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1 Basis equations

1.1 Mass, momentum, and energy conservation laws

Consider basic equations governing motion of a medium. These equations
mathematically formulate laws based on experimental data. They are mass,
momentum, and angular momentum conservation laws, �rst and second laws
of thermodynamics. We postulate that these laws are valid for continuous
media.

Derivation of the equations involves considering motion of a material
element τ bounded by a surface Σ. For any characteristic of the media
f(t, x, y, z) in τ , Reynolds transport theorem (the formula for time derivative
of an integral over material volume) reads

d

dt

∫
τ

f dτ =

∫
τ

∂f

∂t
dτ +

∫
Σ

fvn dΣ

(vn is the projection of the velocity vector v to the external normal vector n
of the surface Σ).

If function f and velocity �eld v are smooth enough, the divergence
theorem gives

d

dt

∫
τ

f dτ =

∫
τ

(
∂f

∂t
+
∂fvx
∂x

+
∂fvy
∂y

+
∂fvz
∂z

)
dτ (1.1.1)

Consider a moving volume τ ∗ bounded by a surface Σ. Denote velocity of
the surface points by N . For any function A(t, x, y, z) we rewrite Reynolds
transport theorem:

d

dt

∫
τ∗

Adτ =

∫
τ∗

∂A

∂t
dτ +

∫
Σ

AN dΣ .

If the volume τ ∗ coincides with a material volume τ at t = 0, we have

d

dt

∫
τ

Adτ =
d

dt

∫
τ∗

Adτ +

∫
Σ

A(vn −N) dΣ .

Continuity equation. Mass of �uid in the element τ is conserved. Since
(1.1.1) gives

d

dt

∫
τ

ρ dτ =

∫
τ

(
∂ρ

∂t
+
∂ρvx
∂x

+
∂ρvy
∂y

+
∂ρvz
∂z

)
dτ = 0 (1.1.2)

4



(ρ is the gas density).
As considered volume τ is arbitrary

∂ρ

∂t
+
∂ρvx
∂x

+
∂ρvy
∂y

+
∂ρvz
∂z

= 0 (1.1.3)

The equations (1.1.2) and (1.1.3) show the mass conservation law in integral
and di�erential forms, respectively.

Momentum equation. By de�nition, momentum Q of material volume
τ is

Q =

∫
τ

ρv dτ

By Newton's law, change of momentum dQ over time interval dt equals
impulse of external forces acting on all particles inside the τ :

dQ =

∫
τ

ρF dτ +

∫
Σ

pndΣ

 dt

where F is the mass (body) force density, and p is the stress vector. For the
momentum derivative w.r.t time

dQ

dt
=

∫
τ

ρF dτ +

∫
Σ

pndΣ

Applying (1.1.1) to the left-hand-side of this equation and taking into
account continuity equation, we obtain integral equation of momentum conservation.∫

τ

ρ
dv

dt
dτ =

∫
τ

ρF dτ +

∫
Σ

pndΣ (1.1.4)

Cauchy formula reads

pn = px cos(n, x) + py cos(n, y) + pz cos(n, z),

and allows introducing of the stress tensor

ρ
dv

dt
= ρF+ div Π (1.1.5)

div Π =
∂px
∂x

+
∂py
∂y

+
∂pz
∂z
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Equations (1.1.4) and (1.1.5) shows the momentum conservation law in
integral and di�erential forms, respectively.

For classical de�nition of angular momentum K

K =

∫
τ

r× vρdτ

the equation (1.1.4) gives angular momentum conservation law:

dK

dt
=

∫
τ

r× Fρdτ +

∫
Σ

r× pndΣ (1.1.6)

This law is valid for media without angular momentum corresponding to
internal degrees of freedom.

Example. Blade machines Blade machines transform
mechanical energy of �owing gas to kinetic energy of moving
boundary (turbine) or vice versa use rotation of a rigid body
for gas acceleration. Gas goes through an annular duct and
interacts with blades - some plates placed across the duct.
Blades are connected to a massive body in the center and
they form a rotor all together. (pic. 1).

Pic. 1: Scheme
of a blade
machine

Our aim is to �nd power of a turbine for given �ow parameters.
Let ω be the angular velocity of the rotor. Consider a control volume τ ∗

bounded by the inlet Σ1, outlet Σ2 and the walls of the duct (pic. 1). This
volume rotates with the rotor. According (1.1.6) the angular momentum
conservation law reads

d

dt

∫
τ∗

(r× ρv)dτ +

∫
Σ

(r× ρv)(vn −D)dΣ = ~M

~M is the principal torque, r is the position vector of some point on the duct
axis, D is the normal velocity of the surface. The parameters distribution
over Σ1 are axially symmetric and the �ow is steady relative to the control
volume. So

M =

∫
Σ

(r× ρv)(vn −D)dΣ

Tangential stresses on the duct walls are negligible and normal stresses give
zero torque about the axis of the duct. Project this equation on the axis
direction

M =

∫
Σ1+Σ2

rρcuvndΣ
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Gas �ux though boundaries is proportional to vn −D and vanishes at walls,
so only integral over (Σ1 +Σ2) is non-zero. Scalar r is distance to the axis, cu
is a transversal (circumferential, azimuthal) component of the absolute gas
velocity.

Power W of the rotor is

W = ωM = ω

∫
Σ1+Σ2

rρcuvndΣ (1.1.7)

or

W = ω

∫ G

0

[(rcu)2 − (rcu)1]dm (1.1.8)

Here G is the total mass �ux, dm is mass of the gas �owing through an
element of cross-sections dΣ1 and dΣ2 of surfaces Σ1 and Σ2.

Due to mass conservation

dm = ρ1vn1dΣ1 = ρ2vn2dΣ1

and (1.1.8) has a form:

W = ω[(rcu)2 − (rcu)1]∗G (1.1.9)

The (∗) means mass average. The formula (1.1.9) was �rst obtained by
Leonard Euler.

The �rst law of thermodynamics. There exist a variable of state E such
that

dE = dA(e) + dQ(e)

where dA(e) is work of external forces over the system and dQ(e) is quantity
of heat come from surroundings.

For a material element dτ with mass of ρdτ , E = (E + U) ρdτ , where E
is the speci�c kinetic energy v2/2 and U is a variable of sate, namely the
speci�c internal energy.

The momentum equation gives a value of a kinetic energy change, and the
�rst law of thermodynamics leads to the equation for internal energy only
(the energy equation):

dU

dt
=

1

ρ

(
px
∂v

∂x
+ py

∂v

∂y
+ pz

∂v

∂z

)
+ q(e) (1.1.10)

where

q(e) = lim
dτ→0
dt→0

dQ(e)

ρdτdt

is the non-mechanical energy �ux from surroundings to a unit mass of medium
per unit time.
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The second law of thermodynamics. There exist a variable of state S
(entropy) such that for reversible processes

TdS = dQ(e).

For an irreversible process leading from a state A to a state B, the second
law reads

S(B)− S(A) ≥
∫
L

dQ(e)

T
.

In the right-hand-side, the integral is taken over the curve L corresponding to
the irreversible process in the con�guration space. Since entropy is a variable
of state S(A) and S(B) are de�ned independently on the path L.

1.2 Examples of complete systems of equations

One of the main problems of gas dynamics is to derive a complete system
of equations. Together with appropriate initial and boundary conditions it
allows analysis of particular gas �ows.

The most wide-used model is a model of ideal perfect gas. It assumes
that all mechanical processes are reversible, the stress tensor is hydrostatic
(pn = −pn, p > 0), the internal energy U and pressure p depend on two
variables of state. The continuity (1.1.3), momentum (1.1.5) and energy
(1.1.10) equations reads

dρ

dt
+ ρdiv v = 0

ρ
dv

dt
= ρF− grad p

dU

dt
+
p

ρ
div v = q(e).

(1.2.1)

Usually F and q(e) are given functions of variables involved in (1.2.1). As
this system of equations is not complete, relations between ρ, p, U (equations
of state) must be added.

Thermic p = p(ρ, T ) (T being the temperature) and calori�c U = U(ρ, T )
equations of state are usually given. The functions p(ρ, T ) and U(ρ, T ) are
not independent as they must admit laws of thermodynamics.

Let the density and speci�c entropy be independent variables, then

U = U(ρ, s), p = p(ρ, s), T = T (ρ, s)
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are known functions and these relations close (1.2.1). It becomes a complete
system of equations for unknowns: ρ,v, s

dρ

dt
+ ρdiv v = 0

ρ
dv

dt
= ρF− grad p

T
ds

dt
= q(e) .

(1.2.2)

We �nd p and T by relations

p = ρ2∂U

∂ρ
, T =

∂U

∂s

The model of perfect gas reads

U = cvT, p = ρRT, cv, R = const.

Hence speci�c entropy is

s = cv ln
p

ργ
+ s0, s0 = const, γ =

cv +R

cv

Introducing this expression in (1.2.2) simpli�es the equations and gives equations
for ρ,v, T

dρ

dt
+ ρvdiv v = 0

ρ
dv

dt
= ρF− grad p

cvT
d

dt
ln

(
p

ργ

)
= q(e)

p = ρRT.

(1.2.3)

For application, it is useful to consider gas as barotropic, i.e. p = Φ(ρ),
the function Φ(ρ) is the same for any elements in considered domain.
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2 Lecture 2. Non-steady one- dimensional �ows

2.1 Governing equations

A motion is called one-dimensional if all the parameters of the media depend
on one coordinate x and, in general, on time t only. If this coordinate is
distance to a certain plane the �ow is plane (plane waves), if it is distance
to a straight line the �ow is axisymmterical (cylindrical waves), and if it
is distance to a certain point the �ow is spherically symmetric (spherical
waves). Assume, that only x component of velocity is non-zero. Body force
also has only x non-zero component, if any.

For Eulerian description (1.2.2), unknown function are velocity component
u and two thermodynamic variables, e.g. pressure p and density ρ, while x
and t are independents variables.

The continuity and motion equations reads

∂ρ

∂t
+
∂ρu

∂x
+ (ν − 1)

ρu

x
= 0 (2.1.1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= Fx (2.1.2)

where ν = 1, 2, 3 used for plane, cylindrical, and spherical waves, respectively.
The entropy change equation is added to the systems of equations (2.1.1),

(2.1.2)

T

(
∂s

∂t
+ u

∂s

∂x

)
= q(e) (2.1.3)

and a relation for entropy (equation of state) as well

p = p(ρ, s), T = T (ρ, s) (2.1.4)

Then, the obtained system of equation (2.1.1) � (2.1.3) with additional
relation (2.1.4) forms complete system of equations for functions u(x, t),
ρ(x, t), p(x, t).

Further, we will use the continuity equation (2.1.1) in the form containing
full derivative of p over time. Since ρ = ρ(p, s), introducing speed of sound a
as a2 = (∂p/∂ρ)s, from (2.1.1) we have

1

a2

(
∂p

∂t
+ u

∂p

∂x

)
+ ρ

∂u

∂x
+ (ν − 1)

ρu

x
= 0 (2.1.5)

The system (2.1.1) � (2.1.3) is a PDE system. So, to complete the
statement of the problem and �nd a solution, initial and boundary conditions
must be speci�ed.
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2.2 Small disturbances

The simplest solution for the gas dynamics equations (2.1.1) � (2.1.3) describes
gas in rest:

p = p0, ρ = ρ0, u = 0, s = s0, T = T (ρ0, s0)

p0, ρ0, s0 are constants.
In this lecture we analyse solutions which are close to this one.
Consider 1D non-stationary �ows, where pressure p, density ρ slightly

di�er from constant values p0, ρ0, and gas velocity u is small. The scale for
velocity comes from the gas state, it is speed of sound a0 =

√
(∂p/∂ρ) s. This

velocity has the same order of magnitude as velocity of chaotic motion of gas
molecules.

Disturbances are small so p � p0, ρ � ρ0, u � a0, s − s0 � s0 and
smooth ∂/∂t� a0∂/∂x. Nonlinear terms in governing equations: continuity
(2.1.1), equation of motion (2.1.2) and entropy (2.1.3) can be omitted and
these equations read

∂ρ

∂t
+ ρ0

∂u

∂x
+ (ν − 1)

ρ0u

x
= 0 (2.2.1)

∂u

∂t
+

1

ρ0

∂p

∂x
= 0 (2.2.2)

∂s

∂t
= 0 (2.2.3)

As ρ = ρ(p, s) , we have

ρ− ρ0 =
∂ρ

∂p

∣∣∣∣
s

(p− p0) +
∂ρ

∂s

∣∣∣∣
p

s (2.2.4)

Potential ϕ integrates (2.2.2):

u =
∂ϕ

∂x
, p− p0 = −ρ0

∂ϕ

∂t
(2.2.5)

Di�erentiation of (2.2.4) w.r.t. time according (2.2.3) and (2.2.5) leads to
equation for ϕ from (2.2.1):

1

a2
0

∂2ϕ

∂t2
− ∂2ϕ

∂x2
− ν − 1

x

∂ϕ

∂x
= 0 (2.2.6)
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Plane waves. For ν = 1, (2.2.6) is a classical wave equation and its general
solution is

ϕ = F (x− a0t) +G(x+ a0t)

u = f(x− a0t) + g(x+ a0t)

p− p0 = ρ0a0 [f(x− a0t)− g(x+ a0t)]

f = F ′, g = G′

Values r = u + (p − p0)/(ρ0a0) and l = u − (p − p0)/(ρ0a0) are constant
on right-running and left-running characteristics x = x0 ± a0t, respectively.
This form of the solution simpli�es analysis of re�ection.

If a single pulse appears at t = 0 at some �nite segment, waves go to both
direction and their shape does not change during the propagation.

Spherical waves. For ν = 3, (2.2.6) is equivalent to

1

a2
0

∂2xϕ

∂t2
− ∂2xϕ

∂x2
= 0

It is again a wave equation, so its general solution has a form:

ϕ =
1

x
[F (x− a0t) +G(x+ a0t)]

Velocity and pressure are

u =
f(x− a0t)

x
− 1

x2

∫ x−a0t

ξ0

f(ξ)dξ +
g(x+ a0t)

x
− 1

x2

∫ x+a0t

η0

g(η)dη

p− p0

ρ0a0

=
f(x− a0t)

x
− g(x+ a0t)

x

Consider a particular solution describing pressure wave propagation away
from the center with potential ϕ

ϕ = − 1

4πx
Q

(
t− x

a0

)
(2.2.7)

Velocity and pressure are

u =
∂ϕ

∂x
=

1

4π

Q ′
(
t− x

a0

)
a0x

+
Q
(
t− x

a0

)
x2


p− p0 = −ρ0

∂ϕ

∂t
= ρ0a0

1

4πx
Q ′
(
t− x

a0

)
12



The mass �ux q(x, t) through a surface x = const is

q = 4πx2u =
x

a0

Q ′
(
t− x

a0

)
+Q

(
t− x

a0

)
If x→ 0

lim
x→0

q(x, t) = Q(t)

Let the function Q(t) in (2.2.7) is non-zero
only if 0 < t < τ . Assume, gas comes to rest
after the wave is gone. It means

Q(0) = Q ′(0) = 0, Q(τ) = Q ′(τ) = 0

As

Q(τ) =

∫ τ

0

Q ′(t)dt = 0,

the sign of Q ′(t) has to change. Consequently,
the sign of pressure disturbance changes as
well. Note, that there is no such an e�ect for
plane waves.

0

0 0.5 1 1.5 2

F1
F2

0

F1
F2

Q

Q'

Pic. 2: Initial disturbance

On the other hand, if pressure has a constant sign (or
∫ τ

0
Q ′(t)dt = Q(τ) 6=

0), gas does not come to rest but moves stationary and has velocity of

u =
Q(τ)

4πx2

after the wave propagation. Anyway, both pressure and velocity have a factor
of 1/x and a pulse decreases going from the center. The power of -1 ensures
energy conservation.

Cylindrical waves. It is more di�cult to derive
general solution for cylindrical waves then for plane
of spherical ones.
Consider a class of solutions which are represented
as a superposition of spherical waves from uniformly
distributed over the axis x = 0 sources (pic. 3)

ϕ =

∫
1

r
[F (r − a0t) +G (r + a0t)] dζ,

r2 = x2 + ζ2.

(2.2.8) Pic. 3: Construction
of cylindrical wave
potential
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Consider

F = − 1

4π
Q

(
t− r

a0

)
and �nd approriate integration limits in (2.2.8)

ϕ(t, x) = − 1

2π

∫ √a20t
2−x2

0

Q
(
t−
√
x2 + ζ2/a0

)
√
x2 + ζ2

dζ (2.2.9)

(we took into account that z = 0 is a symmetry plane).
If Q(t) is nonzero for a �nite time τ , the lower limit in (2.2.9) is actually

ζterm =
√
a2

0(t− τ)2 − x2

if this value is greater than zero.
For any �xed x > 0, ϕ 6= 0 for large enough t: there always is a diapason

on the axis which contains sources giving nozero impact at a given point at
any instant after �rst wave come.

0

F2
F1
F3
F4

0

0 1 2 3 4

F2
F3

x

0

F2
F3

p-p0

p-p0

p-p0

Pic. 4: Pressure distribution in impulse for plane, cylindrical, and spherical
wave

The pic. 4 shows pressure impulse evolution for plane, cylindrical and
spherical cases. Function F (ξ) = ξ2(ξ − τ)2 is the same for all geometrical
con�gurations and shown at top left panel and its derivative at bottom left
one. This function de�nes potential. Right panels show pressure distribution
in space for two instants: t = 2τ , t = 4τ , the scale for coordinate is a0τ .

Plane waves propagate without any change. Spherical waves decrease their
magnitude while going from the origin. For symmetric in time source, the rear
front is steeper than the leading one. Single cylindrical pulse has no rear edge.
At any point, pressure goes to zero during in�nite time.
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3 One-dimensional nonsteady �ows

3.1 General properties of characteristics of �rst-order

PDE's with two variables

Consider a system of PDE's with two independent variables. Its general form
is

(A)fx + (B)ft +D = 0 (3.1.1)

where (A) and (B) are matrices, D is a vector and their elements depend on
x and t, and component of unknown vector-function f . The derivatives fx,
ft enter the equation (3.1.1) linearly.

The system (2.1.1) � (2.1.3) is an example of such a system: it is linear on
derivatives of unknown functions, but its coe�cients and free terms depend
on unknowns and independent variables arbitrary.

Consider the following problem for the equation (3.1.1). On a certain line
x = x(t), values of f are given. It means that the derivative df/dt = ϕ′(t) on
this line is also given. Values fx comes from (3.1.1).

This problem is equivalent to Cauchy problem: �nd a solution of (3.1.1)
such that f = ϕ(t) on x = x(t). If there exists a unique solution, then fx is
determined on x = x(t). In other words, if fx either doesn't exist or is non-
unique, then the Cauchy problem either has no solution or has more than
one solution.

To obtain an equation for fx, we eliminate ft:

ϕ′(t) =
∂f

∂t
+
dx

dt

∂f

∂x
ft = −dx

dt
fx + ϕ′(t) (3.1.2)

Substituting ft from (3.1.2) to (3.1.1) we obtain system of linear algebraic
equations for fx. If the determinant of this system is non-zero, we have a
unique solution for fx on x = x(t). If

∆ =
∣∣(A)− dx

dt
(B)
∣∣ = 0 , (3.1.3)

the system of equations for fx either has no solution or has in�nitely
many solutions. In the latter case, the function ϕ can not be stated arbitrary.
Solvability of the system requires certain conditions for ϕ.

The equation ∆ = 0 determines directions dx/dt of characteristics.

Example 1. Find characteristics of (2.1.1) � (2.1.3) with use of (2.1.4).
We change (2.1.3) by the equivalent introducing speed of sound a = (∂p/∂ρ)s

∂p

∂t
+ u

∂p

∂x
− a2

(∂ρ
∂t

+ u
∂ρ

∂x

)
= 0,
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Denote

f =

 ρ
u
p

 , (A) =

 u ρ 0
0 u 1/ρ
−a2u 0 u

 , (B) =

 1 0 0
0 1 0
−a2 0 1

 ,

D =

 (ν − 1)ρu/x
−Fx

0


Denote dx/dt = τ and obtain equation (3.1.3) for characteristics

|(A)− τ (B)| =

∣∣∣∣∣∣
u− τ ρ 0

0 u− τ 1/ρ
a2(−u+ τ) 0 u− τ

∣∣∣∣∣∣ = 0.

or
(u− τ)3 + a2(−u+ τ) = 0 , τ1 = u , τ2,3 = u± a.

As all three value of τ are real and di�erent, the system (2.1.1) �(2.1.3) is
hyberbolic by de�nition. The values of τ correspond to disturbances, which
have velocities of u, u± a.

It is useful to have characteristic view of (2.1.1) �(2.1.3). It contains
derivatives of unknown function over characteristic directions τ . To do it,
multiply (2.1.1) by a/ρ and add and subtract (2.1.2). For simplicity, we omit
the body force Fx and obtain the following

∂u

∂t
+ (u+ a)

∂u

∂x
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
+ (ν − 1)

au

x
= 0 (3.1.4)

∂u

∂t
+ (u− a)

∂u

∂x
− 1

ρa

[
∂p

∂t
+ (u− a)

∂p

∂x

]
− (ν − 1)

au

x
= 0 (3.1.5)

∂s

∂t
+ u

∂s

∂y
= 0 (3.1.6)

Equations (3.1.4) �(3.1.6) give relation between di�erentials of unknown
functions along characteristics:

du+ dp
ρa

= −(ν − 1)au
x
dt, dx = (u+ a)dt

du− dp
ρa

= (ν − 1)au
x
dt, dx = (u− a)dt

ds = 0, dx = udt

(3.1.7)

Introduce new function v and variables r and l by formulae

v =

∫
dp/ρa, r = u+ v, l = u− v. (3.1.8)
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Then (3.1.7) gives

dr = −(ν − 1)
au

x
dt, dx = (u+ a)dt

dl = (ν − 1)
au

x
dt, dx = (u− a)dt

Variables r è l are Riemann invariants. For plane �ows (ν = 1) they
remain constant along right-running and left-running characteristics (dx =
(u+ a)dt and dx = (u− a)dt, respectively) .

Example 2. Find characteristics of (1.2.2) considering steady two dimensional
�ows: plane and axisymmetric.

The complete system of equations is

∂ρuyν−1

∂x
+
∂ρvyν−1

∂y
= 0,

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ ρFx,

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+ ρFy,

u
∂s

∂x
+ v

∂s

∂x
= 0.

(3.1.9)

This system gets the form

Afy +Bfx +D = 0,

after simple transformations and introducing of speed of sound with

f =


ρ
u
v
p

 , (A) =


vyν−1 0 ρyν−1 0

0 ρv 0 0
0 0 ρv 1
−a2v 0 0 v

 , (B) =


uyν−1 ρyν−1 0 0

0 ρu 0 1
0 0 ρv 0
−a2u 0 0 u

 , ,

D =


(ν − 1)ρv
−ρFx
−ρFy

0


Characteristic direction τ = dy/dx satis�es (3.1.3)
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|(A)− τ (B)| =

∣∣∣∣∣∣∣∣
ξyν−1 −ρyν−1τ ρyν−1 0

0 ρξ 0 −τ
0 0 ρξ 1
−a2ξ 0 0 ξ

∣∣∣∣∣∣∣∣ = 0, ξ = v − uτ

or
ρ2yν−1ξ2

(
ξ2 − a2(τ 2 + 1)

)
= 0

Four roots of this equation are easy to write down:

τ1,2 =
v

u
, τ3,4 = c± =

uv ± a
√
V 2 − a2

u2 − a2
, V 2 = u2 + v2.

Two latter ones are real if the �ow is supersonic. Characteristic view of
the system is more complex and will be obtained by a di�erent way.

The geometry of characteristics is clearly seen in natural coordinate system:
x′, y′, x′ being directed along the velocity vector V(u′, v′) (or along the
entropy characteristic C0), see �g.5 In this coordinates v = v′ = 0, u =
u′ = V , so (

dy′

dx′

)
±

= ± a√
V 2 − a2

Pic. 5: Geometry of characteristics

It means that characteristics C+ and C− makes equal angles with the
velocity direction and projection of the velocity vector to normal equals local
speed of sound value a. The angle µ between characteristics and velocity
vector is called Mach angles, the characteristics are called acoustic or sound.
We have

sinµ =
a

V
=

1

M
, tg µ =

a√
V 2 − a2

=
1√

M2 − 1

Or (
dy

dx

)
0

= tgϑ,

(
dy

dx

)
±

= tg (ϑ± µ)
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4 Two-dimensional steady �ows

4.1 Governing equations. First integrals

Consider an ideal perfect gas motion. Assume the �ow to be steady, so for
unknown functions ρ,V, p satisfy equations

∂V

∂t
= 0,

∂ρ

∂t
= 0,

∂p

∂t
= 0

Here we consider plane and axisymmetric �ows. Gromeka-Lamb equation
of motion reads

dρ

dt
+ ρdivV = 0 (4.1.1)

∇V
2

2
+ 2(~ω ×V) +

1

ρ
∇ p = ∇U (4.1.2)

T
ds

dt
= q. (4.1.3)

here ω is vorticity vector, U is body force potential, s = s(ρ, p) is speci�c
entropy. Speci�c energy �ux q is given.

Projection of (4.1.2) on a streamline L gives Benoulli integral along a
streamline:

V 2

2
+

∫ p

p0

dp

ρ(p,L)
− U = P0(L) (4.1.4)

For barotropic �ows, ρ = ρ(p) and the constant P0 is the same for all
streamlines.

Scalar product of (4.1.2) by ~ω gives the relation along a vortex lines
(similar to the streamline case):

V 2

2
+

∫ p

p0

dp

ρ(p,L∗)
− U = P0(L∗) (4.1.5)

For adiabatic �ows, q = 0 and (4.1.3) gives one more �rst integral along
streamlines.

s(ρ, p) = s(L) (4.1.6)

Equations (4.1.4) � (4.1.6) are �rst integrals of the system of equations
(4.1.1) �(4.1.3). They correspond to two characteristics with dy/dx = v/u.

For adiabatic �ows, equation (4.1.4) takes form:

V 2

2
+ h− U = h0(L) (4.1.7)
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Here we use well-known thermodynamic relations dq = Tds = dU+pd(1/ρ) =
dh− dp/ρ.

So

T (V · ∇ s) = V · ∇h− 1

ρ
(V · ∇ p)

and if U = 0 we have

1

ρ
∇ p = ∇

(
h0(L)− V 2

2

)
hence equation of motion (4.1.2) reads:

2(~ω ×V) = T ∇s−∇h0 (4.1.8)

This equation is Crocco's vorticity theorem.
Now transform the continuity equation (4.1.1) for adiabatic and barotropic

�ows in order to eliminate ρ and its derivatives. The barotropy connects
density and pressure, and Bernoulli integral (4.1.4) allows calculating substantial
derivative of the latter. For simplicity, let U = 0. Hence,

dρ

dt
=
∂ρ

∂p

dp

dt
= − ρ

a2

d

dt

V 2

2
= − ρ

a2

(
V · ∇ V 2

2

)
The continuity equation has a form:(

V · ∇ V 2

2

)
− a2divV = 0 (4.1.9)

Finally, the system of equations governing steady adiabatic or barotropic
motion with no body force is(

V · ∇ V 2

2

)
− a2∇ ·V = 0 (4.1.10)

∇V
2

2
+ 2(ω ×V) +

1

ρ
∇ p = 0 (4.1.11)

T
ds

dt
= 0 (4.1.12)

A barotropy equation or a relation between ρ, p, and s closes the system.

4.2 Streamfunction

The continuity equation for two-dimensional �ows takes a form:

∂ ρuyν−1

∂x
+
∂ ρvyν−1

∂y
= 0
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with ν = 1 and ν = 2 for plane and axisymmetric cases respectively. Consequently,
there exists a scalar function ψ, which di�erential is dψ = ρuyν−1dy −
ρvyν−1dx, and

∂ψ

∂x
= −ρvyν−1,

∂ψ

∂y
= ρuyν−1

We see that ψ = const along streamlines dx/u = dy/v, and hence (4.1.6),
(4.1.7), (4.1.9) take a form (U = 0)

u2+v2

2
+ h = h0(ψ) (4.2.1)

s = s(ψ) (4.2.2)

(a2 − u2) ∂u
∂x
− uv

(
∂u
∂y

+ ∂v
∂x

)
+ (a2 − v2) ∂v

∂y
+ (ν − 1) a2v

y
= 0 (4.2.3)

as (
V · ∇ V 2

2

)
= u

∂

∂x

u2 + v2

2
+ ... = u2∂u

∂x
+ uv

∂v

∂x
+ . . .

The equation (4.2.3) involves speed of sound a which depends on thermodynamic
parameters h and s. These parameters are functions of ψ and (u2 + v2)
according to (4.2.1) and (4.2.2).

As h and s actually depend on ψ only, projection of (4.1.8) on y axis gives

u

(
∂v

∂x
− ∂u

∂y

)
= T

∂s

∂y
− ∂h0

∂y

and

ω = ωz =
∂v

∂x
− ∂u

∂y
=

(
T
ds

dψ
− dh0

dψ

)
ρyν−1 (4.2.4)

Equations (4.1.1) � (4.1.3) give two di�erential equations along streamlines

d
V 2

2
+
dp

ρ
= 0, ds = 0 (4.2.5)

and two partial di�erential equations (4.2.3) and (4.2.4). In general, the
de�nition of the streamfunction must be added: ∂ψ/∂x = −ρvyν−1 ( or
∂ψ/∂y = ρuyν−1).

Relations (4.2.5) has characteristic form (it contains derivatives along
�xed line, namely, the streamline). The Bernoulli integral, entropy, and streamfunction
ψ are invariants of these characteristics.

Transform the other equations (4.2.3) and (4.2.4) to characteristic form.
Take a sum of (4.2.4) multiplied by a factor λ and (4.2.3):(
a2 − u2

) ∂u
∂x
−(uv + λ)

∂u

∂y
−(uv − λ)

∂v

∂x
+
(
a2 − v2

) ∂v
∂y

= λΩ∗−(ν − 1)
a2v

y
(4.2.6)
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(we denote the rhs of (4.2.4) by Ω∗). This equation gives criteria for combinations
of derivatives wrt x and y to be derivatives along a certain direction with
slope c. Roots of this equation were already found by general approach for
characteristics: (

dy

dx

)
±

= c± =
uv ± a

√
V 2 − a2

u2 − a2

They are real if V ≥ a. From (4.2.6), λ± = ±a
√
V 2 − a2.

Equations (4.2.3), (4.2.4) have the following characteristic form:

∂u

∂x
+ c±

∂u

∂y
+ c∓

(
∂v

∂x
+ c±

∂v

∂y

)
=

1

u2 − a2

[
(ν − 1)

a2v

y
− λ±Ω∗

]
And characteristic relations are

du+ c−dv = K+dx if dy = c+dx (4.2.7)

du+ c+dv = K−dx if dy = c−dx (4.2.8)

d

(
u2 + v2

2

)
+ dh = 0

ds = 0

dψ = 0

 if dy =
v

u
dx

where

K± =
1

u2 − a2

[
(ν − 1)

a2v

y
− λ±Ω∗

]
Coming back to initial equations (4.1.1) � (4.1.3), we see that plane

and axysimmetrical �ows di�er by form of the continuity equation. Hence,
all results derived for plane �ows are valid for axisymmetric ones, if the
continuity equation has not been taken into account. In particular, Rankine-
Hugoniot relations are valid

ρ1vn1 − ρ2vn2 = 0
ρ1vn1V1 − ρ2vn2V2 = pn1 − pn2

and shock polar (Busemann curve) has the same form as for ν = 1 (Vc is
critical speed)

v2 = (V1 − u)2 u− V 2
c /V1

2V1/(γ + 1) + V 2
c /V1 − u

(4.2.9)

On the other hand, relations on characteristics (4.2.7), (4.2.8) for ν = 1
and ν = 2 are signi�cantly di�erent. Zero right hand side part for plane
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irrotational �ows allows �nding the characteristics in godograph plane independently
on the solution.

For ν = 2 Bernoulli integral reads

u2 + v2

2
+

a2

γ − 1
=
γ + 1

γ − 1

a2
c

2

so solutions for supersonic �ow lies between circles u2 + υ2 = a2
c and (γ +

1)a2
c/(γ−1) on u, v plane. Besides, characteristics could not be found unless

the solution is known. This shows formal analogy between plane vortical and
axisymmetrical �ows.

Equation (4.2.4) indicates the case of transition between potential and
rotational plane �ows. If a �ow is continuous, Kelvin's circulation theorem
ensures that vorticity is frozen, and if ω = 0 in some domain, this values
will be kept on all streamlines crossing it. Shock waves do not change full
enthalpy H0 so the only possible source of vorticity is non-uniform entropy
change at a shock wave. It takes place if the shock is curvilinear. Weak shock
waves produce small entropy change, proportional to the third power of the
wave intensity, and keep the �ow irrotational.
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5 Axisymmetric simple waves

5.1 General theory

Consider axisymmetric steady potential �ow of a perfect gas with constant
adiabatic exponent γ. Let x, y be cylindrical coordinates, x goes along the
axis of symmetry, y is distance to the axis. We consider self-similar solutions
only: they depend on variable ξ = y/x. These are simple waves or Busemann
�ows. In the hodograph plane u, v, they correspond to curves v = v(u).

Let r, ϕ be polar coordinates in a half-plane y > 0 (0 ≤ ϕ ≤ π). The
angle ϕ increases from the positive direction of the x axis. Absence of vorticity
condition reads

∂v

∂x
− ∂u

∂y
= 0

ξ ≡ y

x
= tg ϕ, u = u(ξ), v = v(ξ)

∂

∂x
=

∂

∂ξ

∂ξ

∂x
,
∂

∂y
=

∂

∂ξ

∂ξ

∂y
, dξ =

dξ

dϕ
dϕ

Hence

dv
dϕ
tg ϕ+ du

dϕ
= 0 (5.1.1)

dυ
du
tg ϕ+ 1 = 0 (5.1.2)

The direction of a ray ϕ = const where velocity components equals (u, v)
is normal to curve v = v(u) on the godograph plane.

The continuity equation (4.2.3) and (5.1.1) give

N
du

dϕ
= a2v

N = a2 − (v cos ϕ− u sin ϕ)2, N = a2 − v2
n

(5.1.3)

where vn = v cos ϕ−u sin ϕ is a normal to the ϕ = const ray component of
velocity.

The derivative of (5.1.2) with expression for du/dϕ from (5.1.3) gives

vv ′′ = 1 + v′ 2 − (u+ vv′)2

a2
=
a2 − v2

n

a2

(
1 + v′ 2

)
(5.1.4)

(primes stand for di�erentiation w.r.t. u).
Each solution of (5.1.4) corresponds to a simple wave. The function v =

v(u) gives dependence of u and v on ϕ by use of (5.1.2). Uniqueness of the
solution requires that the integral curve v(u) has no in�ection points.
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5.2 Supersonic �ow past a cone

Consider a supersonic �ow past an in�nite circular cone with zero angle of
attack. The problem has no length scale and is self-similar. The bow shock
wave is conical and has equation ϕ = ϕS. The incoming �ow is uniform, the
angle between velocity and the shock wave is the same at all points, hence
the shock intensity and the entropy change is the constant. After the shock
the �ow is again isentropic. Full enthalpy does not change on the shock wave.
According to Crocco's theorem (4.2.4), vorticiy is zero after the shock wave
and the �ow obeys (5.1.4) in hodograph plane and (5.1.1) in physical plane.

The boundary conditions for the problem come from Rankine-Hugoniot
conditions at the shock wave and non penetration and the cone surface.

Let the cone have semiangle of ϕ0. Non-penetration condition reads

v

u
= tg ϕ0

on hodograph plane
v

u
v′ + 1 = 0 (5.2.1)

It means that a normal to the integral curve v = v(u) at the corresponding
to the cone surface points goes through the origin.

At the shock wave ϕ = ϕS velocity components u and υ are connected
with incoming velocity V0 via Busemann equation (4.2.9). Finally,

atϕ = ϕ0 :
v

u
= tg ϕ0

atϕ = ϕS : u+ vtg ϕS = V0, v = V (u)
(5.2.2)

where V 2(u) is right hand side of (4.2.9).
Three boundary conditions (5.2.2) complete the boundary-value problem

for the second-order ODE (5.1.4) as the bow shock wave position ϕS is
unknown a priopi.

It is more convenient to �x ϕS instead of ϕ0 and �nd the latter. In this
manner correspondence between these two angles is stated as well.
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We solve this problem using some
graphics. First we use Busemann curve
(pic.6), draw it for the incoming
velocity V0 (point A). Fix an angle
ϕ = ϕS and draw an perpendicular
from A. This perpendicular crosses the
Busemann curve at the point B. It
states boundary conditions u and v
at ϕ = ϕS after the shock wave. The
equation (5.1.2) gives direction of the
integral curve at the point B:

υ′tg ϕS + 1 = 0

The curve is normal to the shock, so it
goes along AB.

Pic. 6: Towards graphical solution of
the �ow past a cone problem

After the shock wave the normal velocity is subsonic, hence the curve is
convex towards the origin. The sign or the curvature corresponds to the sign
of v ′′ (5.1.4). While ϕ decreases the ray with this direction goes clockwise, so
the normal to the integral curve at hodograph plane does. Hence, the integral
curve goes to the left from he point B. The curve ends at a point B0 where
normal passes through the origin. The direction and length of OB0 show the
velocity direction and magnitude at the cone surface.

This algorithm can be applied to all possible angles of the shock wave
ϕS, (µ1 < ϕS < π/2) (µ1 is a limit angle from Busemann curve). All points
B0 form "apple"curve at the hodograph plane (pic.6).
Qualitative description. After the shock wave the
�ow is either subsonic or supersonic. Between the
shock wave and the cone surface, gas turns further
towards the shock wave (pic.7) and Mach number
decreases. A transition to subsonic �ow is possible,
in this case sonic surface is also conical. Opposite to
plane case (�ow past a wedge), gas has some space
after the shock wave to align to the surface, so the
maximal angle of an object with attached bow shock
is large for cone.

Pic. 7: Streamlines of
the �ow past a cone

The pic.8 shows dependence of object angle on the shock wave angle for
M = 2. The di�erence between lines is the angle of the �ow turning after
the shock wave. The maximal angles of objects with attached shock wave for
cone and wedge are displayed in �g. 9.
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6 Flow past a slender body

6.1 Small perturbation theory

General governing equations for inviscid compressible gas �ow are

dρ

dt
+ ρdivV = 0 (6.1.1)

grad
V 2

2
+ 2(ω ×V) +

1

ρ
grad p = gradU (6.1.2)

T
ds

dt
= q (6.1.3)

Here ω is vorticity, U is body force potential, and s = s(ρ, p) is speci�c
entropy. Heat source distribution q is a given function.

These equations have �rst integrals, namely Bernoulli integral (along a
streamline)

V 2

2
+

∫ p

p0

dp

ρ(p,L)
− U = P0(L) (6.1.4)

For baroptopic �ows ρ = ρ(p), the constant P0 is the same for all streamlines.
For adiabatic �ows ds = 0, entropy is also constant along a streamline (6.1.3)

s(ρ, p) = s(L) (6.1.5)

In this case, the integral in (6.1.4) can be expressed explicitly.
An evident solution of (6.1.1) � (6.1.3) is a uniform �ow, which is a �ow

past a plane with zero angle of attack

v = V1, p = p1, ρ = ρ1

Consider �ows which are close to uniform. For example, these could be
�ows past a plane with a small topography or a body with surface close to a
plane, �ows slightly di�erent from the uniform v = V1 è ρ = ρ1 at in�nity,
�ows past a weakly oscillating bodies.

We consider �ows past a non-moving bodies only. Assume that �ow is
adiabatic and there is no body forces. Let the gas be a perfect gas with
constant heat capacities and the heat capacities ratio is γ.

The incoming �ows is uniform. If the �ow is subsonic, total enthalpy h0

and entropy s are constant. Shock waves in supersonic �ows cause change of
entropy keeping h0 constant, before the waves both values are constant.

Simplify governing equations due to small magnitude of disturbances.
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Bernoulli integral (6.1.4) reads

d

dt

V 2

2
+

1

ρ

dp

dt
= 0

From continuity equation (6.1.1)

dρ

dp

dp

dt
+ ρdivv = 0,

we have (
v · grad

V 2

2

)
− a2divv = 0. (6.1.6)

Introducing disturbances velocity �eld

v = (V + u, v, w)

make transformations of (6.1.6)

a2divv = a2

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
=

= (V + u)
∂

∂x

|v|2

2
+ v

∂

∂y

|v|2

2
+ w

∂

∂z

|v|2

2
= (V + u)2 ∂u

∂x
+ υ2∂v

∂y
+ w2∂w

∂z
+

+ (V + u) v

(
∂u

∂y
+
∂v

∂x

)
+ vw

(
∂v

∂z
+
∂w

∂y

)
+ (V + u)w

(
∂w

∂x
+
∂u

∂z

)
(6.1.7)

Value of local speed of sound a2 comes from (6.1.4)

a2 = a2
1 − (γ − 1)

(
V u+

u2 + v2 + w2

2

)
(6.1.8)

Let ε = u/V be a small parameter. It indicates declination of the velocity
from mean �ow direction V1. The ratio v/(V + u) is of order of ε as well.
Assume, u is of order of ε and velocity disturbances are small compared to
a. Then (

V

a

u

V

)2

∼
(
M2ε2

)
� 1

It means, hypersonic �ows M2ε2 ≥ 1 are not considered.
Linearization of (6.1.7) gives[

a2 − (V + u)2] ∂u
∂x

+ a2∂υ

∂y
+ a2∂w

∂z
= 0 (6.1.9)
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we still keep a term of order of ε2, this will be explained further.
As possible shock waves are weak, change of entropy is a small values

of the third order and can be neglected. It means the �ow is isentropic and
irrotational due to boundary conditions at in�nity.

Combining (6.1.9) and (6.1.8) gives the main equation[
1−M2 − (γ + 1)M2 u

V

] ∂u
∂x

+
∂υ

∂y
+
∂w

∂z
= 0 , ãäå M2 = V 2/a2

1 (6.1.10)

The only nonlinear term is the last one in square brackets. For transonic
�ows (M ≈ 1)it can be the leading one and the equation is su�ciently
nonlinear. This term can be omitted,

(γ + 1)M2

|1−M2|
|u|max
V

� 1 (6.1.11)

In this case, governing equation (6.1.10) reads

(
1−M2

) ∂u
∂x

+
∂υ

∂y
+
∂w

∂z
= 0 (6.1.12)

As the �ow is irrotational, there exists velocity potential ϕ(x, y, z): v =
V1 + gradϕ. Equations (6.1.10) and (6.1.12) gives for potential[

1−M2 − (γ + 1)M2 1

V

∂ϕ

∂x

]
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0 (6.1.13)

(
1−M2

) ∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0 (6.1.14)

Pressure distribution can be found afterwards for given ϕ. Bernoulli integral
reads

(V + u)2 + v2 + w2

2
+

γ

γ − 1

(
p

ρ
− p1

ρ1

)
=
V 2

2
(6.1.15)

as entropy is constant and p = const ργ, we have

p− p1

ρ1

= −
(
V u+

1

2
(1−M2)u2 +

v2 + w2

2

)
(6.1.16)

6.2 Boundary conditions

Gas does not penetrate into a rigid body. Let the body surface have equation

F (x, y, z) = 0 (6.2.1)

30



or
y = Y (x, z) (6.2.2)

For linear approximation, we have

v(x,±0, z) = V
∂ Y

∂ x
(6.2.3)

For body of revolution, we transform boundary condition (6.2.2)

F = y2 + z2 −R2(x) = r2 − S(x)

π
= 0

where r is distance to the axis of symmetry, R and S are radius and normal
cross-section area of the body.

Full (nonlinear) boundary condition is

−(V + u)
dR

dx
+ vr = 0

Omitting small value of u gives

at r = R(x) : rvr = V R
dR

dx
(6.2.4)

This condition can be simpli�ed by transferring to the axis of symmetry.
Taylor expansion gives

rυr = (rυr)r=0 +
∂rvr
∂r

∣∣∣∣
r=0

R(x) + ...

The continuity equation gives

r
∂u

∂x
= −∂rvr

∂r

so the second and further term are small and for the �rst term, we have

(rvr)r=0 = V R
dR

dx
.

This equation can be interpreted as volume source distribution along the
axis of symmetry. Their interaction with incoming �ow forms a separation
surface which is equivalent to a rigid body. The singularity υr → ∞ as
r → 0 is actually inside the rigid body but not in the physical �ow domain.
At in�nity disturbances must vanish, where this condition is applicable. At
least, the solution is �nite everywhere.
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We see one more di�erence between plane and axisymmetric �ows. For the
former, longitudinal velocity disturbance u has the same order of magnitude
as v. Indeed, from (6.2.3) and irrotationality condition,

∂u

∂y
=
∂v

∂x
= V

d2Y

dx2

and u has no singularity. Hence it has the same order of magnitude as v
throughout the domain.

For axisymmetric �ows v ∼ r−1 as r → 0, and vr = a0r
−1 +a1 +a2r+ . . . .

Irrotationality condition gives

u = a′0 ln r + a′1r + a′2r
2

Boundary condition (6.2.4) gives a0 = V RR′ and at the boundary we
have

u = V

(
R
dR

dx

)′
lnR

When lnR is not large by absolute value u ∼ r/Lvr (L is a lengthscale along
x).

For pressure distribution, Bernoulli integral gives (6.1.16)

p− p1

ρ1

= −
(
V u+

v2
r

2

)
(6.2.5)

For plane �ows, the �rst term is leading and pressure coe�cient is

Cp =
p− p1

ρ1V 2/2
= −2

u

V
.

Both term in (6.2.5) are su�cient for bodies of revolution and

Cp = −2
u

V
−
(vr
V

)2

.
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7 Solition for potential

7.1 General solution

General equation for potential of small distubances is (6.1.14). Considering
axisymmetric problems in cylindric coordinates x, r, it gives

(
1−M2

) ∂2ϕ

∂x2
+
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
= 0 (7.1.1)

with boundary condition

at r = R(x) : r
∂ϕ

∂r
= rv = V R

dR

dx
(7.1.2)

or

(rυ)r=0 = V R
dR

dx
(7.1.3)

Absence of disturbances at x→ −∞ gives

atx → −∞ ϕ→ 0

Pressure coe�cient is

Cp = −
(

2u

V
+
v2

V

)
(7.1.4)

The equation (7.1.1) has di�erent type for subsonuc (M < 1) and supersonic
(M > 1) �ows.

If M < 1 any disturbance spreads in�nitely far up�ow and down�ow. For
M > 1 a disturbance lies inside Mach cone with semianle µ of

sin µ =
a

V

(a is speed of sound).

For a point P cosider two Mach cones directed
up�ow and down�ow (pic.10). Parameters of
the �ow at P do not depend on sources of
disturbances located outside �rst cone. On the
other hand, a source planced at P does not
a�ect the �ow outside the second one.

Pic. 10: Mach cones
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Boundary condition (7.1.2) sets a distribution of sources along the axis
of symmetry. This gives a way to the form of solution of (7.1.1):

ϕ = −
ξ1∫

0

q(ξ) dξ√
(x− ξ)2 + (1−M2)r2

(7.1.5)

here ξ is a coordinate on the segment [0, L] of the symmetry axis inside the
body, and the density of source intensity is q(ξ) (pic.11).
Consider a point x, r in �ow. If M < 1, the
expression under the root sign is positive for
any ξ, and all sources a�ect the �ow in the
point. If M > 1, the point �feels� the source
which have it inside their Mach cone, i.e. x−
ξ ≥
√
M2 − 1 r.

The upper limit in the integral ξ1 in (7.1.5) is L
forM < 1 and ξ1 = x−

√
M2 − 1 r (0 < ξ1 ≤)

for M > 1.

Pic. 11

It is convenient to introduce a new variable η as

x− ξ = mr sinh η, m =
√

1−M2 forM < 1

x− ξ = λr cosh η, λ =
√
M2 − 1 forM > 1

(7.1.6)

This rewrites potential as

ϕ =
sinh η=(x−L)/mr∫

sinh η=x/mr

q(x−mr sinh η)dη forM < 1 (7.1.7)

ϕ =
sinh η=0∫

cosh η=x/λr

q(x− λr cosh η)dη forM > 1 (7.1.8)

Di�erentiation gives expressions for velocity components for M < 1

u =
∂ϕ

∂x
= −

∫ L

0

q′(ξ) dξ√
(x− ξ)2 +m2r2

+
q(L)√

(x− L)2 +m2r2
− q(0)√

x2 +m2r2

rv = r
∂ϕ

∂r
=

∫ L

0

q′(ξ)(x− ξ) dξ√
(x− ξ)2 +m2r2

−

q(L)(x− L)√
(x− L)2 +m2r2

+
q(0)x√
x2 +m2r2

(7.1.9)
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and for M > 1

u =
∂ϕ

∂x
= −

∫ ξ=x−λr

0

q′(ξ) dξ√
(x− ξ)2 − λ2r2

− q(0)√
x2 − λ2r2

rυ = r
∂ϕ

∂r
=

∫ ξ=x−λr

0

q′(ξ)(x− ξ) dξ√
(x− ξ)2 − λ2r2

+
q(0)x√
x2 − λ2r2

(7.1.10)

Point bodies (with dS/dx = 0, S being cross-section area) require q(0) =
q(L) = 0 (subsonc �ow) or just q(0) = 0 (supersonic �ow).

Boundary condition (7.1.2) gives an integral equations for q(ξ):

V R
dR

dx
=

[∫ L

0

q′(ξ)(x− ξ) dξ√
(x− ξ)2 +m2r2

]
r=R(x)

forM < 1, m =
√

1−M2

V R
dR

dx
=

[∫ x−λr

0

q′(ξ)(x− ξ) dξ√
(x− ξ)2 − λ2r2

]
r=R(x)

forM > 1, λ =
√
M2 − 1

These equations, again, have di�erent type. The former is Fredholm �rst
kind equation and the latter is Volterra �rst kind equation. One usually have
to solve them numerically.

After velocity is known, pressure distribution comes from (7.1.4). The
second (quadratic) term is su�cinet. Equations (7.1.9) and (7.1.10) show
that rv ∼ uL , i.e u ∼ rv/L� 1.

Often, the inverse problem is used. One �nds potential ϕ(x, r) for given
source distribution. Afterwards a suitable rigid surface can be found.

7.2 Examples

Plane �ow past a wavy wall. Subsonic �ow

Cosider a �ow past a plane with sinusoidal topography
shown on pic.12. The surface has equation

y = Y (x) = ε sin αx (7.2.1)

The value ε = 0 correponds to basic �owwhich is a
uniform �ow with velocity of V .

Pic. 12

Potentail of disturbances obeys the equation (6.1.14)(
1−M2

) ∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (7.2.2)

The boundary condition (6.2.3) for ϕ is

vy=0 =
∂ϕ

∂y
= V

dY

dx
= V εα cos αx (7.2.3)

35



As the wall is in�nite, the velocity is bounded at in�nity u = ∂ϕ/∂x
υ = ∂ϕ/∂y at y →∞.

Let M2 < 1. We use Fourier method solving (7.2.2)

ϕ = F (x)G(y)

For F and G we have

F ′′

F
=

−G ′′

(1−M2)G
= −λ2

Value of λ is real and positive as the solution is periodic on x.
Hence

F = A sinλx+B cosλx

G = A1 exp(−
√

1−M2λy) +B1 exp(
√

1−M2λy)

Boundness at y →∞ requires B1 = 0, and (7.2.3) gives

A = 0, λ = α, −A1B
√

1−M2 = V ε

The solution is

ϕ = − V ε√
1−M2

exp(−yα
√

1−M2) cosαx

Velocity componets and pressure are

u =
V εα√
1−M2

exp(−yα
√

1−M2) sinαx

v = V εα exp(−yα
√

1−M2) cosαx

p− p1 = 4p = − ρ1V
2εα√

1−M2
exp(−yα

√
1−M2) sinαx

Disturbances have maximal magnitude at the wall and graually decay
going from it. It is eqsy to show that drag force is zero.

Linear theory is valid if

u

V
� 1,

v

V
� 1,

(γ + 1)M2

|1−M2|
|u|max
V

� 1.

For this particular problem it means

εα√
1−M2

� 1,
(γ + 1)M2εα

(1−M2)3/2
� 1

The second condition is stronger and more restricitve for the wall steepness
εα.
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Plane �ow past a wavy wall. Supersonic �ow Let M > 1. General
solution of (7.2.2) is

ϕ = F (x−
√
M2 − 1y) +G(x+

√
M2 − 1y)

Characteristics of (7.2.2 are straight lines

x−
√
M2 − 1y = const, x+

√
M2 − 1y = const.

Functions F and G are constant at this lines, respectively. As no disturbances
come from in�nity, G = 0.

Boundary condition at the wall gives

v =
∂ϕ

∂y
= −
√
M2 − 1F ′(x) = V

dY

dx
= V εα cos αx

and F is

F (x) = − V ε√
M2 − 1

sin αx

Hence,

ϕ = − V ε√
M2 − 1

sin
[
α
(
x−
√
M2 − 1y

)]
u = − V εα√

M2 − 1
cos
[
α
(
x−
√
M2 − 1y

)]
v = V εα cos

[
α
(
x−
√
M2 − 1y

)]
4p =

ρ1V
2εα√

M2 − 1
cos
[
α
(
x−
√
M2 − 1y

)]
In supersonic �ow, disturbances do not decay but keep constant value

along characteristics x−
√
M2 − 1y = const. Wavy drag force apprears. The

force per period is

X =

∫ l

0

4pdY
dx

dx =
ρ1V

2

√
M2 − 1

∫ l

0

(εα cos αx)2dx

Physically, it means energy tranfer by acoustic waves.

Supersonic �ow past a slender cone Consider an axisymmetric supersonic
�ow with small disturbances. Set a linear source distribution q(ξ) = aξ in
(7.1.5). Then using (7.1.6), we obtain

ϕ(x, r) = −ax

cosh−1 x

λr
−

√
1−

(
λr

x

)2

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and velocity components are (7.1.8)

u = −a cosh−1 x

λr

v = aλ

√
1−

( x
λr

)2

.

This is a conical solution as all functions depend on x/r only. There is a
cone with x/r = cot δ where boundary condition is satis�ed, i.e. u/v = cot δ.
This gives relation between a and δ

a =
V δ√

cot2 δ − λ2 + tan δ cosh−1
(

cot δ
λ

)
For a slender cone δ � 1

a = V δ2

u = −V δ2 ln
2

λδ
, v = V δ

Cp = 2δ2

(
ln 2λδ − 1

2

) (7.2.4)

For plane �ows past a wedge, Cp ∼ δ, so pressure on a cone has di�erent
order of magnitude.

7.3 Similarity rules

Plane �ows Remind the equation for potential Potentail of disturbances
obeys the equation (6.1.14)(

1−M2
1

) ∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (7.3.1)

The shape of the boundary may be given in the form

y = h1Y
(x
L

)
= τ1LY

(x
L

)
with non-dimentional thickness τ1 = h1/L, or in comletely non-dimensional
form

y

L
= τ1f

(x
L

)
(7.3.2)

The boundary condition (6.2.3) for ϕ is(
∂ϕ

∂y

)
y=0

= V1
dY

dx
= V1τ1Y

′
(x
L

)
(7.3.3)
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where V1 is the free-stream velocity.
The pressure coe�cient on the boundary is

Cp1 = − 2

V1

(
∂ϕ

∂x

)
y=0

(7.3.4)

Now consider the pontential Φ(ξ, η) pf a second �ow. Let Φ be related to
ϕ by the relation

ϕ(x, y) = A
V1

V2

Φ(ξ, η) = A
V1

V2

Φ

(
x,

√
1−M2

1

1−M2
2

y

)
(7.3.5)

for some constant A. The corrpespondence between coordinate systems is

ξ = x, η =

√
1−M2

1

1−M2
2

y

Introducing (7.3.5) in (7.3.1), we �nd the equation for Φ:

(
1−M2

2

) ∂2Φ

∂ξ2
+
∂2Φ

∂η2
= 0 (7.3.6)

Hence, Φ describes a �ow with Mach number of M2. The boundary
condition (7.3.3) gives(

∂ϕ

∂y

)
y=0

= A
V1

V2

√
1−M2

1

1−M2
2

(
∂Φ

∂η

)
y=0

= V1τ1Y
′
(x
L

)
(7.3.7)

The only variable in (7.3.7) is x/L. The equations (7.3.7) can be also
written as (

∂Φ

∂η

)
η=0

= V2τ2Y
′
(x
L

)
As Y ′ is the same in both case, we have a relation between A, τ1 and τ2:

A

√
1−M2

1

1−M2
2

τ2 = τ1 (7.3.8)

Using the same function Y means that we consider a family of body
shapes. They are not geometrically similar but one shape can be obtained
frome another by proper stratching or compression towards the plane y = 0.
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The prussure coe�cients can also be rewrtitten as

Cp1 = − 2

V1

(
∂ϕ

∂x

)
y=0

= − 2

V2

A

(
∂ϕ

∂ξ

)
η=0

For the second �ow, the pressure coe�cient is

Cp1 = − 2

V2

(
∂ϕ

∂ξ

)
η=0

(7.3.9)

Equations (7.3.8) and (7.3.9) set the similarity rules. Two member of
a family of shapes characterized by relative thicknesses τ1 and τ2 have the
pressure distributions Cp1 and Cp2. If the Mach numbers of the �ows are M1

and M2, respetively, then Cp1 = ACp2 and

τ1 = A

√
1−M2

1

1−M2
2

τ2.

The same can be expressed by formula

Cp
A

= g

(
τ

A
√

1−M2

)
(7.3.10)

g is a function, the factor A is arbitrary.
The crucial point of deriving this similarity rule is linearity of the equation

and boundary conditions. The situation is di�erent for transonic �ows (nonlinear
equations) and axisymmetric �ows (nonlinear on the shape function boundary
conditions).

Equation (7.3.10) is a generalization of well known similarity rules.

1. If A = 1, we have Cp = g(τ/
√

1−M2).

2. If A = 1/
√

1−M2, we have Cp = g(τ)/
√

1−M2.

3. If A = τ , we have Cp = τg(
√

1−M2).

4. If A = 1/(1−M2), we have Cp = g(τ
√

1−M2)/(1−M2).

The �rst three methods are di�erent form of Prandtl-Glauert rule. Method
1 states that Cp remains constant if the thickness follows change of Mach
number in proper way. Method 2 states that for given shape Cp depends on
Mach number as (1−M2)−1/2, and method 3 states that Cp is proportional
to τ for �xed M .
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Method 4 is a Goethert rule which is not staightforwards for plane �ows
but is still valid for axisymmetric ones.

All equations in this subsections were written for subsonic �ows, but since
only expressions like

√
(1−M2

1 )/(1−M2
2 ) were actually used they are still

valid for supersonic ones with change 1 −M2 to M2 − 1. The invariant on
the type if �ow form of equation (7.3.10) is

Cp
A

= g1

(
τ 2

A2(1−M2)

)
Axially symmetric �ows For axially symmteric �ows it is not possible
to state boundary conditions for potential at r = 0 due to singularity.

Equation for potential is (7.1.1)(
1−M2

1

) ∂2ϕ

∂x2
+
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
= 0

and the transformation between two �ows with potential ϕ(x, r) and
Φ(ξ, R)is almost the same as for plane case:

ϕ(x, r) = A
V1

V2

Φ(ξ, η) = A
V1

V2

Φ

(
x,

√
1−M2

1

1−M2
2

r

)
(7.3.11)

The analog to (7.3.3) is(
∂ϕ

∂r

)
body

= V1τ1f
′
(x
L

)
f is the shape function. We cannot move to r = 0 and have to use exact form(

∂ϕ

∂r

)
r=τ1Lf(x/L)

= V1τ1f
′
(x
L

)
Introducing Φ, we have(

∂ϕ

∂r

)
r=τ1Lf(x/L)

= A
V1

V2

√
1−M2

1

1−M2
2

(
∂Φ

∂R

)
R=τ1

√
1−M2

1
1−M2

2
Lf(x/L)

(7.3.12)

On the other hand, Φ is a solution for the problem with incoming velocity
of U2 and the shape function F (R):(

∂Φ

∂R

)
R=τ2LF (x/L)

= V2τ2F
′
(x
L

)
(7.3.13)
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In order to compare (7.3.12) and (7.3.12), it is required that the shape
functions are the same: f(x/L) = F (x/L), which is the same condition as
before. In addition, it is , that

τ1

√
1−M2

1

1−M2
2

= τ2.

Taking this into account, (7.3.12) gives

τ1f
′
(x
L

)
= A

√
1−M2

1

1−M2
2

τ1

√
1−M2

1

1−M2
2

f ′
(x
L

)
This implies the only possible value of A:

A =
1−M2

2

1−M2
1

(7.3.14)

The pressure coe�cient for axially symmetric �ows is

Cp1 = − 2

V1

(
∂ϕ

∂x

)
r=τ1Lf(x/L)

− 1

V 2
1

(
∂ϕ

∂r

)2

r=τ1Lf(x/L)

Using (7.3.11) we have similar relation in term of Φ:

Cp1 = − 2

V2

(
∂Φ

∂ξ

)
R=τ1

√
1−M2

1
1−M2

2
Lf(x/L)

− A2

V 2
2

1−M2
1

1−M2
2

(
∂Φ

∂R

)2

R=τ1

√
1−M2

1
1−M2

2
Lf(x/L)

Using (7.3.14), we factor out the constant A and obtain

Cp
A

= g

(
τ

A
√

1−M2

)
Unlike the case of plane �ow, A cannot be chosen arbitrary since it must

satisfy (7.3.14). This value is A = (1−M2)−1. This gives Goehert's similarity
rule:

Cp(1−M2) = g(τ
√

1−M2) (7.3.15)

Diving both sides by τ 2(1−M2) gives the alternate form

Cp
τ 2

= g1(τ
√

1−M2) (7.3.16)

There are no free parameters left in this rule, so it could be adjusted to
be valid for transonic �ows.
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8 Hypersonic �ows past a blunt body

8.1 Flow past a sphere

Consider a hypersonic �ow of perfect gas with
heat capacities ratio γ past a sphere of radius
of rb (pic.13). Let the �ow far upstream of the
sphere be unifrom, its velocity and density be
V and ρ0.
Assume also M � 1. The bow shock in front
of the sphere is strong near the axis of symetry
and the gas density after it is close to the limit
one and approximately

Pic. 13: Spherical coordinates

ρ =
γ + 1

γ − 1
ρ0 ≡

ρ0

ε
, ε� 1

Assume that the shape of the bow shock is close the sphere of radius of
rs.

Spherical coordinates r, θ, ϕ (pic.13) are convenient for this problem. We
use Gromeka-Lamb equation of motion taking into account uniformity of the
incoming �ow

curlV ×V = T grad s (8.1.1)

(T is absolute temperature, s is speci�c entropy).
In our coordinates there is only one non-zero component of curlV:

(curlV)ϕ =
1

r

(
∂rυθ
∂r
− ∂υr
∂ϑ

)
(8.1.2)

Hence, left-hand-side of (8.1.1) takes form

curlV ×V =

∣∣∣∣∣∣
er eθ eϕ
0 0 (rotV)ϕ
vr vθ 0

∣∣∣∣∣∣ (8.1.3)

Due to axial symmetry there exists streamfunction ψ:

∂ψ

∂r
= ρvθr sin θ,

∂ψ

∂θ
= −ρvrr2 sin θ (8.1.4)

and

(curlV)ϕ =
1

r

[
∂rvθ
∂r
− ∂υr

∂θ

]
=

=
1

ρr sin θ

∂2ψ

∂r2
− 1

ρr3

cos θ

sin θ

∂ψ

∂θ
+

1

ρr3 sin θ

∂2ψ

∂θ2

(8.1.5)
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Projecting (8.1.3) on eθ direction with (8.1.1) gives

vr

(
1

ρr sin θ

∂2ψ

∂r2
− 1

ρr3

cos θ

sin θ

∂ψ

∂θ
+

1

ρr3 sin θ

∂2ψ

∂θ2

)
= T

1

r

∂ s

∂ θ
(8.1.6)

Thus we transform vector equation of motion (8.1.1) to a scalar one. Now,
we transform right-hand-side of (8.1.6) with thermodynamic relation

dh = Tds+
dp

ρ

Entropy s depends on ψ only after the shockwave. We can �nd with
dependence since ψ is continuous. In the incoming �ow

ψs =
1

2
ρ0V r

2
s sin2 θ (8.1.7)

Denote m = ρ0V cos θ local mass �ux and consider Hugoniot adiabat:

m2 = p−p1
1/ρ0−1/ρ

(8.1.8)

γ
γ−1

(
p
ρ
− p0

ρ0

)
− p−p0

2

(
1
ρ

+ 1
ρ0

)
= 0 (8.1.9)

Equations (8.1.8),(8.1.9) gives expressions for dp, dh along the shock wave

dp = 2mdm (1/ρ0 − 1/ρ) = −2ρ2
0V

2 sin θ cos θ (1/ρ0 − 1/ρ) dθ

dh =
1

2
dp

(
1

ρ
+

1

ρ0

)
T ds =

1

2
dp

(
1

ρ
+

1

ρ0

)
− dp

ρ
=

= ρ2
1V

2 sin θ cos θ (1/ρ1 − 1/ρ)2 dθ = −V 2 sin θ cos θ(1− ε)2dθ

(8.1.10)

Hence, we can put factor of ψθ ∼ vr explicitly to the right-hand-side of
(8.1.6):

T
1

r

∂ s

∂ ϑ
= T

1

r

ds

dψ

∂ ψ

∂ ϑ
(8.1.11)

Equation (8.1.10) gives values of sθ and φθ right after the shock waves
and allows deriving of sψ:

T
ds

dϑ

∣∣∣∣
s

= T
ds

dψ

∂ ψ

∂ ϑ

∣∣∣∣
s

= −ρ0V
2 sin θ cos θ(1− ε)2

and

T
ds

dψ
= −V (1− ε)2

ρ0r2
s

(8.1.12)
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Finally, equations (8.1.4), (8.1.6), (8.1.11),(8.1.12) give equation for ψ

ψrr +
sin θ

r2

∂

∂θ

(
ψθ

sin θ

)
=
V r2(1− ε)2 sin2 θρ1

r2
sε

2
(8.1.13)

Boundary conditions for (8.1.13) are continuity of ψ at the shock wave
(8.1.7) and tangential velocity vθ = V sin θ at r = rs.

Equation (8.1.13) has a solution of ψ = f(r) sin2 θ, with f(r) satisfying
ODE

f ′′ − 2

r2
f =

ρV r2(1− ε)2

ε2r2
s

Introducing ξ = r/rs and g = f/(ρ0V r
2
s) we obtain Euler equation for

g(ξ)

ξ2g′′ − 2g =
(1− ε)2

ε2
ξ4 g(1) =

1

2
g′(1) =

1

ε

The solution is

g =
1

3

(
1

2
− 5A+

1

ε

)
ξ +

1

3

(
1 + 2A− 1

ε

)
1

ξ
+ Aξ4 A =

(1− ε)2

10ε2

The position of the sphere corresponds to g = 0. At ξ = 1 values of g, g′,
and g′′ are known and for ξ = 1 + εη we have

g =
1

2
+ η +

1

2
η2

which gives ηb = −1. Returning to physical coordinates results rs − rb =
εrs.

8.2 Basic ideas of Cherny method

For an arbitrary blunt body, there is a thin shock layer between the shock
wave and the body surface. If the �ow is hypersonic, the density in this layer
ρ is much greater than the density in the incoming �ow ρ1. The ration of
these densities ε = (γ − 1)/(γ + 1) is small and we can expand all unknown
function onto series of ε
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Let the body surface is y = y(x), where x
is arclength from the axis of symmetry along
the tangential surface t, and y is the distance
MN from a given pointM to the surafce along
the normal (14). Let α be the angle between
tangent to t and the axis of symmetry, and
distances from points N and M are lt and l.
Let us assume that the radius of curvature of
the body surface R obeys |dR/dx| � 1. The
streamfunction ψ for these coordinates is

dψ = ρuldy − ρvl(1 + y/R)dx
Pic. 14: Curvilinear
coordinates

where u and v are velocity componets along x, y.
As the shock layer is thin, pressure change along x coordinate is much

greater than along y. Equation of motion and adiabatic law give

ρu
∂u

∂x
+ ρv

∂u

∂y
+
∂p

∂x
= 0

1

1 + y/R

∂v

∂x
− u

R + y
= −l ∂p

∂ψ
;

∂

∂x

(
p

ργ

)
= 0

(8.2.1)

Boundary conditions at the shock wave are

p =
2

γ + 1
ρ1V

2
1 sin2 β − γ − 1

γ + 1
p1

ρ1

ρ
=
γ − 1

γ + 1
+

2

γ + 1

1

M2
1 sin2 β

=

=

(
uy ′

1 + y/R
− v
)
V1

(
cosα− sinα

y′

1 + y/R

)[
V1

(
sinα + cosα

y′

1 + y/R

)]−1

=

= u+
vy ′

1 + y/R
(8.2.2)

where M1 is Mach number in the incoming �ow and β is an angle between
tangent to shock wave and the axis of symmetry.

We seek for a solution of (8.2.1) with boundary conditions (8.2.2) in the
form

u = u(0) + εu(1) + . . . ; v = εv(0) + . . .

p = p(0) + εp(1) + . . . ; ρ =
ρ(0)

ε
+ ρ(1) + . . .

(8.2.3)
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The �rst approximation gives pressure distribution

p(0) = ρ1V
2

1 sin2 α(x)− 1

Rlt

∫ ψ∗

ψ

u(0)dψ, ψ∗ =
1

2
ρ1V1l

2
t

Higher order term in (8.2.3) allows �nding the thickness of the shock
layer.
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9 Weak shock wave structure

Gas dynamics usually deals with ideal gas with zero heat conductance. Flows
of such medium are isentropic as there are no physical mechanisms for the
entropy production. Exceptions usually involve external heat sources or sinks.
As a consequence, Euler equations for non-stationary �ows are hyperbolic and
admit shock waves. These shocks are treated as in�nitely thin surface where
parameters of the �ow change. On the other hand this means that spatial
derivatives of those functions are quite large and dissipative process (viscosity
and heat conductance) which are proportional to velocity and temperature
gradients cannot be neglected. In this section, we take these processes into
account and consider the inner structure of a shock wave.

Consider a steady one dimensional �ow of a compressible viscous (η is
dynamic viscosity coe�cient) heat-conductive (κ is heat conductance) gas.

Governing equations are
d
dx

(ρu) = 0
d
dx

(
p+ ρu− 4

3
η du
dx

)
= 0

ρudS
dx

= 4
3
η
(
du
dx

)2
+ d

dx

(
κ dT
dx

) (9.0.4)

We assume that the second (volume) viscosity coe�cient is zero. This assumption
is good enough for monoatomic gases and other media when the �ow relaxation
time is much large than the internal degrees of freedom relaxation time.

The second thermodynamic law TdS = dh−dp/ρ and mass and momentum
conservation laws allow rewriting of the entropy equation:

d

dx

[
ρu

(
h+

u2

2

)
− 4

3
ηu
du

dx
− κ

dT

dx

]
= 0 (9.0.5)

We state boundary conditions for these equations at−∞ and +∞ requiring
all parameters ρ, u, p, T be constant. We denote these constants by subindeces
0 and 1, respectively.

First two equations of (9.0.4) and (9.0.5) admit �rst integrals:

ρu = ρ0u0 (9.0.6)

p+ ρu2 − 4

3
η
du

dx
= p0 + ρ0u

2
0 (9.0.7)

ρu

(
h+

u2

2

)
− 4

3
ηu
du

dx
− κ

dT

dx
= ρ0u0

(
h(0) +

u2
0

2

)
(9.0.8)

Considering left-hand-sides at +∞ with zero derivatives, we obtain Rankine-
Hugoniot conditions.

Discontinuity is no longer possible, as it means in�nite value of derivative
du/dx which contradict to (9.0.7). Further we will consider heat conductance
and viscosity separately.
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9.1 Inviscid heat conductive gas

In this case (9.0.7) is algebraic equation:

p+ ρu2 = p0 + ρ0u
2
0

together with (9.0.6) it describes all intermediate states:

p = p0 + ρ0u
2
0

(
1− V

V0

)
, V = 1/ρ. (9.1.1)

At the p, V plane, this equation describes all points on a straight line
segment AB which connects initial ("0 point A) and terminal ("1 point B)
states at Higoniot adiabat (pic.??). A bit to the left from point A this line
is above the Poisson adiabat going through A, the same is valid for points a
bit to the right from B. Hence, there is a Poisson adiabat which is tangent
to AB. This adiabat corresponds to the maximal value of entropy Smax. We
can �nd using the condition of tangent.

As the shock wave is weak S1 − S0 is of order of (p1 − p0)3 or (V1 − V0)3.
We see that on the segment AB entropy can be larger than S1 and S0, so
S − S0 can be large than S1 − S0. That is why we keep the term S − S0

together with (V − V0)2 in the expansion of p− p0 in a small vicinity of A

p− p0 =

(
∂p

∂V

)
S0

(V − V0) +
1

2

(
∂2p

∂V 2

)
S0

(V − V0)2 +

(
∂p

∂S

)
V0

(S − S0)

The equation of AB is

p−p0 =
p1 − p0

V1 − V0

(V −V0) =

(
∂p

∂V

)
S0

(V −V0)+
1

2

(
∂2p

∂V 2

)
S0

(V1−V0)(V −V0)

We �nd the tangent point: it corresponds to V − V0 = 1/2(V1 − V0). The
maximal entropy can be easily found:

Smax − S0 =
1

8

(∂2p/∂V 2)S0(
∂p
/
∂S
)
V0

(V1 − V0)2.

Maximal entropy change in a weak shock wave is a second-order small
values. The entropy �rst rises to its maximal value and then goes down to
make the total entropy change be third-order small value. The existence of
an extremum of entropy implies the presence of an in�ection point on the
temperature pro�le. Indeed, without viscosity, the entropy equation reads

ρuT
dS

dx
= κ

d2T

dx2
(9.1.2)
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We are now able to estimate thickness of the shockwave. We divide both
parts of (9.1.2) by T and integrate over x (we take into account that ρu is
constant):

ρ0u0(S − S0) = κ
x∫

−∞

1

T

d2T

dx2
dx = κ

 1

T

dT

dx
+

T∫
T0

dT

dx

1

T 2
dT

 . (9.1.3)

For large enough x, we have dT/dx = 0 the �rst term in brackets vanishes
and we have

ρ0u0(S − S0) = κ
T∫

T0

dT

dx

1

T 2
dT.

We de�ne the shock wave thickness ∆x for the presence of heat conductance
only as

T1 − T0

∆x
=

∣∣∣∣dTdx
∣∣∣∣
max

. (9.1.4)

Simple estimation gives

ρ0u0(S − S0) = κ
(T1 − T0)2

dx

1

T 2
0

dT.

We can replace temperature jump by pressure change:

T1 − T0 =

(
∂T

∂p

)
S

(p1 − p0) =
V0

cp
(p1 − p0).

Here we used the second thermodynamics law formulation: cpdT = Tds+
pdV .

In a weak shock wave the entropy change is

T0(S1 − S0) =
1

12

(
∂2V

∂p2

)
S

(p1 − p0)3

Using approximate relations: ∂2V ∂p2 ∼ V0/p
2
0, κ ∼ ρ0cplc0, c0 ∼ u0,

p0 ∼ cpρ0T0 for mean free path length l, mean chaotic velocity c0, we obtain

∆x ∼ l
p0

p1 − p0

From (9.1.3), we see that maximal local entropy change Smax − S0 is
proportional to ∆T/∆x ∼ (∆p)2 while terminal entropy change is one order
of magnitude less.

In this solution we see that only temperature must be continuous, while
all other functions (velcoity, density, pressure) may have discontinuity.
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9.2 Viscous non heat conductive gas

Now consider the case κ = 0, η > 0. The entropy equation is

ρu
dS

dx
=

4

3
η

(
du

dx

)2

so entropy grows monotonically. The line AB on pV plane is below adiabat
going through the point B. The equation of the AB line is

p = p0 + ρ0u
2
0

(
1− V

V0

)
+

4

3
η
du

dx
(9.2.1)

As this line is below the straight line AB du/dx < 0 inside the shock wave.
We de�ne the shock wave thickness as∣∣∣∣u1 − u0

∆x

∣∣∣∣ =

∣∣∣∣dudx
∣∣∣∣
max

.

Maximal value of the derivative corresponds to maximal vertical distance
between the straight line AB and actual path (9.2.1). Taking a point in the
middle between A and B, we estimate

4

3
η
du

dx
=

1

8

(
∂2p

∂V 2

)
SA

(V1 − V0)2

The velocity change is

u0 − u1 = −
√

(p1 − p0)(V0 − V1) =

√
(p1 − p0)2

∣∣∣∣∂V∂p
∣∣∣∣ ∼ p1 − p0

p0

c0

and viscosity η ∼ ρ0lc0. The shock wave thickness is

∆x = l
p0

p1 − p0

The viscous solution give continuous solution for all functions. This means
that friction is a principal mechanism of transferring kinetic energy of the
gas into its heat energy.

Considering non-weak shock waves, one may obtain its thickness less than
mean free path, which is physically meaningless. The solution of this paradox
is that transport coe�cients cannot be constant throughout the whole range
of temperatures and this fact must be taken into account. For strong waves
the solution must be based on kinetics theory and consider possible excitation
of internal degrees of freedom.
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10 Thermally non-equilibrium �ows

10.1 Relaxation to equilibrium

The only way of information transport in gas is collisions between its molecules.
Hence there is a reference time scale which is de�ned by time between
collision. It is

τcoll =
l

c0

=
1

nc0σ
,

where l is mean free path, c0 � mean velocity of chaotic motion, n is number
concentration and σ is collision cross-section. For air at normal conditions
l 10−8 m and τcol ∼ 10−10 s. This time is usually much less than reference
time of a gas dynamics problem, so we can assume that collisions take place
very often.

On the other hand, there could be situations when one collision is not
enough for molecules to exchange energy. This situations occur if quantum
e�ects are su�cient. For diatomic gases two main quantum features may
be observed, they connected to internal rotations and oscillations in the
molecules.

Energy of the internal rotation is proportional to the moment of inertia
and allowed by quantummechanics angular velocities. The reference temperature
Tr = Erot/k for most gases is lower or around 10 K with the exception for
H2 and D2, these gases have reference rotation temperature around 80 K.
Anyway, for room temperature or above gases are in far classical diapason
and the energy got of lost by a molecule during a collision is enough to
excite or deactivate rotational degrees of freedom. Experiments show that
the rotational energy comes to its equilibrium value after about 10 collisions
for air gases and 150 �300 collisions for hydrogen and deuterium. This gives
an estimation for a relaxation time.

Sometimes, the relaxation to equilibrium takes much longer. Consider
this process in details. Let N be a number of molecules which are excited or
come to a new state due to chemical reaction, Ne be an equilibrium number
of such molecules. In general, there is a law:

dN

dt
= f(N, T, ρ, . . . )

but for small values of relative di�erence |N − Ne|/Ne � 1 one can expand
this law into Taylor series and obtain

dN

dt
=
Ne −N

τ
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with a solution

N = N0 exp

(
− t
τ

)
+Ne

[
1− exp

(
− t
τ

)]
The value of τ is relaxation time.
If there are several processes with quite di�erent relaxation times one

observes series of relaxation according to their timescales.
For a gas dynamics problem, there is another reference time τf . For each

process with relaxation time τ there are three possibilities:

• τ � τf quasi-equilibrium �ow

• τ ∼ τf nonequilibrium �ow

• τ � τf frozen �ow

In the latter case one can assume that there is no relaxation at all, and
the state of non-equilibrium degrees of freedom does not change.

10.2 Sound propagation in a gas with relaxation

Consider small perturbation of the rest state for a gas with relaxation.
Let the energy of internal oscillations be the relaxing value. We introduce
to temperatures: T corresponding to translational and rotational degrees
of freedom and vibrational corresponding to the current level of energy of
vibrations. Assume the the gas is perfect with constant heat capacities.

The governing equations are:

dρ
dt

+ ρ∇ · ~v = 0, d~v
dt

+ 1
ρ
∇p dh

dt
− 1

ρ
dp
dt

= 0

h = cpT + ev(Tv) p = ρRT dev
dt

= ev(T )−ev(Tv)
τ

(10.2.1)

Excluding h from the third equation (10.2.1) we obtain

dp

dt
− a2

v

dρ

dt
+ ρ(γ − 1)

ev
dt

= 0. (10.2.2)

Here γ stands for heat capacities ratio for a gas with frozen degree of freedom,
hence af is called frozen speed of sound.

Consider small perturbations of a uniform state (denoted by primes):

~v = ~v′, p = p0 + p′, ρ = ρ0 + ρ′, T = T0 + T ′, Tv = T0 + T ′v (10.2.3)
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As these perturbations are small with their derivatives, nonlinear term
can be neglected after substitution (10.2.3) to (10.2.1), (10.2.2):

∂ρ′

∂t
+ ρ0∇ · ~v′ = 0,

∂~v′

∂t
+

1

ρ0

∇p′ = 0

∂p′

∂t
− a2

f

∂ρ′

∂t
+ ρ0(γ − 1)ėv

∂T ′v
∂t

= 0
∂Tv
∂t

=
T ′ − T ′v
τ0

T ′

T0

=
p′

p0

− ρ′

ρ0

dev
dt

=
dev
dTv

∣∣∣∣
Tv=T0

(10.2.4)

The second equation implies the existence of velocity potential, so introducing
ϕ:

~v′ = ∇ϕ

from two �rst equations (10.2.4) we have

∂ρ′

∂t
+ ρ0∆ϕ = 0, p′ = −ρ0

∂ϕ

∂t
(10.2.5)

Exclude T ′ from the last equation:

∂Tv
∂t

=
1

τ0

(
T0

p0

p′ − T0

rho0

ρ′ − T ′v
)

Taking time derivative of this equation and the third equation (10.2.4 we
get

∂2p′

∂t2
− a2

f

∂2ρ′

∂t2
+ ρ0(γ − 1)ėv

∂2T ′v
∂t2

= 0

∂2Tv
∂t2

=
1

τ0

(
T0

p0

∂p′

∂t
− T0

rho0

∂ρ′

∂t
− ∂T ′v

∂t

) (10.2.6)

exclude T ′v:

∂2p′

∂t2
− a2

f

∂2ρ′

∂t2
+

1

τ

[(
λ
T0

p0

+ 1

)
∂p′

∂t
−
(
λ
T0

ρ0

+ a2
f

)
∂ρ′

∂t

]
= 0

where λ = ρ0(γ − 1)ėv, and �nally obtain the equation for potential

∂

∂t

(
∂2ϕ

∂t2
− a2

f∆ϕ

)
+

1

τ

(
∂2ϕ

∂t2
− a2

e∆ϕ

)
= 0. (10.2.7)

We use

τ = τ0

(
λT0

p0

+ 1

)−1

, a2
e =

(
λT0

ρ0

+ a2
f

)(
λT0

p0

+ 1

)−1

.
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We simplify these expressions

τ = τ0

(
λT0

p0

+ 1

)−1

=
τ0p0

ρ0(γ − 1)ėvT0 + p0

=
τ0cv
ėv + cv

= τ0
cv
cve

using cve � constant volume heat capacity for equilibrium state, and

a2
e =

λT0 + a2
fρ0

λT0 + p0

p0

ρ0

=
ρ0(γ − 1)ėvT0 + γp0

ρ0(γ − 1)ėvT0 + p0

p0

ρ0

= fraccp + ėvcv + ėv
p0

ρ0

= γe
p0

ρ0

.

We see that ae has the same structure as af but it involves heat capacities
ration for the equilibrium state. If is clear that γe < γ, so ae < af .

The equation for small disturbances propagation (10.2.7) involves two
wave operators with di�erent speed of sound. Let us investigate its limit
cases.

If τ → ∞ we have a frozen �ow and (10.2.7) takes form of usual wave
equation with classical (frozen) speed of sound:

∂2ϕ

∂t2
− a2

f∆ϕ = 0,

provided initial conditions satis�es this equation.
It the relaxation time τ is small, we have

∂2ϕ

∂t2
− a2

e∆ϕ = 0,

so disturbances propagate at equilibrium speed of sound.

10.3 Dispersion relation

Consider one dimensional (plane) disturbances. The governing equation (10.2.7)
reads

∂

∂t

(
∂2ϕ

∂t2
− a2

f

∂2ϕ

∂x2

)
+

1

τ

(
∂2ϕ

∂t2
− a2

e

∂2ϕ

∂x2

)
= 0. (10.3.1)

For monochromatic plane wave

ϕ = A exp [i(kx− ωt] (10.3.2)

it gives dispersion relation

−iω(−ω2 + a2
fk

2) +
1

τ
(−ω2 + a2

ek
2) = 0,
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which is relation between wavenumber and frequency:

k = ω

√
1− iωτ

a2
e − iωτa2

f

. (10.3.3)

The wavenumber is now complex and k = kr + iki, so the disturbance
(10.3.2) is rewritten

ϕ = A exp(−kix) exp

[
ikr

(
x− ω

kr
t

)]
the ratio ω

kr
is phase velocity and the exponent with real argument −kix

stands for growth for negative ki and decay for ki.
Consider di�erent asymptotic case. Let ωτ � 1. Neglecting terms of order

of (ωτ)2, we obtain

k =
ω

ae
+ i

ω

ae

ωτ

2a2
e

(a2
f − a2

e).

Phase velocity for these waves if equilibrium speed of sound. The imaginary
part is positive so disturbances decay and decay rate is proportional to af −
ae > 0.

For short (high-frequency waves)

k =
ω

af
+ i

1

2τa3
f

(a2
f − a2

e).

For general case the equation (10.3.3) gives

kr = mω cos θ ki = mω sin θ

m =
(

1+(ωτ)2

a4e+(ωτ)2a4f

)1/4

, 2θ = atan
ωτ(a2f−a

2
e)

a2e+(ωτ)2a2f
.

The decay rate has maximum at ωτ = ae/af . Typical dependence of phase
velocity ω/kr and decay rate ki/ω on normalized frequency ωτ is shown at
the picture 15.

Pic. 15: Phase velocity and decay rate of disturbances in gas with relaxation
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10.4 Flow in a de Laval nozzle

Consider a �ow in a de Laval nozzle. For stationary one dimensional �ow
temperature depends on Mach number as

T0

T
= 1 +

γ + 1

2
M2

If a hypersonic �ow (M > 10) is present at the exit of the nozzle,
temperature drops by factor of 40 at the nozzle length. Assuming room
temperature near the exit, it is clear that there is very high temperature in
the stagnation region, and vibrational degrees of freedom are excited there.
Going downstream temperature goes down and these degrees of freedom
get deactivated. The energy of molecules or any other thermodynamical
parameter corresponding to vibrational degrees of freedom obeys relaxation
equation

dq

dt
=
qe(ρ, T )− q

τ
(10.4.1)

for a state parameter q, thermodynamical parameters ρ, T , and relaxation
time τ(ρ, T ).
In a nozzle, the �ow is one-dimensional and stationary, so d/dt = ud/dx,
thermodynamical parameters ρ, T are given function of x. Consider some
simple solutions.

1. Let qe = const, τ = const. The solution of (10.4.1) is

q = qe + (q0 + qe)e
−t/τ

Considering initial condition q0 = qe, we have equilibrium �ow in the whole
nozzle

2 qe = qe(t) is a given function, τ = const. In this case the equation (10.4.1)
has a solution

q =
1

τ
e−t/τ

t∫
0

eξ/τqe(ξ)dξ + q0e
−t/τ

Integrating by parts (n+ 1) times, we obtain

q =
n∑
i=0

(−1)iτ iq(i)
e (t)−

[
n∑
i=0

(−1)iτ iq(i)
e (0)

]
e−t/τ+(−1)n+1τne−t/tau

t∫
0

eξ/τq(n+1)
e (ξ)dξ+q0e

−t/τ
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Assume, there is an equilibrium in the stagnation region. For n = 2 we have

q = qe(t)−τq′e(t)+τ 2q′′e−
[
−τq′e(0) + τ 2q′′e (0)

]
e−t/τ−τ 2e−t/τ

t∫
0

eξ/tauqe(3)dξ+q0e
−t/τ

or, if the third derivative is small enough

q = qe(t)

[
1− τ q

′
e(t)

qe(t)
+ τ 2 q

′′
e (t)

qe(t)

]
+ A(t)e−t/τ (10.4.2)

with a bounded function A(t). The reason for non-equilibrium state
appearance in the nozzle is a variation of equilibrium along the nozzle.
The reference time of change of qe is

τvar =

∣∣∣∣q′e(t)qe(t)

∣∣∣∣−1

It is the third refence time along with relaxation time τ and the �ow refence
time τf = l/u∗, where l is a refernce length and u∗ is reference velocity, e.g.
critical speed of sound. The scale τvar only changes along the nozzle, so we
consider its local value in di�erent regions.
The governing equation (10.4.1) in non-dimensional form is

dq

dt
=
qe(t)− q
τ/τf

There are four di�erent cases conserning relation between these scales.

1. τ/τf � 1 leads to dq/dt ≈ 0 and q is almost constant. This is almost
frozen �ow

2. τ/τf � 1 implies q ≈ qe(t), so the �ow is almost equilimrium.

3. τ/τvar. In this case (10.4.2) gives q ≈ qe(t), so the �ow is almost

equilimrium.

4. τ ∼ τf ∼ τvar. No simpli�cation is possible and the �ow in non-
equilibrium.

We assumed that there is an equilibrium at the stagnation region, so in the
convergent part of the nozzle it is likely that τ/τvar � 1 and the �ow is
almost equilibrium.
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Further downstream, the velocity of the gas increases and its pressure
goes down, so the relaxation time increases. In some region the have non-
equilibrium �ow as

τ ∼ τf ∼ τvar

Near the exit area, gas is usually rare�ed, the velocity alomost reaches its
terminal value, pressure and temperature are quite low. This means that τf
has its maximum and the relation τf ∼ τvar. On the other hand, due to low
pressure the relaxation time is small, so

τ

τf
� 1

and the �ow is alomost frozen.
One can assume that the middle region is short and neglect changes in this
region. In this case there are only equilibrium and frozen �ows with a sharp
border between them. That is why this method is referred to as 'sudden
frrezing method'.
The same procedure can be also applied for a gas jet expansion to vacuum,
e.g. from a sonic nozzle. In this case 'sudden freeze' means tranfer from
continuum �ow to free molecular one.
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11 Basics of nucleation theory

The considered above non-equilibruim e�ects involve a pair of molecules and
the equilibruim state of a molecule can be reached during one collision. In
this section we consider di�erent process.

11.1 Energy barrier

During isentropic expansion in a nozzle, temperature and presuure of a gas
both go down and pressure is power function of temperature. If temperature
is low enough, the pressure becomes higher than saturated vapor presuure
for this temperature. This means that the gas (vapor) becomes metastable
and pahse transition to liquid (condensation) is possible.
The driven force for phase transition is chemical potentials di�erence:

∆µ = µv(pv, T )− µl(pv, T ) > 0.

If a particle goes from vapor phase to a liquid one, the free energy decreases.
For saturation conditions p = psat, the pahase are at equilibrium and chenical
potential di�erence is zero.
One can extimate the chemical potential di�erence:

∆µ = [µv(pv, T )− µ(psat, T )] + [µ(psat, T )− µl(pv, T )]

The second term describes the chemical potential variation in liquid which
is much less than the one for vapor. For thermodynamics, one obtains

∆µ = kT lnS, S =
pv

psat
(11.1.1)

introducing supersaturation S.
This equation gives the enegry di�erence between a particle in bulk vapor
and liquid phase. On the other hand, liquid forms clusters with large amount
of molecules and thess clusters have a free surface. The formation of surface
requires some energy which can be desribed by surface tension coe�cient γ.
Finally, the energy change for n-cluster formation from n vapor molecules is

∆G = −nkT lnS + γA(n)

where the surface area A(n) = 4πr2
n and the radius of the cluster rn is

rn = r1n1/3, r1 =

(
3v1

4π

)1/3
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The surface area is

A(n) = s1n
2/3 s1 = (36π)1/3

(
v1
)2/3

Hence,

β∆G = −n lnS + θn2/3, β =
1

kT
, θ =

γs1

kT
(11.1.2)

This function has its maximum at

nc =

(
2

3

θ

lnS

]3

.

The cluster with nc molecules is called a critical cluster, maximum of the
function ∆G∗ = ∆G(nc) represents an energy barrier which a system has to
overcome to turn to a new (liquid) state. Droplets which are smaller than nc
dissociate on average, while large droplets (> nc) on average grow.
In our approxiamtion about surface energy we obtain classical energy barrier

∆G∗ =
1

3
γA(nc) =

16π

3

(v1)
2
γ3

(kT lnS)2

or in non-dimensional form

β∆G∗ =
4

27

θ3

ln2 S

11.2 Kinetics of nucleation

The equilibrium cluster distribution

ρe(n) = ρ1 exp [−β∆G(n)]

gives large values for large values of n where the bulk term in ∆G dominates,
so this distribution diverges. Hence, the actual distribution is a�ected by
initial conditions and is non-equilibrium.
The classical nucleation theory (CNT) uses the following assumptions:

• the elementary process which changes the size of a nucleus is the
attachment to it or loss by it of one molecule

• if a monomer collides a cluster it sticks to it with probability unity

• there is no correlation between successive events that change the
number of particles in a cluster (nucleation is a Markov process)
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Let fn be a forwrd rate of attachment of a molecule to an n-cluster
(condensation) as a result of which it becomes an (n + 1)-cluster, and bn
be a backward rate corresponding to loss of a molecule by an n-cluster
(evaporation) as a result of which it becomes and (n1)-cluster. Then the
kinetics of the nucleation process is described by the set of coupled rate
equations

∂ρ(n)

∂t
= fn−1ρ(n− 1, t)− bnρ(n, t)− fnρ(n, t) + bn+1ρ(n+ 1, t)

A net rate at which n-clusters become n+ 1 - clusters is

J(n, t) = fnρ(n, t)− bn+1ρ(n+ 1, t) (11.2.1)

so
∂rho(n, t)

∂t
= J(n− 1, t)− J(n, t) (11.2.2)

This equiation is called Becker D�oring equation.
The coe�cients fn and bn are de�ned independently. The former one is
determined by collision frequency nu per unit area:

fn = νA(n), ν =
pv√

2πm1kT

where m1 is a mass of one molecule.
The backward (evaporation) rate b(n), at which a cluster looses molecules,
a priori is not known. It is feasible to assume that this quantity is to a
large extent determined by the surface area of the cluster rather than by
the properties of the surrounding vapor. Therefore bn can be assumed to be
independent on the actual vapor pressure. In order to �nd it CNT uses the
detailed balance condition at a so called constrained equilibrium state, which
would exist for a vapor at the same temperature T and the supersaturation
S > 1 as the vapor in question. In the constrained equilibrium the net �ux
is absent J(n, t) = 0 since it corresponds to the stage before the nucleation
process starts, and the cluster distribution is given by e(n). From (11.2.1)
this implies

bn+1 = f(n)
ρe(n)

ρe(n+ 1)

and (11.2.1 gives

J(n, t)
1

f(n)ρe(n)
=
ρ(n, t)

ρe(n)
− ρ(n+ 1, t)

ρe(n+ 1)
(11.2.3)
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Assume the nuceation is steady-state, so non-equilibrium concentraions do
not depend on time. Hence:

J(n, t) = J,∀n

Taking sum of (11.2.3) for n from 1 to some large number N gives

J
N∑
n=1

[
1

f(n)ρe(n)

]
=
ρ(1, t)

ρe(1)
− ρ(N + 1, t)

ρe(N + 1)

The �rst term in right-hand-side is 1 and the second one vanishes as N →∞.
Finally, we get

J =

[
∞∑
n=1

1

f(n)ρe(n)

]−1

Assume, nc � 1 as it is required by assumption of spherical clusters. In this
case the sum can be replacd by an integral:

J =

 ∞∫
n=1

dn

f(n)ρe(n)

−1

The main contribution to the integral comes from n around critical cluster
size. In the vicinity of nc

ρe ≈ ρe(n) exp

[
−1

2

1

kT
∆G′′(nc)(n− nc)2

]
, ∆G′′(nc) < 0

The Gaussian intergation gives

J = Zfncρe(nc) Z =

√
− 1

2π

1

kT
∆G′′(nc)

where Z is called Zeldovich factor.
Taking into account energy barrier (11.2.2), Zeldovich factor takes the form

Z =
1

3

√
θ

π
n−2/3
c

or

Z =

√
γ

kT

1

2πρ1r2
c

Summarizing, the main result of the CNT states that the steady state
nucleation rate is an exponential function of the energy barrier. It works well
for large enough critical cluster size, which requires small supersaturation.
Nozzle �ows can shown τf at the region with supersaturation much smaller
than the reference time of nucleation. This leads to high supersaturations
(∼ 101 or larger) and CNT is not valid.
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Ëèíåéíàÿ òåîðèÿ óñòîé÷èâîñòè

ôðîíòîâ ãîðåíèÿ

Ïîñòàíîâêà çàäà÷è îá óñòîé÷èâîñòè ôðîíòîâ ãîðåíèÿ

Èññëåäîâàíèå óñòîé÷èâîñòè â ëèíåéíîì ïðèáëèæåíèè ïðîâîäèòñÿ ïóòåì
ëèíåàðèçàöèè ãèäðîäèíàìè÷åñêèõ óðàâíåíèé ñ ó÷åòîì ãðàíè÷íûõ óñëî-
âèé íà ïîâåðõíîñòè ðàçðûâà.
Â öåëÿõ ïðîñòîòû îãðàíè÷èìñÿ ðàññìîòðåíèåì ñëó÷àÿ, êîãäà òå÷åíèå ïå-
ðåä ôðîíòîì è çà íèì ìîæíî ñ÷èòàòü íåñæèìàåìûì .
Ïóñòü íåâîçìóùåííûé ôðîíò íàõîäèòñÿ â ïëîñêîñòè x = 0 . Ñêîðîñòü
u01 ãîðþ÷åé ñìåñè, çàíèìàþùåé ïîëóïðîñòðàíñòâî x < 0, íàïðàâëåíà
â ïîëîæèòåëüíóþ ñòîðîíó îñè x. Çà ðàçðûâîì ñêîðîñòü u02 = λ̃u01 (ïðè
ìåäëåííîì ãîðåíèè λ̃ > 1 ). Ïëîòíîñòü ρ01 ïåðåä ôðîíòîì â λ̃ ðàç áîëüøå
ïëîòíîñòè ρ02 ïîçàäè íåãî, òàê ÷òî ρ01 = λ̃ρ02 .
Ðàññìîòðèì îòêëîíåíèÿ ïîâåðõíîñòè ôðîíòà îò ïëîñêîé. Òîãäà àáñöèññà
ïðîèçâîëüíîé òî÷êè ïîâåðõíîñòè ôðîíòà ζ ìîæåò áûòü çàïèñàíà â âèäå
ôóíêöèè îò y è t , òî åñòü ζ = ζ(y, t) .
Ñîîòâåñòâóþùèå èñêðèâëåíèþ ôðîíòà âîçìóùåíèÿ ãèäðîäèíàìè÷åñêèõ
ïàðàìåòðîâ áóäóò òàêæå ÿâëÿòüñÿ ôóíêöèÿìè x, y è t. Ñëåäîâàòåëüíî,
âîçíèêàåò íåîäíîìåðíîå íåñòàöèîíàðíîå òå÷åíèå.
Â íåîäíîìåðíîì ñëó÷àå äàâëåíèå p1 è êîìïîíåíòû ñêîðîñòè u1, υ1 ïåðåä
ôðîíòîì ñâÿçàíû ñî çíà÷åíèÿìè ýòèõ æå ôóíêöèé çà ôðîíòîì p2, u2, υ2

ñîîòíîøåíèÿìè

− ρ01U1(u2 − u1) = (p2 − p1)

[
1 +

(
∂ζ

∂y

)2]−1/2

,

− ρ01U1(υ2 − υ1) = −(p2 − p1)
∂ζ

∂y

[
1 +

(
∂ζ

∂y

)2]−1/2

,

∂ζ

∂t

[
1 +

(
∂ζ

∂y

)2]−1/2

=

(
u1 − υ1

∂ζ

∂y

)
[1 +

(
∂ζ

∂y

)2]−1/2

− U1 ,

∂ζ

∂t

[
1 +

(
∂ζ

∂y

)2
]−1/2

=

(
u2 − υ2

∂ζ

∂y

)
[1 +

(
∂ζ

∂y

)2]−1/2

− U2 ,

ρ01U1 = ρ02U2 = const (4)

Çäåñü U1 è U2 åñòü ïðîåêöèè ñêîðîñòåé ãàçà îòíîñèòåëüíî ôðîíòà íà
íîðìàëü ê íåìó. Ïåðâûå äâà èç ñîîòíîøåíèé (4) âûðàæàþò çàêîí íåïðå-
ðûâíîñòè ïîòîêà èìïóëüñà ïðè ïåðåõîäå ÷åðåç ðàçðûâ ñ ó÷åòîì òîãî, ÷òî
â ñèñòåìå êîîðäèíàò x, y ïîâåðõíîñòü ôðîíòà íå ÿâëÿåòñÿ íåïîäâèæíîé.
Äâà äðóãèõ ñîîòíîøåíèÿ - êèíåìàòè÷åñêèå. Îíè âûòåêàþò èç îïðåäå-
ëåíèÿ ñêîðîñòè ïîâåðõíîñòè. Ïîñëåäíèå èç ñîîòíîøåíèé (4) âûðàæàþò
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çàêîí ñîõðàíåíèÿ ìàññû è ïîñòîÿíñòâî ïîòîêà ìàññû ñìåñè è ïðîäóêòîâ
ñãîðàíèÿ.
Ïóñòü â ïîòîêå ãàçà âîçíèêëè ìàëûå âîçìóùåíèÿ ñêîðîñòè è äàâëåíèÿ

u1 = u01 + u′1 , υ1 = υ′1 , p1 = p01 + p′1 ,

u2 = u02 + u′2 , υ2 = υ′2 , p2 = p02 + p′2 ,

Ïðè÷åì

u′1 � u01, υ
′
1 � u01, p

′
1 � p01 ,

u′2 � u02, υ
′
2 � u02, p

′
2 � p02 .

Â îáùåì ñëó÷àå áóäåò âîçìóùåíà òàêæå ïîâåðõíîñòü ôðîíòà ζ = ζ(y, t).
Âîçìóùåíèÿ ãèäðîäèíàìè÷åñêèõ âåëè÷èí äîëæíû óäîâëåòâîðÿòü óðàâ-
íåíèÿì íåðàçðûâíîñòè è äâèæåíèÿ. Â ñìåñè ïîëó÷àåì ëèíåàðèçîâàííûå
óðàâíåíèÿ âèäà

∂u′1
∂x

+
∂υ′1
∂y

= 0 ,

∂u′1
∂t

+ u01
∂u′1
∂x

= − 1

ρ01

∂p′1
∂x

,

∂υ′1
∂t

+ u01
∂υ′1
∂x

= − 1

ρ01

∂p′1
∂y

(5)

Òðè àíàëîãè÷íûõ óðàâíåíèÿ èìåþò ìåñòî äëÿ ãàçà çà ôðîíòîì.
Íàéäåì íåêîòîðûå ÷àñòíûå ðåøåíèÿ óðàâíåíèé (5). Ïîòðåáóåì, ÷òîáû
ýòè ðåøåíèÿ áûëè îãðàíè÷åíû ïðè x = ±∞ è óäîâëåòâîðÿëè íà ôðîíòå
ëèíåàðèçîâàííûì ãðàíè÷íûì óñëîâèÿì (4).
Âûâîä äèñïåðñèîííîãî ñîîòíîøåíèÿ, êðèòåðèé óñòîé÷èâîñòè. Áóäåì
èñêàòü ðåøåíèå ïîñòàâëåííîé çàäà÷è â ôîðìå

u′1
u01

= F1(t)ekxcos ky,
υ′1
u01

= −F1(t)ekxsin ky,

p′1
ρ01u2

01

= −
(
F1 +

λ̃

ku02

F ′1

)
ekxcos ky,

u′2
u02

=

[
F2(t)e−kx + F3

(
t− x

u02

)]
cos ky,

υ′2
u02

=

(
F2e

−kx +
F ′3
ku02

)
cos ky,

p ′2
ρ02u2

02

= −
(
F2 −

F ′2
ku02

)
e−kxcos ky,

ζ(y, t) =
1

k
F4(t)cos ky,
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(k � âîëíîâîå ÷èñëî).
Ëåãêî ïðîâåðèòü, ÷òî ýòè âûðàæåíèÿ óäîâëåòâîðÿþò ãèäðîäèíàìè÷å-
ñêèì óðàâíåíèÿì (5). Òîãäà ïîñëå àëãåáðàè÷åñêèõ ïðåîáðàçîâàíèé ïî-
ëó÷àåì óðàâíåíèå äëÿ F4(t)

(λ̃+ 1)λ̃

(ku02)2
F ′′4 +

2λ̃

ku02

F ′4 +

+ (1− λ̃)F4 = 0 (6)

Ðåøåíèå óðàâíåíèÿ (6) èìååò âèä F4 = F40e
δt , ãäå δ îïðåäåëÿåòñÿ äèñ-

ïåðñèîííûì ñîîòíîøåíèåì(
δ

ku02

)2

+
2

1 + λ̃

δ

ku02

+

+
1

λ̃(λ̃+ 1)
(1− λ̃) = 0.

Èç äâóõ êîðíåé ýòîãî óðàâíåíèÿ íåóñòîé÷èâûì âîçìóùåíèÿì îòâå÷àåò
ëèøü òîò, ó êîòîðîãî ïåðåä ðàäèêàëîì ñòîèò çíàê + .
Ëåãêî ïðîâåðèòü, ÷òî íåóñòîé÷èâûìè áóäóò âîçìóùåíèÿ ëþáûõ äëèí
âîëí. Îáû÷íî λ̃� 1 , òàê ÷òî δ ∝ λ̃−1/2.
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