противном случае.

Опредение момента разрушения

- Необходимо использовать критерии, которые
- разделяют различные формы разрушения
- Необходимо связывать разрушения матрицы в слое с возможностью межслоевого расщепления
- Моды разрушения должны позволять описывать все интересующие дефекты
- Разрушение волокна, матрицы, адгезива и расслоение – минимальные моды разрушения для анализа

Методика VCCT для расчёта расслоений

$$G_{I} = -\frac{1}{2\Delta a} Z_{i} \left(w_{l} - w_{l^{*}} \right) \qquad \left(\frac{G_{I}}{G_{I_\partial on}} \right)^{a} + \left(\frac{G_{II}}{G_{II_\partial on}} \right)^{b} = 1 \qquad G_{I} = -\frac{1}{2\Delta A} \cdot Z_{Li} \cdot \left(w_{LI} - w_{LI^{*}} \right) \\ G_{II} = -\frac{1}{2\Delta A} X_{i} \left(u_{l} - u_{l^{*}} \right) \qquad \left(\frac{G_{I}}{G_{I_\partial on}} \right)^{a} + \left(\frac{G_{II}}{G_{II_\partial on}} \right)^{b} = 1 \qquad G_{II} = -\frac{1}{2\Delta A} \cdot X_{Li} \cdot \left(u_{LI} - u_{LI^{*}} \right) \\ G_{III} = -\frac{1}{2\Delta A} \cdot Y_{Li} \cdot \left(v_{LI} - v_{LI^{*}} \right)$$

Свойства ПКМ

500 500 ************************** 450 400 12000 350 Ultimate 10000 Failure 300 Напряжения кг/мм2 8000 Fiber 300 Tensile Load [lbf.] Failure Begins 6000 250 First Ply 4000 Failure (Matrix) 200 2000 160 150 150 110 100 55 45 50 30 0 Углаволокна Монослой Титан Отвертсие Доп. Нап. ПКМ укладка Сталь Алюминий 50/40/10

Допускаемые напряжения в ПКМ в 5 раз ниже, чем статическое разрушение. Недопустимость несплошности.

SHM системы. Разработка модели и поиск источника

Ключевое напрвления – микромеханическая модель, прекурсор разрушения 73
Конструкции в авиации

Типовые конструкции фюзеляжа из ПКМ

- Типы конструкций
 - Обшивка-Стрингер
 - Трёхслойные структуры
 - Изогридные конструкции
- Тип агрегата ЛА
 - Круговая намотка В787
 - Панельная схема А350
- Вторичные конструкции:
 кронштейны навески, окантовки иллюминатора, балки пола.

Типовые конструкции крыла из ПКМ

Типы конструкций
 — Обшивка-Стрингер

— Трёхслойная обшивка

 Многостеночное крыло

Изогридные конструкции

Композиционные материалы по отраслям

Направления улучшений

Термопласты

eroLab

- Новая степень интегральности
- Сварка по месту
- Самозалечивание

Термопласты

- Формование толстых пластин-заготовок
- Формообразование листов
- Термопласт с рубленными волокнами

Наноматериалы

Защитные свойства ПКМ

- (влага, температура, топливо).
- 2) Градинентные материалы
- 3) Адрегивные свойства
- 4) Электроповодимость
- 5) Резистивный нагрев.
- 6) Локальные усиления
- 7) Межслоевая прочность

Самозалечивающиеся материалы

Термопласты

Термореактивные смолы