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1 Basis equations

1.1 Mass, momentum, and energy conservation laws

Consider basic equations governing motion of a medium. These equations
mathematically formulate laws based on experimental data. They are mass,
momentum, and angular momentum conservation laws, first and second laws
of thermodynamics. We postulate that these laws are valid for continuous
media.

Derivation of the equations involves considering motion of a material
element 7 bounded by a surface X. For any characteristic of the media
f(t,z,y, z) in 7, Reynolds transport theorem (the formula for time derivative
of an integral over material volume) reads

%/de:/aﬁ—{dT—k/fvndZ

by

(v, is the projection of the velocity vector v to the external normal vector n
of the surface XJ).
If function f and velocity field v are smooth enough, the divergence

theorem gives
of Ofvy, Ofv, Ofv,
/fd /(81& e ) KRR}

Consider a moving volume 7* bounded by a surface X. Denote velocity of
the surface points by N. For any function A(t,z,y, z) we rewrite Reynolds

transport theorem:
AdT—/—dT—i—/ANdZ.

If the volume 7* coincides with a material volume 7 at t = 0, we have

d
dt AdT——/AdT+/

Continuity equation. Mass of fluid in the element 7 is conserved. Since
(1.1.1) gives

d op Opv, Opv,  Opv,
- — g = 1.1.2
dt/pdT /<8t+8m+8y+82 dr="0 (1.1.2)




(p is the gas density).
As considered volume 7 is arbitrary
Op Opv, Opv, Opv,

%t or T oyt o =0 (1.1.3)

The equations (1.1.2) and (1.1.3) show the mass conservation law in integral
and differential forms, respectively.

Momentum equation. By definition, momentum Q of material volume
T is
Q= / pvdr

By Newton’s law, change of momentum dQ over time interval dt equals
impulse of external forces acting on all particles inside the 7:

dQ = /deT—i—/pndE dt

T by

where F is the mass (body) force density, and p is the stress vector. For the
momentum derivative w.r.t time

Q _

Fd s
7 p T+/pn

T b

Applying (1.1.1) to the left-hand-side of this equation and taking into
account continuity equation, we obtain integral equation of momentum conservation.

d
/pd—;’ dr = /deT—l—/pndZ (1.1.4)

T T b

Cauchy formula reads
P, = P, cos(n,z) + p, cos(n,y) + p, cos(n, 2),

and allows introducing of the stress tensor

d
pd—: = pF + divIl (1.1.5)

divIl =

op, Op, Op,
ox + oy * 0z



Equations (1.1.4) and (1.1.5) shows the momentum conservation law in
integral and differential forms, respectively.
For classical definition of angular momentum K

K:/rxvpdT

the equation (1.1.4) gives angular momentum conservation law:

dK

= [ T Fpdr + /r X p,d¥ (1.1.6)

T Y

This law is valid for media without angular momentum corresponding to
internal degrees of freedom.

Example. Blade machines Blade machines transform
mechanical energy of flowing gas to kinetic energy of moving
boundary (turbine) or vice versa use rotation of a rigid body —=™>
for gas acceleration. Gas goes through an annular duct and /’\'\
interacts with blades - some plates placed across the duct.

Blades are connected to a massive body in the center and Pic. 1: Scheme
they form a rotor all together. (pic. 1). of a blade

machine

Our aim is to find power of a turbine for given flow parameters.

Let w be the angular velocity of the rotor. Consider a control volume 7*
bounded by the inlet ¥;, outlet 35 and the walls of the duct (pic. 1). This
volume rotates with the rotor. According (1.1.6) the angular momentum
conservation law reads

d

pr (r x pv)dr + /(r x pv) (v, — D)d% = M
t 7—* E

M is the principal torque, r is the position vector of some point on the duct
axis, D is the normal velocity of the surface. The parameters distribution
over Y are axially symmetric and the flow is steady relative to the control
volume. So

M= /E(r % o) (0 — D)dS

Tangential stresses on the duct walls are negligible and normal stresses give
zero torque about the axis of the duct. Project this equation on the axis
direction

M = T PCyu U dXS

Y1+30
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Gas flux though boundaries is proportional to v,, — D and vanishes at walls,
so only integral over (X7 + X5) is non-zero. Scalar r is distance to the axis, ¢,
is a transversal (circumferential, azimuthal) component of the absolute gas
velocity.

Power W of the rotor is

W=wM=w 7 PCy U dE (1.1.7)

14+22
or

G
W = w/o [(rey)a — (rey)1]dm (1.1.8)

Here G is the total mass flux, dm is mass of the gas flowing through an
element of cross-sections d>2; and d>s of surfaces ¥ and Xs.
Due to mass conservation

dm = p1vp1dX; = pavpeddi
and (1.1.8) has a form:
W =w[(rcy)2 — (re 1] G (1.1.9)

The (%) means mass average. The formula (1.1.9) was first obtained by
Leonard Euler.

The first law of thermodynamics. There exist a variable of state £ such
that
d€ = dA® +dQ

where dA© is work of external forces over the system and dQ(® is quantity
of heat come from surroundings.

For a material element dr with mass of pdr, € = (E + U) pdr, where E
is the specific kinetic energy v?/2 and U is a variable of sate, namely the
specific internal energy.

The momentum equation gives a value of a kinetic energy change, and the
first law of thermodynamics leads to the equation for internal energy only
(the energy equation):

w_1 (pxa—v i p, % av> + q© (1.1.10)
p

I or T Pvgy TP
where ©
¢ = lim 4Q
ar—0 pdTdt
t—0

is the non-mechanical energy flux from surroundings to a unit mass of medium
per unit time.



The second law of thermodynamics. There exist a variable of state S
(entropy) such that for reversible processes

TdS = dQ.

For an irreversible process leading from a state A to a state B, the second

law reads
dQ®

S(B)—S(A)z/ i

L

In the right-hand-side, the integral is taken over the curve £ corresponding to
the irreversible process in the configuration space. Since entropy is a variable
of state S(A) and S(B) are defined independently on the path L.

1.2 Examples of complete systems of equations

One of the main problems of gas dynamics is to derive a complete system
of equations. Together with appropriate initial and boundary conditions it
allows analysis of particular gas flows.

The most wide-used model is a model of ideal perfect gas. It assumes
that all mechanical processes are reversible, the stress tensor is hydrostatic
(p, = —pn,p > 0), the internal energy U and pressure p depend on two
variables of state. The continuity (1.1.3), momentum (1.1.5) and energy
(1.1.10) equations reads

d
d—f + pdivv =0
d
oY — F — gradp (1.2.1)
dt
dU
% + ][_jdivv = q(e).

Usually F and ¢(®) are given functions of variables involved in (1.2.1). As
this system of equations is not complete, relations between p, p, U (equations
of state) must be added.

Thermic p = p(p, T') (T being the temperature) and calorific U = U(p, T')
equations of state are usually given. The functions p(p,T") and U(p,T') are
not independent as they must admit laws of thermodynamics.

Let the density and specific entropy be independent variables, then

U= U(ﬂ?‘s)a p= p(pa S)v T = T(p75)
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are known functions and these relations close (1.2.1). It becomes a complete
system of equations for unknowns: p,v, s

d
—'O—i—pdiVV:O

dt
d
pd—: = pF — gradp (1.2.2)
ds
T— =q9.
it~
We find p and T" by relations
ou ou
2
pu— —_— T = -—

The model of perfect gas reads
U=c¢/1, p=pRI, ¢, R=-const.
Hence specific entropy is

e+ R

Cy

p
5=y ln—7 + S9, So = const, =
P

Introducing this expression in (1.2.2) simplifies the equations and gives equations
for p,v, T

d
—p+pvdivV:O

dt
d
pd—z = pF —gradp
(1.2.3)
chi In (ﬁ) =q@
dt P
p = pRT.

For application, it is useful to consider gas as barotropic, i.e. p = ®(p),
the function ®(p) is the same for any elements in considered domain.



2 Lecture 2. Non-steady one- dimensional flows

2.1 Governing equations

A motion is called one-dimensional if all the parameters of the media depend
on one coordinate x and, in general, on time ¢ only. If this coordinate is
distance to a certain plane the flow is plane (plane waves), if it is distance
to a straight line the flow is axisymmterical (cylindrical waves), and if it
is distance to a certain point the flow is spherically symmetric (spherical
waves). Assume, that only x component of velocity is non-zero. Body force
also has only x non-zero component, if any.

For Eulerian description (1.2.2), unknown function are velocity component
u and two thermodynamic variables, e.g. pressure p and density p, while x
and ¢ are independents variables.

The continuity and motion equations reads

dp  Opu pu

&t tw-1)—=0 (2.1.1)

ou ou 1@_

5 Tt 55 —F, (2.1.2)

where v = 1, 2, 3 used for plane, cylindrical, and spherical waves, respectively.
The entropy change equation is added to the systems of equations (2.1.1),

(2.1.2)
Os 0s
722 =) = 4@ 2.1.3
(at * u(‘?x) 1 ( )
and a relation for entropy (equation of state) as well
p=p(p,s), T =T(p,s) (2.1.4)

Then, the obtained system of equation (2.1.1) — (2.1.3) with additional
relation (2.1.4) forms complete system of equations for functions u(zx,t),
p(z,t), p(z, ).

Further, we will use the continuity equation (2.1.1) in the form containing
full derivative of p over time. Since p = p(p, s), introducing speed of sound a
as a? = (Op/dp)s, from (2.1.1) we have

1 [/0p dp ou pu
o ( ) Py +(v—1) = 0 (2.1.5)

E—Fu@x

The system (2.1.1) — (2.1.3) is a PDE system. So, to complete the
statement of the problem and find a solution, initial and boundary conditions
must be specified.

10



2.2 Small disturbances

The simplest solution for the gas dynamics equations (2.1.1) — (2.1.3) describes
gas in rest:

p="no, pP=po, u=0, s=s9, T =T(po,50)

Po, Po, So are constants.

In this lecture we analyse solutions which are close to this one.

Consider 1D non-stationary flows, where pressure p, density p slightly
differ from constant values pg, pg, and gas velocity u is small. The scale for
velocity comes from the gas state, it is speed of sound ag = \/(9p/9dp) s. This
velocity has the same order of magnitude as velocity of chaotic motion of gas
molecules.

Disturbances are small so p < pg, p < po, © <K ag, s — 59 < 5o and
smooth 0/0t < agd/dz. Nonlinear terms in governing equations: continuity
(2.1.1), equation of motion (2.1.2) and entropy (2.1.3) can be omitted and
these equations read

ap ou pou
E‘f“po%—l—(v— 1)7 =0 (2.2.1)
Oou 1 0p
— 4 —— = 2.2.2
ot poox 0 ( )
ds
5 =0 (2.2.3)

0
o=l p—po)+ 2| s (2.2.4)
ap|, ds |,
Potential ¢ integrates (2.2.2):
O Iy
=T p—po=—po—r 2.2.
uU=oo PP = Py (2.2.5)

Differentiation of (2.2.4) w.r.t. time according (2.2.3) and (2.2.5) leads to
equation for ¢ from (2.2.1):
1% ¢ v—10p

a2 o2 0x? r Or

0 (2.2.6)
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Plane waves. Forv =1, (2.2.6) is a classical wave equation and its general
solution is

v = F(z — apt) + G(z + aot)

u= f(zx —aot) + g(z + aopt)

p—po = poao [f(z — aot) — g(z + aot)]
f=F, g=¢C

Values r = u+ (p — po)/(poao) and | = u — (p — po)/(poao) are constant
on right-running and left-running characteristics x = xy *+ aot, respectively.
This form of the solution simplifies analysis of reflection.

If a single pulse appears at t = 0 at some finite segment, waves go to both
direction and their shape does not change during the propagation.

Spherical waves. For v = 3, (2.2.6) is equivalent to

1 Prp  Pxp

a2 o2 a2

It is again a wave equation, so its general solution has a form:

¢:§w@—%w+G@+%m

Velocity and pressure are
f(z — apt I g(x + apt 1 [rtact
T G - F&)de + glo +aot) _ - g(n)dn
r T Jeo xr = Jno

P — Do . f(l’—aot) g(x—l—aot)

Polo T T

Consider a particular solution describing pressure wave propagation away
from the center with potential ¢

= —ﬁ@ (t - aio) (2.2.7)

Velocity and pressure are

o1 [@(-%) e-3)

or 4r aoT x

0 1 x
p—poz—poa—gpzpoao Q’(t——>
t T

drx

12



The mass flux ¢(x,t) through a surface x = const is

q:47m:2u:£Q'(t—£> +Q(t—£>
Qg Qo ao

lim g, 1) = Q(1)

Let the function Q(¢) in (2.2.7) is non-zero
only if 0 < t < 7. Assume, gas comes to rest 0
after the wave is gone. It means

Q0)=Q(0)=0, Q(r)=Q'(1)=0

Ifzx—0

As

Mﬂ=[@ﬁW=&

the sign of Q’(t) has to change. Consequently, "
the sign of pressure disturbance changes as
well. Note, that there is no such an effect for

plane waves.
On the other hand, if pressure has a constant sign (or [ Q'(t)dt = Q(7) #

0), gas does not come to rest but moves stationary and has velocity of

_ Q)

Aa?

0.5 1 1.5 £ 2

Pic. 2: Initial disturbance

after the wave propagation. Anyway, both pressure and velocity have a factor
of 1/z and a pulse decreases going from the center. The power of -1 ensures

energy conservation.
z

Cylindrical waves. It is more difficult to derive ‘ &
general solution for cylindrical waves then for plane a,t
of spherical ones. ol a,(t-v)

Consider a class of solutions which are represented

as a superposition of spherical waves from uniformly 5
distributed over the axis x = 0 sources (pic. 3) :

=

I
|
z=0 ;

1
gpz/—[F(r—aot)+G(r+aot)}d(,
) 27" ) (2.2.8) Pic. 3: Construction
rt=a"+ (" of cylindrical wave
potential
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Consider

1 T

and find approriate integration limits in (2.2.8)

2AE () (t - \/m/ao>
gO(t,[L’) = _% 0 \/m

(we took into account that z = 0 is a symmetry plane).
If Q(t) is nonzero for a finite time 7, the lower limit in (2.2.9) is actually

Cterm = \/G%(t - 7—)2 — 22

if this value is greater than zero.

For any fixed x > 0, ¢ # 0 for large enough ¢: there always is a diapason
on the axis which contains sources giving nozero impact at a given point at
any instant after first wave come.

d¢ (2.2.9)

D-Po v=1_
0
D-Po v=>2
0 -V
D-Do v=3
0
0 1 2 3 X 4

Pic. 4: Pressure distribution in impulse for plane, cylindrical, and spherical
wave

The pic. 4 shows pressure impulse evolution for plane, cylindrical and
spherical cases. Function F(§) = £%(€ — 7)? is the same for all geometrical
configurations and shown at top left panel and its derivative at bottom left
one. This function defines potential. Right panels show pressure distribution
in space for two instants: t = 27, t = 47, the scale for coordinate is ag7.

Plane waves propagate without any change. Spherical waves decrease their
magnitude while going from the origin. For symmetric in time source, the rear
front is steeper than the leading one. Single cylindrical pulse has no rear edge.
At any point, pressure goes to zero during infinite time.
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3 One-dimensional nonsteady flows

3.1 General properties of characteristics of first-order
PDE’s with two variables

Consider a system of PDE’s with two independent variables. Its general form
is

(A)fe+(B)fi +D =0 (3.1.1)

where (A) and (B) are matrices, D is a vector and their elements depend on
x and t, and component of unknown vector-function f. The derivatives f,,
fi enter the equation (3.1.1) linearly.

The system (2.1.1) — (2.1.3) is an example of such a system: it is linear on
derivatives of unknown functions, but its coefficients and free terms depend
on unknowns and independent variables arbitrary.

Consider the following problem for the equation (3.1.1). On a certain line
x = x(t), values of f are given. It means that the derivative df /dt = ¢'(t) on
this line is also given. Values f, comes from (3.1.1).

This problem is equivalent to Cauchy problem: find a solution of (3.1.1)
such that f = ¢(t) on x = x(¢). If there exists a unique solution, then f, is
determined on x = z(t). In other words, if f, either doesn’t exist or is non-
unique, then the Cauchy problem either has no solution or has more than
one solution.

To obtain an equation for f,, we eliminate f;:

_(9_f dz Of dz

) =5+ as =gl TP (3.1.2)

Substituting f; from (3.1.2) to (3.1.1) we obtain system of linear algebraic
equations for f,. If the determinant of this system is non-zero, we have a
unique solution for f, on x = z(t). If

A= \(A)—%(BM =0, (3.1.3)

the system of equations for f, either has no solution or has infinitely
many solutions. In the latter case, the function ¢ can not be stated arbitrary.
Solvability of the system requires certain conditions for .

The equation A = 0 determines directions dx/dt of characteristics.

Example 1. Find characteristics of (2.1.1) — (2.1.3) with use of (2.1.4).
We change (2.1.3) by the equivalent introducing speed of sound a = (9p/0p)s

0 0 0 0
p o . op

A TR

ot ox ) =0,
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p u p 0 1 00
f=1u],4= 0 wu 1/p |,(B)= 0o 10 |,
D —a*u 0 wu —a?> 0 1
(v —1pu/x
D = —F,
0

Denote dz/dt = T and obtain equation (3.1.3) for characteristics

u—T P 0
|(A) —7(B)| = 0 u—71 1/p | =0.
a(—u+7) 0 u-—r7
or
(u—7)P+d*(~u+7)=0,71=u, n3=uta

As all three value of 7 are real and different, the system (2.1.1) —(2.1.3) is
hyberbolic by definition. The values of 7 correspond to disturbances, which
have velocities of u, u & a.

It is useful to have characteristic view of (2.1.1) —(2.1.3). It contains
derivatives of unknown function over characteristic directions 7. To do it,
multiply (2.1.1) by a/p and add and subtract (2.1.2). For simplicity, we omit
the body force F} and obtain the following

ou ou 1 [Jp dp au
E—F(U—FG)%—FE|:a+(u+a)%:|+(l/—l)7—0 (3.1.4)
ou ou 1 [Op dp au
E"‘(u—a)%—p—a[a—i-(u—&)%]—(l/—l)?—o (315)
0s Js
— — = 1.
at-l-uay 0 (3 6)

Equations (3.1.4) —(3.1.6) give relation between differentials of unknown
functions along characteristics:

du + Z—Z’ =—(v—-1)%dt, dr = (u+a)dt
du — z—i = (v —1)%dt, dv = (u—a)dl (3.1.7)
ds =0, dr = udt

Introduce new function v and variables r and [ by formulae
v:/dp/pa, r=u+4+uv, l=u-—uv. (3.1.8)

16



Then (3.1.7) gives

dr = —(v — 1)%dt, dr = (u+ a)dt
x
dl = (v — )2t de = (u— a)dt
x
Variables r u [ are Riemann invariants. For plane flows (v = 1) they
remain constant along right-running and left-running characteristics (dx =
(u+ a)dt and dx = (u — a)dt, respectively) .

Example 2. Find characteristics of (1.2.2) considering steady two dimensional
flows: plane and axisymmetric.
The complete system of equations is

Ipuy’~t  Opvyr !
puy +py

=0
Ox oy ’
0 0 1,
pua—u + pva—u = —a—p + ply,
y (3.1.9)
u + v@ = —@ + pF,
Pua dy 0 v
0s N 0s 0
U— +Vv— =
ox ox
This system gets the form
after simple transformations and introducing of speed of sound with
P Uyu 1 O pyufl O uyufl pyufl O 0
u _ 0O pv 0 O B 0 pu 0 1
f= v (A) = 0 0 pv 1  (B) = 0 0 pv O
P —a*v 0 0 v —a’u 0 0 u
(v—1)pv
D _
—pF,
0

Characteristic direction 7 = dy/dx satisfies (3.1.3)

17



7t —py T oyt 0
_| 0 23 0 —7|_ oy
((A)=7B)I=| | 0 e 1 | =0 f=vour
—a?¢ 0 0 13

or
prV_1€2 (52 - a2(7_2 =+ 1)) =0
Four roots of this equation are easy to write down:

v wv £ avV2 —a?

2
T2 = — T34=C= B 5
U ut—a

. VEi=w? 0%

Two latter ones are real if the flow is supersonic. Characteristic view of
the system is more complex and will be obtained by a different way.

The geometry of characteristics is clearly seen in natural coordinate system:
2y, ©' being directed along the velocity vector V(u',v") (or along the
entropy characteristic C?), see fig.5 In this coordinates v = v/ = 0, u =

u =V, so
dy’ a
A T
(dx,)i V2 —a?

Pic. 5: Geometry of characteristics

It means that characteristics C™ and C'~ makes equal angles with the
velocity direction and projection of the velocity vector to normal equals local
speed of sound value a. The angle i between characteristics and velocity
vector is called Mach angles, the characteristics are called acoustic or sound.

We have
1 a 1

R — t = e

Y Y e AV 7 L
dy dy

(dx>0 g0, (dx>i g+ p)

18
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4 Two-dimensional steady flows

4.1 Governing equations. First integrals

Consider an ideal perfect gas motion. Assume the flow to be steady, so for

unknown functions p, V, p satisfy equations
ov ap op
— =0, =— =0, =—==0
ot ot 7 ot

Here we consider plane and axisymmetric flows. Gromeka-Lamb equation
of motion reads

d
V2 . 1
V7—|—2(wa)+;Vp:VZ/l (4.1.2)
ds
T— =gq. 4.1.3
ik (4.1.3)

here w is vorticity vector, U is body force potential, s = s(p,p) is specific
entropy. Specific energy flux ¢ is given.

Projection of (4.1.2) on a streamline £ gives Benoulli integral along a
streamline:

V2 P dp
5 —l—/po (. L) U="PyL) (4.1.4)
For barotropic flows, p = p(p) and the constant Py is the same for all
streamlines.
Scalar product of (4.1.2) by & gives the relation along a vortex lines
(similar to the streamline case):

V2 /p dp
4 — U =Py(L 4.1.5
2 o PP, L¥) (L) (4.1.5)

For adiabatic flows, ¢ = 0 and (4.1.3) gives one more first integral along
streamlines.

s(p, p) = s(L) (4.1.6)

Equations (4.1.4) — (4.1.6) are first integrals of the system of equations
(4.1.1) —(4.1.3). They correspond to two characteristics with dy/dz = v/u.
For adiabatic flows, equation (4.1.4) takes form:
V2

5 = U= ho(L) (4.1.7)
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Here we use well-known thermodynamic relations dqg = T'ds = dU+pd(1/p) =
dh — dp/p.
50 .
T(V:Vs) =V Vh=(V-Vp)

and if U4 = 0 we have

%Vp _v (ho(L’) _ V;)

hence equation of motion (4.1.2) reads:
2@ X V) =T Vs — Vhy (4.1.8)

This equation is Crocco’s vorticity theorem.

Now transform the continuity equation (4.1.1) for adiabatic and barotropic
flows in order to eliminate p and its derivatives. The barotropy connects
density and pressure, and Bernoulli integral (4.1.4) allows calculating substantial
derivative of the latter. For simplicity, let &/ = 0. Hence,

b _pds__pdV:_ g (y 1
dt  Opdt  a2dt 2 a?

The continuity equation has a form:
V2
(V -V 7) —a*divV =0 (4.1.9)

Finally, the system of equations governing steady adiabatic or barotropic
motion with no body force is

V2
(V-VT) —a’V-V =0 (4.1.10)
V2 1
ds
T— = 4.1.12
o =0 ( )

A barotropy equation or a relation between p, p, and s closes the system.

4.2 Streamfunction

The continuity equation for two-dimensional flows takes a form:

apuyu—l N 8,01}1/”_1 _

ox oy 0
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with » = 1 and v = 2 for plane and axisymmetric cases respectively. Consequently,
there exists a scalar function 1, which differential is dip = puy”~'dy —

pvy’ " tdx, and
a_w — ,Uyy—l 8_¢ — uyu—l
e = P 5, =P
We see that 1) = const along streamlines dz/u = dy/v, and hence (4.1.6),
(4.1.7), (4.1.9) take a form (U = 0)
Wl 4= hy(y) (4.2.1)
s(1) (4.2.2)
(a2—u2)g—g—uv (g—ZJrg—;) +(a2—02)g—2+(y—1)a27” =0 (4.2.3)

V2 d u? + v 5 OU v
(V-V—)—u% 5 +...—u%+uv%+...

The equation (4.2.3) involves speed of sound a which depends on thermodynamic
parameters i and s. These parameters are functions of ¢ and (u? + v?)
according to (4.2.1) and (4.2.2).

As h and s actually depend on 9 only, projection of (4.1.8) on y axis gives

u(@v 0u>_Té?s Ohg

VA
Il

as

or Oy) ~ oy Oy
and o 0 ds  dh
v u s 0 V1
S O 1.2.4
T T 0y <dw dw>py 424)
Equations (4.1.1) — (4.1.3) give two differential equations along streamlines
V2 o d
d—+ L =0, ds=0 (4.2.5)
2 p
and two partial differential equations (4.2.3) and (4.2.4). In general, the
definition of the streamfunction must be added: 9¢/0x = —pvy”~! ( or

/Oy = puy” ).
Relations (4.2.5) has characteristic form (it contains derivatives along
fixed line, namely, the streamline). The Bernoulli integral, entropy, and streamfunction
1 are invariants of these characteristics.
Transform the other equations (4.2.3) and (4.2.4) to characteristic form.
Take a sum of (4.2.4) multiplied by a factor A and (4.2.3):

2
(a® —u?) ?—(uv%—)\)@—(uv—)\)@—i-(a2 — %) ? =\ —(v— 1)ﬂ
)

ox Yy
(4.2.6)
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(we denote the rhs of (4.2.4) by Q*). This equation gives criteria for combinations
of derivatives wrt z and y to be derivatives along a certain direction with
slope c. Roots of this equation were already found by general approach for

characteristics:
(dy) uv + av'V?2 — a?
+

dx u?2 — a?

:Ci_

They are real if V' > a. From (4.2.6), Ay = £aVV? — a2,
Equations (4.2.3), (4.2.4) have the following characteristic form:

@—i—c@%—c @—Fc@ 1 (V—l)@—)\ Q*
ox i@y T\ oz iay w2 —a? Yy =
And characteristic relations are
du+ c_dv = K dx if dy = cydx (4.2.7)
du+ cidv = K_dx if dy = c_dx (4.2.8)
2 2
d <“ ;“ ) +dh =0
. v
ds— 0 ifdy = adq:
dyp =0
where
1 a’v

Ki = |:(V—1)——>\:|:Q*
Y

Coming back to initial equations (4.1.1) — (4.1.3), we see that plane
and axysimmetrical flows differ by form of the continuity equation. Hence,
all results derived for plane flows are valid for axisymmetric ones, if the
continuity equation has not been taken into account. In particular, Rankine-
Hugoniot relations are valid

P1Un1 — P2Un2 = 0
P1Un1 V1 — P22V = Ppi — Pro

and shock polar (Busemann curve) has the same form as for v =1 (V. is
critical speed)
u—Ve/W
Wi/ (v + 1)+ V2 Vi —u

v = (Vy —u)? (4.2.9)

On the other hand, relations on characteristics (4.2.7), (4.2.8) for v = 1
and v = 2 are significantly different. Zero right hand side part for plane
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irrotational flows allows finding the characteristics in godograph plane independently
on the solution.
For v = 2 Bernoulli integral reads

u2+v2+ a? _7+1az
2 y—1 y—12

so solutions for supersonic flow lies between circles u? + v? = a? and (v +
1)a2/(y—1) on u, v plane. Besides, characteristics could not be found unless
the solution is known. This shows formal analogy between plane vortical and
axisymmetrical flows.

Equation (4.2.4) indicates the case of transition between potential and
rotational plane flows. If a flow is continuous, Kelvin’s circulation theorem
ensures that vorticity is frozen, and if w = 0 in some domain, this values
will be kept on all streamlines crossing it. Shock waves do not change full
enthalpy Hj so the only possible source of vorticity is non-uniform entropy
change at a shock wave. It takes place if the shock is curvilinear. Weak shock
waves produce small entropy change, proportional to the third power of the
wave intensity, and keep the flow irrotational.
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5 Axisymmetric simple waves

5.1 General theory

Consider axisymmetric steady potential flow of a perfect gas with constant
adiabatic exponent ~. Let x, y be cylindrical coordinates, x goes along the
axis of symmetry, y is distance to the axis. We consider self-similar solutions
only: they depend on variable £ = y/x. These are simple waves or Busemann
flows. In the hodograph plane u, v, they correspond to curves v = v(u).

Let 7, ¢ be polar coordinates in a half-plane y > 0 (0 < ¢ < 7). The
angle ¢ increases from the positive direction of the x axis. Absence of vorticity
condition reads

o _ou_

or Oy

§=2=tgo u=u(g), v =1

o 009 9  doc . de

o 9Eon dy oedy LT g™

Hence

detgp+ 32 =0 (5.1.1)
®rgo+1=0 (5.1.2)

The direction of a ray ¢ = const where velocity components equals (u, v)
is normal to curve v = v(u) on the godograph plane.
The continuity equation (4.2.3) and (5.1.1) give
du 9
— =a“v
dy (5.1.3)
N =a*>— (vcos p—usin ¢)?, N=a*>—102

where v, = v cos ¢ —u sin ¢ is a normal to the ¢ = const ray component of
velocity.
The derivative of (5.1.2) with expression for du/dy from (5.1.3) gives

" _ 12 (u + UU/)Z _ a2 - U?L 12
w' =147 — = =0 (1+2?) (5.1.4)

(primes stand for differentiation w.r.t. u).

Each solution of (5.1.4) corresponds to a simple wave. The function v =
v(u) gives dependence of u and v on ¢ by use of (5.1.2). Uniqueness of the
solution requires that the integral curve v(u) has no inflection points.
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5.2 Supersonic flow past a cone

Consider a supersonic flow past an infinite circular cone with zero angle of
attack. The problem has no length scale and is self-similar. The bow shock
wave is conical and has equation ¢ = ¢g. The incoming flow is uniform, the
angle between velocity and the shock wave is the same at all points, hence
the shock intensity and the entropy change is the constant. After the shock
the flow is again isentropic. Full enthalpy does not change on the shock wave.
According to Crocco’s theorem (4.2.4), vorticiy is zero after the shock wave
and the flow obeys (5.1.4) in hodograph plane and (5.1.1) in physical plane.

The boundary conditions for the problem come from Rankine-Hugoniot
conditions at the shock wave and non penetration and the cone surface.

Let the cone have semiangle of ¢y. Non-penetration condition reads

v
— =19%o
u
on hodograph plane
Y r1=0 (5.2.1)
u

It means that a normal to the integral curve v = v(u) at the corresponding
to the cone surface points goes through the origin.

At the shock wave ¢ = pg velocity components v and v are connected
with incoming velocity V; via Busemann equation (4.2.9). Finally,

at p = o : =19 po

gle

(5.2.2)
ato =ps: utvtgps=Vy, v="V(u)

where V?(u) is right hand side of (4.2.9).

Three boundary conditions (5.2.2) complete the boundary-value problem
for the second-order ODE (5.1.4) as the bow shock wave position @g is
unknown a priopi.

It is more convenient to fix g instead of ¢y and find the latter. In this
manner correspondence between these two angles is stated as well.

25



We solve this problem using some
graphics. First we use Busemann curve

(pic.6), draw it for the incoming ]

velocity Vy (point A). Fix an angle |

¢ = g and draw an perpendicular %—

from A. This perpendicular crosses the 037 Z B

Busemann curve at the point B. It ] *\
states boundary conditions u and v ST \ N ;§ A

at ¢ = pg after the shock wave. The = 05 X Ls 5

equation (5.1.2) gives direction of the — Busemann curve — sound line
integral curve at the point B: — simple waves — apple curve
Vtgos+1=0 Pic. 6: Towards graphical solution of

the flow past a cone problem
The curve is normal to the shock, so it

goes along AB.
After the shock wave the normal velocity is subsonic, hence the curve is

convex towards the origin. The sign or the curvature corresponds to the sign
of v” (5.1.4). While ¢ decreases the ray with this direction goes clockwise, so
the normal to the integral curve at hodograph plane does. Hence, the integral
curve goes to the left from he point B. The curve ends at a point By where
normal passes through the origin. The direction and length of OBj show the
velocity direction and magnitude at the cone surface.

This algorithm can be applied to all possible angles of the shock wave
s, (11 < s < m/2) (p1 is a limit angle from Busemann curve). All points

By form "apple"curve at the hodograph plane (pic.6).
Qualitative description. After the shock wave the

flow is either subsonic or supersonic. Between the
shock wave and the cone surface, gas turns further
towards the shock wave (pic.7) and Mach number
decreases. A transition to subsonic flow is possible,
in this case sonic surface is also conical. Opposite to
plane case (flow past a wedge), gas has some space
after the shock wave to align to the surface, so the
maximal angle of an object with attached bow shock

is large for cone.
The pic.8 shows dependence of object angle on the shock wave angle for

M = 2. The difference between lines is the angle of the flow turning after
the shock wave. The maximal angles of objects with attached shock wave for
cone and wedge are displayed in fig. 9.

Pic. 7: Streamlines of
the flow past a cone
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6 Flow past a slender body

6.1 Small perturbation theory

General governing equations for inviscid compressible gas flow are

% + pdivV =0 (6.1.1)
% 1
grad7 +2(w x V) + — gradp = gradU (6.1.2)
p
ds
T— = 6.1.3
ik’ (6.1.3)

Here w is vorticity, U is body force potential, and s = s(p,p) is specific
entropy. Heat source distribution ¢ is a given function.
These equations have first integrals, namely Bernoulli integral (along a
streamline)
V2 Pod
—+/ L _u=pyc) (6.1.4)
2 Jp p(p. L)
For baroptopic flows p = p(p), the constant Py is the same for all streamlines.
For adiabatic flows ds = 0, entropy is also constant along a streamline (6.1.3)

s(p, p) = s(L) (6.1.5)

In this case, the integral in (6.1.4) can be expressed explicitly.
An evident solution of (6.1.1) — (6.1.3) is a uniform flow, which is a flow
past a plane with zero angle of attack

v=Vy,p=p,p=p

Consider flows which are close to uniform. For example, these could be
flows past a plane with a small topography or a body with surface close to a
plane, flows slightly different from the uniform v = V; u p = p; at infinity,
flows past a weakly oscillating bodies.

We consider flows past a non-moving bodies only. Assume that flow is
adiabatic and there is no body forces. Let the gas be a perfect gas with
constant heat capacities and the heat capacities ratio is 7.

The incoming flows is uniform. If the flow is subsonic, total enthalpy hg
and entropy s are constant. Shock waves in supersonic flows cause change of
entropy keeping hg constant, before the waves both values are constant.

Simplify governing equations due to small magnitude of disturbances.
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Bernoulli integral (6.1.4) reads

4V ldp _
dt 2 pdt

From continuity equation (6.1.1)

dp dp )
P divy =
dp df + pdivv = 0,
we have
V2
(V : grad7> — a*divv = 0. (6.1.6)

Introducing disturbances velocity field
v=(V+uuvuw)

make transformations of (6.1.6)

ou Ov Ow
2 1 p— 2 — — — pr—
adivv =a (63: * dy * 82)
J |v|? d |v|? d |v|?

P . P L — 2_ - R
7(V+u)8:c 5 —H)ay 5 +w8z 5 (V +u) ax“’ay“" 8z+

+(v+u)v(@+@)+ww <@+a—w)+(v+u)w(a—w+8“)

ou  ,0v 5 Ow

oy Ox 0z 0Oy o 0z
(6.1.7)
Value of local speed of sound a? comes from (6.1.4)
2 2 2
a>=a2—(y—1) (Vu + W) (6.1.8)

Let € = u/V be a small parameter. It indicates declination of the velocity
from mean flow direction V;. The ratio v/(V + u) is of order of ¢ as well.
Assume, u is of order of € and velocity disturbances are small compared to

a. Then )
(%%) ~ (M2€2) <1

It means, hypersonic flows M?2c? > 1 are not considered.
Linearization of (6.1.7) gives

ou ov ow

2 2 2 2

_ - - -7 1.
[a (V—i—u)} :E+a y—l—a " 0 (6 9)
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we still keep a term of order of €2, this will be explained further.

As possible shock waves are weak, change of entropy is a small values
of the third order and can be neglected. It means the flow is isentropic and
irrotational due to boundary conditions at infinity.

Combining (6.1.9) and (6.1.8) gives the main equation

uldu OJv Ow

1— M?— WM*—| —+ —+—=0,tme M*=V?/a®> (6.1.10

The only nonlinear term is the last one in square brackets. For transonic
flows (M =~ 1)it can be the leading one and the equation is sufficiently
nonlinear. This term can be omitted,

(v + DM? [ttfmaa
11— M2 V

<1 (6.1.11)

In this case, governing equation (6.1.10) reads

ou Ov  Ow
pa— 2 —_— — —_— =
(1—M?) o ta, o 0 (6.1.12)

As the flow is irrotational, there exists velocity potential ¢(x,y,2): v =
V, + grad ¢. Equations (6.1.10) and (6.1.12) gives for potential

10p| %0 0% %
1—M?— 1) M?=——= = 1.1
(r+1) 1% ax] oz?  0y? * 022 0 (611
Po  Pp Oy
1— M? = 1.14
( ) ox? + oy? * 022 0 (6 )

Pressure distribution can be found afterwards for given (. Bernoulli integral

reads v ) ) ) V2
VHw foitw 7 (]—)—&):— (6.1.15)
2 y=1\p m 2
as entropy is constant and p = const p?, we have
P—p 1 o o VP w?
=—(Vu+-(1-M")u" + (6.1.16)
P1 2 2

6.2 Boundary conditions

Gas does not penetrate into a rigid body. Let the body surface have equation

F(z,y,2) =0 (6.2.1)
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y=Y(x,z) (6.2.2)

For linear approximation, we have

o(z, 40, 2) = V% (6.2.3)

For body of revolution, we transform boundary condition (6.2.2)

S(x)

™

F=y* 42— R*z)=1r>— =0

where 7 is distance to the axis of symmetry, R and S are radius and normal
cross-section area of the body.
Full (nonlinear) boundary condition is

dR
W =0
( +u)dx+v

Omitting small value of u gives

dR
at r= R(x): rv, =VR— (6.2.4)
dz
This condition can be simplified by transferring to the axis of symmetry.

Taylor expansion gives

orv,

or

U = (TU)po +

The continuity equation gives
ou orv,
r—=—
Ox or
so the second and further term are small and for the first term, we have

dR
o = VR —.
(v )r=o T

This equation can be interpreted as volume source distribution along the
axis of symmetry. Their interaction with incoming flow forms a separation
surface which is equivalent to a rigid body. The singularity v, — oo as
r — 0 is actually inside the rigid body but not in the physical flow domain.
At infinity disturbances must vanish, where this condition is applicable. At
least, the solution is finite everywhere.
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We see one more difference between plane and axisymmetric flows. For the
former, longitudinal velocity disturbance u has the same order of magnitude
as v. Indeed, from (6.2.3) and irrotationality condition,

ou Ov Ay

8_y_(9—:r_ dz?

and v has no singularity. Hence it has the same order of magnitude as v
throughout the domain.

For axisymmetric flows v ~ r~tasr — 0, and v, = agr ' +a; +asr+....
Irrotationality condition gives

u = ajInr + a\r + ayr?

Boundary condition (6.2.4) gives ap = VRR' and at the boundary we
have .
u=1V (Rﬁ) InR
dx

When In R is not large by absolute value u ~ r/Lv, (L is a lengthscale along

For pressure distribution, Bernoulli integral gives (6.1.16)

_ 2
b plpl . <Vu + %) (6.2.5)

For plane flows, the first term is leading and pressure coefficient is

_ e,
P p1V2/2 V

Both term in (6.2.5) are sufficient for bodies of revolution and

== ()
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7 Solition for potential

7.1 General solution

General equation for potential of small distubances is (6.1.14). Considering
axisymmetric problems in cylindric coordinates z, r, it gives

Po P 10¢
- 2 - —_— _——
(1= 25%) 0x? - or? T or 0 (7.1.1)

with boundary condition

Op dR
_ I ¥ T 1.2
at = R(x) P, =T VR o (7.1.2)
or IR
(rv)p—o = VR - (7.1.3)
Absence of disturbances at x — —oo gives
atr - —oo p — 0
Pressure coefficient is
2u  v?
Cr=—|—+— 7.1.4
The equation (7.1.1) has different type for subsonuc (M < 1) and supersonic
(M > 1) flows.

If M < 1 any disturbance spreads infinitely far upflow and downflow. For
M > 1 a disturbance lies inside Mach cone with semianle p of

) a
sin p = —
%

(a is speed of sound).

For a point P cosider two Mach cones directed
upflow and downflow (pic.10). Parameters of
the flow at P do not depend on sources of
disturbances located outside first cone. On the
other hand, a source planced at P does not
affect the flow outside the second one.

Pic. 10: Mach cones
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Boundary condition (7.1.2) sets a distribution of sources along the axis
of symmetry. This gives a way to the form of solution of (7.1.1):

§) d§
/¢ —r (7.1.5)

here ¢ is a coordinate on the segment [0, L] of the symmetry axis inside the

body, and the density of source intensity is ¢(§) (pic.11).
Consider a point x,r in flow. If M < 1, the

expression under the root sign is positive for

any &, and all sources affect the flow in the s T
point. If M > 1, the point “feels” the source f

which have it inside their Mach cone, i.e. z — v ¥
E>VM2—1r. &%
The upper limit in the integral & in (7.1.5) is L Pic. 11

for M <land & =x—vVM?—1r (0 <& <)

for M > 1. ) i .
It is convenient to introduce a new variable 7 as

x—&=mr sinhn, m=+v1— M2forM <1

7.1.6
x—&=Arcoshn, A\=vM?—1forM > 1 ( )

This rewrites potential as

sinhn=(z—L)/mr
= / q(x —mrsinhn)dny forM < 1 (7.1.7)
sinhn=xz/mr

sinh n=0
o= [ q(z—Arcoshn)dy forM >1 (7.1.8)

coshn=xz/\r

Differentiation gives expressions for velocity components for M < 1

[ P N
\/ (x =€)+ m27“2 Ve —L2+m2? a2+ m?r?

Oy (x — &) d¢
v—r / \/a:— ~|—m27"2

q(L Q(U)w
\/(x — L)+ m2r2 Va2 + m?2r2

(7.1.9)
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and for M > 1
oo / A q'(§) d¢ q(0)
0 VI

u

) ” : E=z—Ar /x N 5)2 e ! \/$2 - (7110)
Tvzﬁkz/“ ¢O@-9de g0
or B V@ =2 =222 a? = N2

Point bodies (with dS/dz = 0, S being cross-section area) require ¢(0) =
q(L) = 0 (subsonc flow) or just ¢(0) = 0 (supersonic flow).
Boundary condition (7.1.2) gives an integral equations for ¢(§):

dR [ (" q©)(x—¢)de
VR— = for M <1, m=+v1— M2
_/0 V(e —§) ]r R(z) e

dz 2 + m2r2

yrt _ /A ¢(Q)(z — &) de for M >1, A=+/M2 —1
/0 \/($ o g R(x) ’

dx 22|

These equations, again, have different type. The former is Fredholm first
kind equation and the latter is Volterra first kind equation. One usually have
to solve them numerically.

After velocity is known, pressure distribution comes from (7.1.4). The
second (quadratic) term is sufficinet. Equations (7.1.9) and (7.1.10) show
that ro ~ulL ,ieu~rv/L < 1.

Often, the inverse problem is used. One finds potential ¢(x,r) for given
source distribution. Afterwards a suitable rigid surface can be found.

7.2 Examples

Plane flow past a wavy wall. Subsonic flow
Cosider a flow past a plane with sinusoidal topography

shown on pic.12. The surface has equation - 1 )
E i e
y=Y(x) =csin ax (7.2.1)
Pic. 12

The value € = 0 correponds to basic flowwhich is a

uniform flow with velocity of V.
Potentail of disturbances obeys the equation (6.1.14)

o O
1—M?*)—— 4+ 2 =0 7.2.2
( ) o2 T Oy? ( )
The boundary condition (6.2.3) for ¢ is
0 dy
2 VI = Vea cos ax (7.2.3)

W=y =V a
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As the wall is infinite, the velocity is bounded at infinity u = Jd¢/0x
v =0p/dy at y — 0.
Let M? < 1. We use Fourier method solving (7.2.2)

p = F(x)G(y)
For F and G we have
L — _—G" — )2
F (1- MG
Value of A is real and positive as the solution is periodic on .

Hence
F = Asin \x + Bcos \x
G = Ay exp(—V1 — M?\y) + Byexp(V1 — M?\y)

Boundness at y — oo requires By = 0, and (7.2.3) gives
A=0, A\=a, —A1BV1-M?2=V¢

The solution is
Ve
= —————exp(—yaVv'1— M?)cosax
0=~ r=p oPvev )
Velocity componets and pressure are
Vea
U= ———exp(—yav1— M?)sinax
Vi oPevi =AM
v = Veaexp(—yav1 — M?)cosax
V2
p—p1=Ap= —% exp(—yav'1 — M?)sinax

Disturbances have maximal magnitude at the wall and graually decay
going from it. It is eqsy to show that drag force is zero.
Linear theory is valid if

Uu v +1M2uma:1:
Y Ve (y + )M [u|

1.
T TEE A

For this particular problem it means
ey (v + 1)M?*ca
1= M2 T (1= M2

The second condition is stronger and more restricitve for the wall steepness
ea.

<1
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Plane flow past a wavy wall. Supersonic flow Let M > 1. General
solution of (7.2.2) is

o =Fx —vVM?—-1y) + Gz + vVM? — 1y)
Characteristics of (7.2.2 are straight lines

—VM? — 1y = const, v+ VvV M? — 1y = const.

Functions F' and G are constant at this lines, respectively. As no disturbances
come from infinity, G = 0.
Boundary condition at the wall gives

Y
v = —VM? —1F'(z) = le—:\/soz cos aux

8y x
and F'is v
F(x) =— * sinax
M2 —1
Hence,

Ve ,

Y= sm[a(x—\/M?—ly)]
M2 —1

u=— Vea cos[oz(x— M2—1y)}
M? —1

v = Vea cos [oz (x— M? — 1y>}
Ap = % cos [a (:1:— M? — 1y>}

In supersonic flow, disturbances do not decay but keep constant value
along characteristics * — v M? — 1y = const. Wavy drag force apprears. The
force per period is

Ve & : 2
X = / Ap (ea cos ax) dx
\/7

Physically, it means energy tranfer by acoustic waves.

Supersonic flow past a slender cone Consider an axisymmetric supersonic
flow with small disturbances. Set a linear source distribution ¢(§) = a€ in
(7.1.5). Then using (7.1.6), we obtain

2
o(x,r) = —az |cosh™ )\i —y/1= (&)

r
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and velocity components are (7.1.8)

4
u= —acosh™' -—
AT

v=a\/1- (%)2

This is a conical solution as all functions depend on z/r only. There is a
cone with x/r = cot § where boundary condition is satisfied, i.e. u/v = cot d.
This gives relation between a and ¢

Vé
~ Vcot2d — A2 + tan d cosh (CO/\“)

For a slender cone § < 1

a=V§

a

2
_ 2 _
u=-Vo ln>\5, v="Vd (7.2.4)

C, = 26° (ln 206 — %)

For plane flows past a wedge, C}, ~ 4, so pressure on a cone has different
order of magnitude.

7.3 Similarity rules

Plane flows Remind the equation for potential Potentail of disturbances
obeys the equation (6.1.14)

2o 920
—_— 2 — —_— =
(1 Ml) 2 + i 0 (7.3.1)

The shape of the boundary may be given in the form

x x
h () =nav ()
Y 1 I 1 i3
with non-dimentional thickness 71 = h;/L, or in comletely non-dimensional
form

x
% —nf <Z> (7.3.2)
The boundary condition (6.2.3) for ¢ is
Op ay x
=) =v=wny' (7 3.
<8y>y=o Ve =viny (7) (7.3.3)
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where V] is the free-stream velocity.
The pressure coefficient on the boundary is

2 (0p
=——| = 3.4
Cpl ‘/1 (aQJ)y:O (7 3 )

Now consider the pontential (&, n) pf a second flow. Let ® be related to
@ by the relation

v V, [1— M3
plz,y) = A7;®<€’n) = AV:(D (x 1_—M:2y> (7.3.5)

for some constant A. The corrpespondence between coordinate systems is

1— M2
E=a, n= Ly
1- M2

Introducing (7.3.5) in (7.3.1), we find the equation for &:

o o _

(1—M3) ez o =0 (7.3.6)

Hence, ® describes a flow with Mach number of M,. The boundary
condition (7.3.3) gives

ago> Vi [1- 0 (acp) o
A4 22Y vy (E 7.3.7
(5’y o we\rTemz\oy), (L) (7.3.7)

The only variable in (7.3.7) is /L. The equations (7.3.7) can be also

written as 50
Y vy (2)
( 87] > n=0 ok L

As Y’ is the same in both case, we have a relation between A, 7, and 75:

[1— M?
A —1 — M:Q Ty =T (738)

Using the same function Y means that we consider a family of body
shapes. They are not geometrically similar but one shape can be obtained
frome another by proper stratching or compression towards the plane y = 0.
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The prussure coefficients can also be rewrtitten as

2 8@) 2 (8¢)
Cp=—— | == =A==
W (ax o V2 \O¢) 4

For the second flow, the pressure coefficient is

_ 2 (%
Co == (3€>nzo (7.3.9)

Equations (7.3.8) and (7.3.9) set the similarity rules. Two member of
a family of shapes characterized by relative thicknesses 7 and 75 have the
pressure distributions C),; and Cpe. If the Mach numbers of the flows are M;
and Ms, respetively, then C); = AC), and

[1— M?
7'1:14 1_M;2T2.

The same can be expressed by formula

Gy

-
A7 <A\/1 = M2>
g is a function, the factor A is arbitrary.

The crucial point of deriving this similarity rule is linearity of the equation
and boundary conditions. The situation is different for transonic flows (nonlinear
equations) and axisymmetric flows (nonlinear on the shape function boundary
conditions).

Equation (7.3.10) is a generalization of well known similarity rules.

1. If A =1, we have C, = g(7/v/1 — M?).

2. If A=1/v/1— M2, we have C, = g(7)/v/1 — M2.

3. If A= 7, we have C, = 79(v/1 — M?).

4. If A=1/(1 - M?), we have C, = g(7/1 — M2)/(1 — M?).

(7.3.10)

The first three methods are different form of Prandtl-Glauert rule. Method
1 states that C, remains constant if the thickness follows change of Mach
number in proper way. Method 2 states that for given shape C, depends on
Mach number as (1 — M?)~%/2 and method 3 states that C, is proportional
to 7 for fixed M.
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Method 4 is a Goethert rule which is not staightforwards for plane flows
but is still valid for axisymmetric ones.

All equations in this subsections were written for subsonic flows, but since
only expressions like \/(1 — M2)/(1 — M2) were actually used they are still
valid for supersonic ones with change 1 — M? to M? — 1. The invariant on
the type if flow form of equation (7.3.10) is

Cp 72
2 — gl -
A A2(1 — M?)

Axially symmetric flows For axially symmteric flows it is not possible
to state boundary conditions for potential at » = 0 due to singularity.
Equation for potential is (7.1.1)

Po  Pp 10y
— 2 _— —_— _—— =
<1 Ml) 0x? + or? * r Or 0

and the transformation between two flows with potential ¢(x,r) and
® (¢, R)is almost the same as for plane case:

R R Y
pla,r) = A @& n) = Ap @ (x 1—M22T> (7.3.11)

The analog to (7.3.3) is

(#). o7 )

f is the shape function. We cannot move to » = 0 and have to use exact form

Op B (T
(E>r:an(x/L) =hn/ <L)

Introducing ®, we have

(030) A Uy (3_@) (7.3.12)
= 2 12 e
87“ T:TlLf(ﬁ/L) ‘/2 1 - M2 8R R=T1\/$Lf(z/L)

On the other hand, ® is a solution for the problem with incoming velocity
of Uy and the shape function F(R):

8@) T
o — VP (Z (7.3.13)
(aR R=moLF(z/L) <L>
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In order to compare (7.3.12) and (7.3.12), it is required that the shape
functions are the same: f(z/L) = F(x/L), which is the same condition as
before. In addition, it is , that

Y
T — = T9.
1 1_M22 2

Taking this into account, (7.3.12) gives

/ E _ 1_‘7\412 1_‘]\412 /(f
nf <L>_A\/1—M§Tl =g’ L)

This implies the only possible value of A:

1=

= —7 3.14
R (7:3.14)

The pressure coefficient for axially symmetric flows is

(%) (%)
1=~ | 52 vz \ or
b Vi \Ox r=11Lf(z/L) ‘/12 or r=nilf(z/L)

Using (7.3.11) we have similar relation in term of &:
A21 — M2 (a@>2

OR) p_.. /iﬁg Lf(z/L)

o 2 <8<I>)
1 — e [ 2 “ Y27 152

Using (7.3.14), we factor out the constant A and obtain

Cy

-
a e (A\/l = M2>

Unlike the case of plane flow, A cannot be chosen arbitrary since it must
satisfy (7.3.14). This value is A = (1—M?)~!. This gives Goehert’s similarity
rule:

Cp(1 — M?) = g(tV1 — M?) (7.3.15)

Diving both sides by 72(1 — M?) gives the alternate form

C
— = (V1 - M?) (7.3.16)
-

There are no free parameters left in this rule, so it could be adjusted to
be valid for transonic flows.
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8 Hypersonic flows past a blunt body

8.1 Flow past a sphere

Consider a hypersonic flow of perfect gas with

heat capacities ratio v past a sphere of radius

of 1, (pic.13). Let the flow far upstream of the Vv
sphere be unifrom, its velocity and density be
V' and py.

Assume also M > 1. The bow shock in front
of the sphere is strong near the axis of symetry
and the gas density after it is close to the limit Pic. 13: Spherical coordinates
one and approximately

_’y+1

7_1P0 fo

=—, K1
€

p

Assume that the shape of the bow shock is close the sphere of radius of
Ts.

Spherical coordinates 7,6, ¢ (pic.13) are convenient for this problem. We
use Gromeka-Lamb equation of motion taking into account uniformity of the
incoming flow

curl V.x V =T grads (8.1.1)

(T is absolute temperature, s is specific entropy).
In our coordinates there is only one non-zero component of curl V:

1 [0rvg  Ov,
(carl V) = . ( o 819) (8.1.2)
Hence, left-hand-side of (8.1.1) takes form
e. €y e,
crlVxV=|0 0 (rotV), (8.1.3)
U Vg 0
Due to axial symmetry there exists streamfunction ):
g—i} = puprsin b, (Z—Qg = —pv,r?sin (8.1.4)
and
1
(curl V) = - Orvg. _ Ovy =
£ r | Or 00 (8.1.5)
1 0% 1 coshoy 1 82_1p o

- prsin@ﬁ B ﬁsinG% pr3sin 6 00?
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Projecting (8.1.3) on ey direction with (8.1.1) gives
1 2 1 0 1 2 1
UT( 0* oS a¢+ 8¢>:T%

(8.1.6)

prsinf 0r2  prising 90 ' prisind 062 rob

Thus we transform vector equation of motion (8.1.1) to a scalar one. Now,
we transform right-hand-side of (8.1.6) with thermodynamic relation

dh:Tds—i—%

Entropy s depends on 1 only after the shockwave. We can find with
dependence since 9 is continuous. In the incoming flow

1
s = épOVrg sin” 0 (8.1.7)

Denote m = pyV cos @ local mass flux and consider Hugoniot adiabat:

m? = 1/£()_ﬂ/p (8.1.8)
oy (P _Po) _pPzpo (1 1) _
y-1 (P pz) > <p + po) =0 (8.1.9)

Equations (8.1.8),(8.1.9) gives expressions for dp, dh along the shock wave
dp = 2mdm (1/po — 1/p) = —2paV?sinf cos 6 (1/po — 1/p) db)

2 P Po
1 1 1 d
Tds:—dp(—+—>——p:
2°\p  po p
= p2V?sinfcosf (1/p; — 1/p)2 df = —V?sinfcos (1 — €)*df

(8.1.10)

Hence, we can put factor of 1)y ~ v, explicitly to the right-hand-side of

(8.1.6):
1% B Tl ds 0

rdd " rdpdd
Equation (8.1.10) gives values of sy and ¢y right after the shock waves
and allows deriving of s:

(8.1.11)

ds ds 0

T 0 8 — T@ %L = —poV?sinfcos (1 — ¢)?
and d V(1 )2
S — &
— = 112
TCW POTE (8 )
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Finally, equations (8.1.4), (8.1.6), (8.1.11),(8.1.12) give equation for

sinf o ( e ) V(1 —e)?sin®py

r2 00 \sind rie?

Ve + (8.1.13)

Boundary conditions for (8.1.13) are continuity of ¢ at the shock wave
(8.1.7) and tangential velocity vy = Vsinf at r = r,.

Equation (8.1.13) has a solution of ¢y = f(r)sin®@, with f(r) satisfying
ODE
2, pVri(l—e)?

f//_ f—

2 )
r €°rs

Introducing € = r/r, and g = f/(poVr?) we obtain Euler equation for
9(é)

2
&y — 29 = -9 ¢ og(1) =5 g’(1)=§

The solution is

1 /1 1 1 1\ 1 (1—e)?
= (cosAr)ero(1424- )24 At A=
g 3(2 +€)5+3< N g>g+ 3 10e2

The position of the sphere corresponds to g = 0. At £ = 1 values of g, ¢/,
and ¢” are known and for £ = 1 + en we have

S
9= 9 n 277
which gives 7, = —1. Returning to physical coordinates results ry — r, =

ETs.

8.2 Basic ideas of Cherny method

For an arbitrary blunt body, there is a thin shock layer between the shock
wave and the body surface. If the flow is hypersonic, the density in this layer
p is much greater than the density in the incoming flow p;. The ration of
these densities e = (y — 1)/(y + 1) is small and we can expand all unknown
function onto series of €
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Let the body surface is y = y(z), where x
is arclength from the axis of symmetry along
the tangential surface ¢, and y is the distance
M N from a given point M to the surafce along
the normal (14). Let o be the angle between
tangent to ¢ and the axis of symmetry, and
distances from points N and M are [; and [.
Let us assume that the radius of curvature of
the body surface R obeys |[dR/dx| < 1. The
streamfunction v for these coordinates is

Pic. 14: Curvilinear
dyp = puldy — pvl(1 +y/R)dx coordinates
where u and v are velocity componets along z, .
As the shock layer is thin, pressure change along x coordinate is much
greater than along y. Equation of motion and adiabatic law give

ou ou  Op

pu— +pv—+ — =0

ox Jdy Ox 891
S L L/ P U (521
l+y/Roxr R+y o ox\p)

Boundary conditions at the shock wave are

2 v—1
= Vi2sin? g —
P= e B S+
pr v—1 2 1

p 4+l y+1MPsin?B

/ ! : B
= () v (o sy ) [V (sma v emsa 2 )|

/

+—
= u -
1+y/R

(8.2.2)

where M; is Mach number in the incoming flow and [ is an angle between
tangent to shock wave and the axis of symmetry.

We seek for a solution of (8.2.1) with boundary conditions (8.2.2) in the
form

u:u(o)—l—su(l)—l—...; v=ev® 4+ .
(0) (8.2.3)
p=p9+epV +.. P:%+p(1)+”'
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The first approximation gives pressure distribution

. L P 1
PO = pVisintale) = oo [ u®dv, vt = eVt
Rl J, 2

Higher order term in (8.2.3) allows finding the thickness of the shock
layer.
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9 Weak shock wave structure

Gas dynamics usually deals with ideal gas with zero heat conductance. Flows
of such medium are isentropic as there are no physical mechanisms for the
entropy production. Exceptions usually involve external heat sources or sinks.
As a consequence, Euler equations for non-stationary flows are hyperbolic and
admit shock waves. These shocks are treated as infinitely thin surface where
parameters of the flow change. On the other hand this means that spatial
derivatives of those functions are quite large and dissipative process (viscosity
and heat conductance) which are proportional to velocity and temperature
gradients cannot be neglected. In this section, we take these processes into
account and consider the inner structure of a shock wave.

Consider a steady one dimensional flow of a compressible viscous (7 is
dynamic viscosity coefficient) heat-conductive (¢ is heat conductance) gas.

Governing equations are

%(W) =0
L (p+ pu — %7]2‘(%) =0 (9.0.4)
puge =50 (%) + & (<)

We assume that the second (volume) viscosity coefficient is zero. This assumption
is good enough for monoatomic gases and other media when the flow relaxation
time is much large than the internal degrees of freedom relaxation time.

The second thermodynamic law T'dS = dh—dp/p and mass and momentum
conservation laws allow rewriting of the entropy equation:

2
dilx {pu <h + %) - %nud_u - %g =0 (9.0.5)

We state boundary conditions for these equations at —oo and 400 requiring

all parameters p, u, p, T' be constant. We denote these constants by subindeces

0 and 1, respectively.
First two equations of (9.0.4) and (9.0.5) admit first integrals:

, 4 du 2
P pu” = 2 = po+ oty (9.0.7)
u? 4  du dT u?
h4 — | — Zpu— — 2— = L0 4 20 9.0.8
pu( +2> 3"~ dn pouo( 3 ( )

Considering left-hand-sides at +o0o with zero derivatives, we obtain Rankine-
Hugoniot, conditions.

Discontinuity is no longer possible, as it means infinite value of derivative
du/dz which contradict to (9.0.7). Further we will consider heat conductance
and viscosity separately.
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9.1 Inviscid heat conductive gas

In this case (9.0.7) is algebraic equation:

p+ pu® = po + poug

together with (9.0.6) it describes all intermediate states:

p = po+ poug (1—%), V=1/p. (9.1.1)
0

At the p,V plane, this equation describes all points on a straight line
segment AB which connects initial ("0 point A) and terminal ("1 point B)
states at Higoniot adiabat (pic.??). A bit to the left from point A this line
is above the Poisson adiabat going through A, the same is valid for points a
bit to the right from B. Hence, there is a Poisson adiabat which is tangent
to AB. This adiabat corresponds to the maximal value of entropy S,,q.. We
can find using the condition of tangent.

As the shock wave is weak S; — Sy is of order of (p; — po)? or (Vi — Vj)3.
We see that on the segment AB entropy can be larger than S} and Sy, so
S — Sp can be large than S; — Sy. That is why we keep the term S — Sy
together with (V — V5)? in the expansion of p — py in a small vicinity of A

_ op 1 (9% 2 Jp
pom=(50) v (G) v (55) 5

The equation of AB is

P1— Po dp 1/
—po = V—W) === V-W)+=| = Vi—Vo)(V =V,
P—DPo Vl—Vo( 0) (6V>so( 0)+2(0V2 So( 1= Vo)( 0)

We find the tangent point: it corresponds to V — Vy = 1/2(V; — ;). The
maximal entropy can be easily found:

1 (02p/0V2)SO
szzm — 00 — gap—
(735)%

Maximal entropy change in a weak shock wave is a second-order small
values. The entropy first rises to its maximal value and then goes down to
make the total entropy change be third-order small value. The existence of
an extremum of entropy implies the presence of an inflection point on the
temperature profile. Indeed, without viscosity, the entropy equation reads

(Vi — Vo)~

poul— = n— (9.1.2)



We are now able to estimate thickness of the shockwave. We divide both
parts of (9.1.2) by T" and integrate over x (we take into account that pu is
constant):

—Sy) = Sy P e - A 1.
potio(S = So) = 3¢ T2 =" | Tdx deQd (9.1.3)

—0o0 To

T T
1 d*T 1dT+/dT1

For large enough z, we have dT'/dz = 0 the first term in brackets vanishes
and we have

T 1

T
,OQU()(S - S()) = %/ EﬁdT
To

We define the shock wave thickness Az for the presence of heat conductance

only as
Ty — Ty dT

1.4
Ax dz (9-1.4)

Simple estimation gives

(Ty — Tp)* 1

pQUO(S — SQ) = d.iL‘ TO2

We can replace temperature jump by pressure change:

oT \%
T, =T = (8_19) (p1 —po) = C—O(pl — Po)-
S

P

Here we used the second thermodynamics law formulation: ¢,dT" = T'ds +
pdV.
In a weak shock wave the entropy change is

1 [(0*V
To(S1 — So) = — (—) (p1 — po)®
12 \ 0p? ) 4
Using approximate relations: 0*Vop* ~ Vy/p3, s ~ pocylco, co ~ wug,
Do ~ cppoly for mean free path length [, mean chaotic velocity ¢y, we obtain

Po
P1— Do

Ax ~ |

From (9.1.3), we see that maximal local entropy change Sy — So is
proportional to AT/Ax ~ (Ap)? while terminal entropy change is one order
of magnitude less.

In this solution we see that only temperature must be continuous, while
all other functions (velcoity, density, pressure) may have discontinuity.
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9.2 Viscous non heat conductive gas

Now consider the case »x = 0, n > 0. The entropy equation is

ds 4 [du\’
U— = =
P dx 377 dx
so entropy grows monotonically. The line AB on pV plane is below adiabat
going through the point B. The equation of the AB line is

V 4 du
p=p+ poug (1 - 7) + 377d (9.2.1)

As this line is below the straight line AB du/dx < 0 inside the shock wave.

We define the shock wave thickness as

_du
|dx

U — U

Ax

max

Maximal value of the derivative corresponds to maximal vertical distance
between the straight line AB and actual path (9.2.1). Taking a point in the
middle between A and B, we estimate

4 du 1[0 )
3 %_§<W>SA(%_%)

The velocity change is

ov pl — Do
8p Do

Co

Uy — U = —\/Pl Vo—Vl) \/(Pl Po)

and viscosity 1 ~ polcy. The shock wave thickness is

Ax =1

P1 — Do

The viscous solution give continuous solution for all functions. This means
that friction is a principal mechanism of transferring kinetic energy of the
gas into its heat energy.

Considering non-weak shock waves, one may obtain its thickness less than
mean free path, which is physically meaningless. The solution of this paradox
is that transport coefficients cannot be constant throughout the whole range
of temperatures and this fact must be taken into account. For strong waves
the solution must be based on kinetics theory and consider possible excitation
of internal degrees of freedom.
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10 Thermally non-equilibrium flows

10.1 Relaxation to equilibrium

The only way of information transport in gas is collisions between its molecules.
Hence there is a reference time scale which is defined by time between

collision. It is
[ 1

Teoll = — = )
Co ncopo

where [ is mean free path, ¢y — mean velocity of chaotic motion, n is number
concentration and o is collision cross-section. For air at normal conditions
11078 m and 7.y ~ 1071° s. This time is usually much less than reference
time of a gas dynamics problem, so we can assume that collisions take place
very often.

On the other hand, there could be situations when one collision is not
enough for molecules to exchange energy. This situations occur if quantum
effects are sufficient. For diatomic gases two main quantum features may
be observed, they connected to internal rotations and oscillations in the
molecules.

Energy of the internal rotation is proportional to the moment of inertia
and allowed by quantum mechanics angular velocities. The reference temperature
T, = E,o/k for most gases is lower or around 10 K with the exception for
H; and Ds, these gases have reference rotation temperature around 80 K.
Anyway, for room temperature or above gases are in far classical diapason
and the energy got of lost by a molecule during a collision is enough to
excite or deactivate rotational degrees of freedom. Experiments show that
the rotational energy comes to its equilibrium value after about 10 collisions
for air gases and 150 —300 collisions for hydrogen and deuterium. This gives
an estimation for a relaxation time.

Sometimes, the relaxation to equilibrium takes much longer. Consider
this process in details. Let N be a number of molecules which are excited or
come to a new state due to chemical reaction, N, be an equilibrium number
of such molecules. In general, there is a law:

dN

E:f(N,T,p,)

but for small values of relative difference |[N — N.|/N, < 1 one can expand
this law into Taylor series and obtain

dN N,—N

dt T
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with a solution

v e (1) 4 [1 e ()]

The value of 7 is relaxation time.

If there are several processes with quite different relaxation times one
observes series of relaxation according to their timescales.

For a gas dynamics problem, there is another reference time 7;. For each
process with relaxation time 7 there are three possibilities:

o 7 K 75 quasi-equilibrium flow
e 7 ~ 77 nonequilibrium flow
o 7> 77 frozen flow

In the latter case one can assume that there is no relaxation at all, and
the state of non-equilibrium degrees of freedom does not change.

10.2 Sound propagation in a gas with relaxation

Consider small perturbation of the rest state for a gas with relaxation.
Let the energy of internal oscillations be the relaxing value. We introduce
to temperatures: 7' corresponding to translational and rotational degrees
of freedom and vibrational corresponding to the current level of energy of
vibrations. Assume the the gas is perfect with constant heat capacities.
The governing equations are:
B+ pV-T=0, F+ivp P-1%—g

s 10.2.1
h=c,T +e)(T,) p=pRT %o = colcull) ( )

dt T

Excluding A from the third equation (10.2.1) we obtain

dp 2dp €y
£ _2r — 1) =o. 10.2.2
o avdtﬂ)(v )dt 0 (10.2.2)

Here v stands for heat capacities ratio for a gas with frozen degree of freedom,
hence ay is called frozen speed of sound.
Consider small perturbations of a uniform state (denoted by primes):

=70, p=po+p, p=p+p, T=T+T, T,=Ty+T, (10.2.3)
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As these perturbations are small with their derivatives, nonlinear term
can be neglected after substitution (10.2.3) to (10.2.1), (10.2.2):

op' ov 1
p+pon—O —U+—Vp’:0
oy %t oT’ 9
p p (2 - v
-1 =0 =
o g Tl - DAy, at 7o (10.2.4)
v p de,  de,
To  po  po dt dT, |y _qg,

(Vo

from two first equations (10.2.4) we have

o , Oy
o +polAp =0, p = Py, (10.2.5)

Exclude T” from the last equation:

aTv — i (E / TO / Té)
ot

Po b rhog

Taking time derivative of this equation and the third equation (10.2.4 we
get

82 / 82 / aQT/

th - > +po(y = 1)é, =0

o 2@_ T, 8/) (10.2.6)
o2 po Ot rhog ot

exclude T7:

82 ! 02 ! 1 To Bp To ap
A—+1 A— +
e e [( w ) ot ( o ) at] ’

where A = po(y — 1)é€,, and finally obtain the equation for potential

0 (0 1[0
o (a_tf — a§A¢> + = (8—;20 - (zQAgo) = 0. (10.2.7)

2T, ! M, M, !
T:TO(—0+1> , aﬁz(—0+a§)(—°+1) :
Do Po Po

We use



We simplify these expressions

7_7(&+1)_1— 70Po = 70 :T&
0 Po PO('Y - 1)6.11T0 + Po év + Cy Ocve

using c,. — constant volume heat capacity for equilibrium state, and

Ty + a? —1)e, T
2 _ N0 fﬂo@:po(V )e‘ 0+7p0@:fmccp+e’vcv+e;,@:%@.
Mo+po po po(y—1)€To+po po Po Po

We see that a. has the same structure as ay but it involves heat capacities
ration for the equilibrium state. If is clear that v. <, so a. < ay.

The equation for small disturbances propagation (10.2.7) involves two
wave operators with different speed of sound. Let us investigate its limit
cases.

If 7 — oo we have a frozen flow and (10.2.7) takes form of usual wave
equation with classical (frozen) speed of sound:

oAt
W — CL?cAQO = 0,

provided initial conditions satisfies this equation.
It the relaxation time 7 is small, we have

8280 2
W — CLGA(,D = O,

so disturbances propagate at equilibrium speed of sound.

10.3 Dispersion relation

Consider one dimensional (plane) disturbances. The governing equation (10.2.7)

reads o0 (0? 0? 1 /02 0?
' 4 2079 ¥ 20°Y
— | == —at— —| == —a:=—= ) =0. 10.3.1
ot (8152 o 0x2> = (8t2 e 8$2) (103.1)
For monochromatic plane wave
o = Aexp [i(kx — wt] (10.3.2)

it gives dispersion relation

1
—iw(—w® + atk?) + =(—w® + aZk?) = 0,
T
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which is relation between wavenumber and frequency:

1 —iwr
k= _. 10.3.3
“ a? —iwra’ ( )

The wavenumber is now complex and k& = k, + tk;, so the disturbance
(10.3.2) is rewritten

¢ = Aexp(—k;z)exp {ik’r (x — kﬁt)}
T

the ratio ;= is phase velocity and the exponent with real argument —k;x
stands for growth for negative k; and decay for k;.

Consider different asymptotic case. Let wr < 1. Neglecting terms of order
of (w7)?, we obtain

WoWwWwT, 9
k= o + Za_€2_a§(af —aZ).

Phase velocity for these waves if equilibrium speed of sound. The imaginary
part is positive so disturbances decay and decay rate is proportional to ay —
ae > 0.

For short (high-frequency waves)
w 1 9

E— 2 —_—
py + @27_@,} (af a:).

k:

For general case the equation (10.3.3) gives

k, = mw cos 6 k; = mwsind
o 1+ (wT)? 1/4 _ WT(“? —a3)
m= (i) . 20 = atangTiin

The decay rate has maximum at wr = a./ay. Typical dependence of phase
velocity w/k, and decay rate k;/w on normalized frequency wr is shown at
the picture 15.

11
1 —C
| — decay 004
105
002
1 ‘ —— ; ——0
04 1 wT 10

Pic. 15: Phase velocity and decay rate of disturbances in gas with relaxation
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10.4 Flow in a de Laval nozzle

Consider a flow in a de Laval nozzle. For stationary one dimensional flow
temperature depends on Mach number as

L _ 1+ EREYYE

T 2
If a hypersonic flow (M > 10) is present at the exit of the nozzle,
temperature drops by factor of 40 at the nozzle length. Assuming room
temperature near the exit, it is clear that there is very high temperature in
the stagnation region, and vibrational degrees of freedom are excited there.
Going downstream temperature goes down and these degrees of freedom
get deactivated. The energy of molecules or any other thermodynamical
parameter corresponding to vibrational degrees of freedom obeys relaxation
equation

@ _ q€<p7 T) —q

dt T
for a state parameter ¢, thermodynamical parameters p, T, and relaxation
time 7(p, T).
In a nozzle, the flow is one-dimensional and stationary, so d/dt = ud/dx,
thermodynamical parameters p,T are given function of z. Consider some
simple solutions.

(10.4.1)

1. Let g. = const, 7 = const. The solution of (10.4.1) is

q=qe+ (o +qe)e™/"

Considering initial condition gy = ¢., we have equilibrium flow in the whole
nozzle

2 q. = q.(t) is a given function, 7 = const. In this case the equation (10.4.1)

has a solution
t

1 T T —t/T
g=—e" /65/ Ge(§)dE + qoe™"

T
0

Integrating by parts (n + 1) times, we obtain

t
qg= Z(—l)ZTZqéZ)(t)— [Z(_l)szqu) (0)] e—t/7+(_1)n,+17_ne—t/tau/ef/frqgn-l-l)(é-)dé-_’_qoe—tﬁ—
0

=0
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Assume, there is an equilibrium in the stagnation region. For n = 2 we have

t

0= (=T (47~ (-7 (0) + L 0)] e e [ el (e
0

or, if the third derivative is small enough

q = ¢(t) {1 - TZEZS; + 72 Zﬂgﬂ + A(t)e ™ (10.4.2)

with a bounded function A(¢). The reason for non-equilibrium state
appearance in the nozzle is a variation of equilibrium along the nozzle.
The reference time of change of ¢, is

()|

qe(t)

It is the third refence time along with relaxation time 7 and the flow refence
time 7 = [ /u,, where [ is a refernce length and u, is reference velocity, e.g.
critical speed of sound. The scale 7,,,. only changes along the nozzle, so we
consider its local value in different regions.

The governing equation (10.4.1) in non-dimensional form is

T’U(l’f‘ -

@ _ Qe<t> —q
dt T/Tf

There are four different cases conserning relation between these scales.

1. 7/7¢ > 1 leads to dq/dt ~ 0 and ¢ is almost constant. This is almost
frozen flow

2. 7/7y < 1 implies ¢ ~ ¢.(t), so the flow is almost equilimrium.

3. 7/Tyar- In this case (10.4.2) gives ¢ = ¢.(t), so the flow is almost
equilimrium.

4. T ~ Tf ~ Tuq. No simplification is possible and the flow in non-
equilibrium.

We assumed that there is an equilibrium at the stagnation region, so in the
convergent part of the nozzle it is likely that 7/7,, < 1 and the flow is
almost equilibrium.
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Further downstream, the velocity of the gas increases and its pressure
goes down, so the relaxation time increases. In some region the have non-
equilibrium flow as

T~ Tf ~ Tyar

Near the exit area, gas is usually rarefied, the velocity alomost reaches its
terminal value, pressure and temperature are quite low. This means that 7¢
has its maximum and the relation 7y ~ 7,4,. On the other hand, due to low
pressure the relaxation time is small, so

>

Tf
and the flow is alomost frozen.
One can assume that the middle region is short and neglect changes in this
region. In this case there are only equilibrium and frozen flows with a sharp
border between them. That is why this method is referred to as ’sudden
frrezing method’.
The same procedure can be also applied for a gas jet expansion to vacuum,
e.g. from a sonic nozzle. In this case ’sudden freeze’ means tranfer from
continuum flow to free molecular one.
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11 Basics of nucleation theory

The considered above non-equilibruim effects involve a pair of molecules and
the equilibruim state of a molecule can be reached during one collision. In
this section we consider different process.

11.1 Energy barrier

During isentropic expansion in a nozzle, temperature and presuure of a gas
both go down and pressure is power function of temperature. If temperature
is low enough, the pressure becomes higher than saturated vapor presuure
for this temperature. This means that the gas (vapor) becomes metastable
and pahse transition to liquid (condensation) is possible.

The driven force for phase transition is chemical potentials difference:

Ap=p(p°, T) = ' (p", T) > 0.

If a particle goes from vapor phase to a liquid one, the free energy decreases.
For saturation conditions p = ps,:, the pahase are at equilibrium and chenical
potential difference is zero.

One can extimate the chemical potential difference:

Ap = [ (p",T) = (Psats T)] + [1t(psat, T) — 1 (p*, T)]

The second term describes the chemical potential variation in liquid which
is much less than the one for vapor. For thermodynamics, one obtains

Ap=kT'lnS, S= b
Psat

(11.1.1)

introducing supersaturation S.

This equation gives the enegry difference between a particle in bulk vapor
and liquid phase. On the other hand, liquid forms clusters with large amount
of molecules and thess clusters have a free surface. The formation of surface
requires some energy which can be desribed by surface tension coefficient ~.
Finally, the energy change for n-cluster formation from n vapor molecules is

AG = —nkTInS + ~vA(n)

where the surface area A(n) = 47r? and the radius of the cluster r, is

3 1\ 1/3
= rinl/3, ol = ( v )

dm
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The surface area is

A(n) = sn?® s = (36%)1/3 (v1)2/3
Hence,
1
BAG = —nln S + 6?3, 52@, 92% (11.1.2)

This function has its maximum at

2 0 7°
ne=|-—=| .
¢ 3InS
The cluster with n. molecules is called a critical cluster, maximum of the
function AG, = AG(n.) represents an energy barrier which a system has to
overcome to turn to a new (liquid) state. Droplets which are smaller than n,

dissociate on average, while large droplets (> n.) on average grow.
In our approxiamtion about surface energy we obtain classical energy barrier

1 167 (v1)* 3
AG, = =~vA(n,) =
3740 = S T s
or in non-dimensional form
4 63
AG, =
b 271n% S

11.2 Kinetics of nucleation

The equilibrium cluster distribution

pe(n) = p1exp [-BAG(n)]

gives large values for large values of n where the bulk term in AG dominates,
so this distribution diverges. Hence, the actual distribution is affected by
initial conditions and is non-equilibrium.

The classical nucleation theory (CNT) uses the following assumptions:

e the elementary process which changes the size of a nucleus is the
attachment to it or loss by it of one molecule

e if a monomer collides a cluster it sticks to it with probability unity

e there is no correlation between successive events that change the
number of particles in a cluster (nucleation is a Markov process)
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Let f, be a forwrd rate of attachment of a molecule to an n-cluster
(condensation) as a result of which it becomes an (n + 1)-cluster, and b,
be a backward rate corresponding to loss of a molecule by an n-cluster
(evaporation) as a result of which it becomes and (nl)-cluster. Then the
kinetics of the nucleation process is described by the set of coupled rate
equations

dp(n)
ot

= fnoap(n — 1,t) — bup(n,t) — fup(n,t) + byrip(n + 1,t)

A net rate at which n-clusters become n + 1 - clusters is

J(n,t) = fap(n,t) —byip(n +1,t) (11.2.1)
SO
&“hg—sfn,t) =J(n—1,t) — J(n,t) (11.2.2)

This equiation is called Becker Doring equation.
The coeffcients f,, and b, are defined independently. The former one is
determined by collision frequency nu per unit area:

(Y

p

= vA®), v=
/ vA(n), v V2mmi kT

where my is a mass of one molecule.

The backward (evaporation) rate b(n), at which a cluster looses molecules,
a priori is not known. It is feasible to assume that this quantity is to a
large extent determined by the surface area of the cluster rather than by
the properties of the surrounding vapor. Therefore b, can be assumed to be
independent on the actual vapor pressure. In order to find it CNT uses the
detailed balance condition at a so called constrained equilibrium state, which
would exist for a vapor at the same temperature 7" and the supersaturation
S > 1 as the vapor in question. In the constrained equilibrium the net flux
is absent J(n,t) = 0 since it corresponds to the stage before the nucleation
process starts, and the cluster distribution is given by .(n). From (11.2.1)
this implies

— #(n Pe(n)
e = 1) D)

and (11.2.1 gives
Lt pn+1,0)

T S o) = o) pelnt D) (11.2:3)
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Assume the nuceation is steady-state, so non-equilibrium concentraions do
not depend on time. Hence:

J(n,t) = J,¥n

Taking sum of (11.2.3) for n from 1 to some large number N gives
= { 1 ] p(Lt)  p(N +1,1)
D3 -
| fn)pe(n) ] pe(1)  pe(N +1)
The first term in right-hand-side is 1 and the second one vanishes as N — oo.

Finally, we get :
00 1 -

J = —_—

Lz; f (n)pe(n)]

Assume, n. > 1 as it is required by assumption of spherical clusters. In this
case the sum can be replacd by an integral:

o] d -
n
1= [ s
), T
The main contribution to the integral comes from n around critical cluster
size. In the vicinity of n.

1

~ _1 1 1" _ 2 1"
Pe & pe(n) exp [ 5 k;TAG (ne)(n —ne) } , AG"(n.) <0
The Gaussian intergation gives
J = Z frepe(ne) Z—\/——l 1 AG"(n.)
= Slnebellle) S =N kT

where Z is called Zeldovich factor.
Taking into account energy barrier (11.2.2), Zeldovich factor takes the form

3Vrm ¢
7 Jo_1
kT 2mpyr?

Summarizing, the main result of the CNT states that the steady state
nucleation rate is an exponential function of the energy barrier. It works well
for large enough critical cluster size, which requires small supersaturation.
Nozzle flows can shown 7, at the region with supersaturation much smaller
than the reference time of nucleation. This leads to high supersaturations
(~ 10" or larger) and CNT is not valid.

or
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JIuHeiiHas Teopus yCTOWYMBOCTU
dbpoHTOB ropenus

Hocmanosxka 3adavu 06 ycmotivusocmu Gpormos 2openus

UcciteioBanue ycroifunBoCTU B JIMHEHTHOM NPUOJIMZKEHUH [TPOBOIUTCS Iy TEM
JITHEAPU3aIUuu TUIPOIUHAMUYECKUX YPABHEHUH ¢ yI€TOM I'DAHUYHBIX yCJIO-
BHUI Ha MMOBEPXHOCTHU Pa3pPbIBa.

B mesngx mpocTOTH OTpaHUINMCS PACCMOTPEeHHeM cydasd, KOTJIa TedeHne Ie-
pesl HPOHTOM U 32 HUM MOYKHO CUHTATH HECKUMAEMBIM .

[lycts HeBO3MymieHHbIHl bponT Haxoaurcs B miockoctu © = 0 . CkopocTb
Up) TOpIoYell cMecH, 3aHUMAIONIEH ToaynpocTpancTBo * < (), HampaBeHa
B MOJIOKATEALHYIO CTOPOHY OCH . 3a PasphiBOM CKOPOCTH Ugy = Al (mpn
MEJUICHIOM FOPEHH A > 1 ). [l1oTHOCTH po1 Iepe 1 (bPOHTOM B A pas3 GoubLie
IIOTHOCTH Po2 TMO34JIM HETO, TAK UTO Py = Apo2 -

PaccMoTpuM OTKJIOHEHHS TTOBEPXHOCTH (DpOHTa OT mockoii. Torma abcrumeca
[POU3BOJILHON TOYKH ITOBEPXHOCTU (PpoHTa ( MOKET ObITh 3alicana B BHJIE
dbyukmum or y u t , o ectb ¢ = ((y,1) .

CooTBecTBYOIIHE HCKPUBJIEHUIO (DPOHTA BO3MYTIEHUS T'HIPOIHHAMUYECKIX
napaMeTpoB OyIyT TakxKe ABIAATbcd QYHKIUAMEU z,y u t. ClemroBaTeabHO,
BO3HHKAET HEOTHOMEPHOE HECTAIMOHAPHOE TeUeHHe.

B HeogHOMEDHOM Ciiydae JaBjeHue p; ¥ KOMIIOHEHTHI CKOPOCTH U1, U1 Hepes
GbDPOHTOM CBA3aHBI CO 3HAYECHUSIMHU ITUX Ke (PYHKIUH 38 GPOHTOM Do, Us, Uy
COOTHOTIEHUSIMHA

- 20\ 2 —1/2
— po1Ur(ug —uy) = (p2 — 1) {1 + (8_3/) } :

21-1/2
— ponUi(ve —v1) = —(p2 _pl)g_; [1 + (%) } ;

9 e\ 2112 9 e\ 2112
alt(@)] (g ()] o

¢ 8C .o 71/2_ ¢ a¢ 29 -1/2
a[“(aﬂ —<“2‘”Za—y)“+(a—y)] —

po1U1 = poaUs = const  (4)

Bnech U; u Uy ecTb HpOEKIUH CKOPOCTEH rasa OTHOCHTEJIHLHO (DPOHTA HA
HOpMaJIb K HeMmy. [lepsbie aBa u3 cooTnomenuii (4) BEIPAKAIOT 3aKOH HEIPe-
PBIBHOCTHU TTOTOKA HMILYJIBCA TIPH EPEXOJIEe Yepe3 Pa3phIB ¢ YIETOM TOT0, UTO
B CHCTeMe KOOP/IUHAT T,y IOBEPXHOCTH (DPOHTA He SIBJISETCS HENOIBIKHOM.
JBa IpyruX COOTHOMIEHHA - KuHeMaTHdecKue. OHM BBITEKAIOT U3 OIIpe[e-
JeHust ckopoctu nosepxuocru. Ilociennne u3 coornomenuii (4) BBIPAKAIOT
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3aKOH COXPaHEHWs MacChl M TOCTOSTHCTBO TOTOKA MAaCChl CMECH M TIPOJIYKTOR
CTOpaHUSI.
[IycTh B mOTOKe ra3a BOSHUKJIN MaJible BO3MYIIEHUS CKOPOCTH W JTaBJIEHUS

uy = ugy +up, v = V), p1 = por + P,
Uy = Uy + Uy, Uy = Uy, P2 = Poz + P,
[Ipuaem
uy < gy, vy <K ugr, Py <K Pot
Uy K Ugg, Uy K Ugg, Py <K Pog -
B obmiem ciyuae Gyer Bo3myleHa Takzke noBepxHOCTh dbponta ¢ = ((y,1t).
BosMmymienns ruIpoJuHaAMUYCCKAX BEJNYUH JIOJZKHBL YIOBICTBOPATD YPaB-

HEHUAM HEPa3PbIBHOCTU U JBHU2KEHHI. B cmecn I[10J1y4da€eM JIMHEapPpHU30BaHHbIE
YpaBHEHHA BHOaA

ouy O}

el it R

Ox + oy ’

ou ou 1 0p]

=
Z po1 Oz

o, ok Lo

+ Uogl—=— — — (5)
ot ox pPo1 Oy
Tpu aHATOTMYHBIX YPABHEHHS] HMEIOT MECTO JIJIsl ra3a 3a (PPOHTOM.
Haiigem nmexoropble yactable pemenust ypasuenuii (5). [lorpebyem, arobbr
9TU pellieHnst ObLIM OrPAHUYEHbl IPH L = 00 U YIOBJIETBOPSAIN Ha (PPOHTE
JIMHEAPU30BAHHBIM TDAHUYHBIM YCJIOBHAM (4).
Buwisod ducnepcuornozo coommnowenus, kpumeput yemotivusocmu. — Byaem
HCKATh pellleHrne MOCTaBIeHHOM 3a1aun B hopme
) V]
—L = Fi(t)e*cos ky, — = —Fy(t)e* sin ky,
Uo1 Uo1
) -
p A
—12 =—| 1+ F| ) cos ky,
Lo1Upq koo

/
e B |:F2(t)€_kz + F3 (t - i)} cos ky,
Ug2 Up2

/ F/
Y2 _ (er_’“ + =3 >cos ky,
Uo2 kg

/ F/
% = — (FQ B )e_lmcos ky,
Po2Upa kugz
1

C(y,t) = L Fu(t)cos by,
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(k — BoHOBOE YHUCIIO).

JIerko mpoBepUTb, YTO ITH BBHIPAXKEHHsI YIOBJIETBOPSIOT THAPOIAHAMUYE-
ckuM ypasaerusim (5). Toraa mocie airebpandeckux mpeoOpasoBaHmii 10-
JydaeMm ypasuenue st Fy(t)

A+DA ., 2X
F
(]CU02>2 4 *

F/+
gz :

F(1-NF =0 (6)

Pemenne ypasuenus (6) umeer sug Fy = Fyoe® | re § ompemensieTcst Tuc-
IIEePCUOHHBIM COOTHOIIIEHUEM

( § )2+ 2 4§ N
koo 1—|-/~\k7~002

(1-X) =0.

+ ~ ~

AA+1)

3 nByx KOpHEi 3TOro ypaBHEHHSA HEYCTONYNUBBHIM BO3MYIIEHUSM OTBEYAET
JIMIIB TOT, ¥ KOTOPOTO MepeJl paIuKaJIOM CTOUT 3HAK + .

Jlerko IpoBepHUTh, YTO HEYCTOHUMBBIMHU OYIyT BO3MYIIEHHS JIOOBIX IJIHH
BostH. O6LITHO A >> 1, Tak 910 6 ox A~ V/2.
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